首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to get detailed information about the facies and genesis of Upper Carboniferous coal seams of Northwest Germany, maceral analyses of complete seam profiles (Westphalian B-D, mainly Westphalian C) were carried out. Four main facies and twelve subfacies could be distinguished. The main facies are:
1. (1) The sapropelic-coal facies, consisting of fine-grained inertinite and liptinite, which forms from organic sediments deposited at the bottom of moor lakes.
2. (2) The densosporinite facies which is high in inertinite and liptinite and low in vitrinite. Syngenetic pyrites, clastic layers, thick vitrains and fusains do not occur. This facies originates from peats of ‘open mires’ with higher groundwater table and herbaceous vegetation. The ‘open mire’ was situated in the centre of extensive swamps. Consequently, clastic sedimentation did not affect this swamp type and nutrient supply and pH values were low.
3. (3) The vitrinite-fusinite facies, which is high in vitrinite. This is the result of abundant vitrains. Under the microscope, fusains were mostly identified as fusinite. The vitrinite-fusinite facies originates from a forest mire. More or less abundant seam splits and clastic layers show that rivers flowed in the neighbourhood of this area.
4. (4) The shaly-coal facies, which represents the most marginal part of the former swamp frequently affected by clastic sedimentation.
Within the Carboniferous of the Ruhr Region it seems unlikely that the thin coal seams of the Namurian C and Westphalian A1 contain a densosporinite facies. The swamps were situated in the lower delta plain where they were often affected by marine influences. Consequently, coals are high in minerals and sulfur and they are thin and discontinous. The best conditions for the formation of extensive swamps, with open mires (densosporinite facies) in their central parts, prevailed during Westphalian A2 and B1 times. Low contents of sulfur and minerals and high content of inertinite are typical for these coals. Sedimentation mainly took place in the transitional zone from the lower to the upper delta plain. During the Westphalian B2 and C fluvial sedimentation dominated. Within the coal seams minerals, sulfur and pseudovitrinite increase while inertinite decreases. This is the consequence of coal of the densosporinite facies occurring with increased rarity. The coal seams of the Westphalian C2 contain no densosporinite facies because peat formation was restricted by increasing fluvial sedimentation and by a better drainage. As a consequence, extensive swamps with ‘open mires’ in the centre were no longer formed after the formation of the “Odin” seams. Above the “Odin” seams coal of the vitrinite-fusinite facies contains thick-walled torisporinites. Variations and lowering of the groundwater table caused mild oxidative influences during peat formation. This is documented by an increase in pseudovitrinite, the occurrence of torisporinites and the absence of spheroidal sideritic concretions. Sulfur content increases in the absence of the low-ash and low-sulfur coal of the densosporinite facies.In Upper Carboniferous coal seams of the Ibbenbüren Region the inertinite and telocollinite contents are higher than in those of the Ruhr Region. Therefore, variations of the groundwater table have been more pronounced and resulting oxidative influences must have been more severe. Seldom occurring marine and brackish horizons and a higher fusinite (fusain) content indicate a slight elevation of this area. From Early Westphalian D times onward, peat formation was no longer possible because of the better drainage. This resulted in severe oxidative conditions which excluded peat formation.  相似文献   

2.
荥巩和新密煤田是豫西北部的两个相邻煤田。主要含煤地层为晚古生代晚石炭世太原组和早二叠世山西组,总厚100—150m;下石盒子组及晚二叠世的上石盒子组在本区仅偶含薄煤层。太原组位于含煤岩系最底部,为碳酸盐岩和碎屑岩交替沉积,灰岩形成于清澈、温暖、浅水的陆表海潮下环境,碎屑岩则为潮道和潮间带为主的潮道、潮坪沉积。太原组含有6—7层薄煤层,形成于咸水或半咸水的泥炭沼泽中。山西组几乎全由碎屑岩组成,下部发育本区的主要可采煤层二1煤。二1煤以下层位为潮坪和横向与之共生的潮道、潮沟及河口潮汐砂脊沉积,二1煤以上为河流作用为主的三角洲沉积,三角洲由北向南进积到半咸水的海湾中。二1煤形成于海退时期,它们堆积在滨海平原的淡水泥炭沼泽中,其厚度变化及发育程度主要受成煤前沉积环境控制,但在本区西部构造较复杂处,煤层厚度受后期构造影响较大。沉积环境对煤层原生厚度的影响主要表现在潮坪和废弃的潮道、潮沟、河口潮汐砂背沉积物之上,煤层发育好,而在二1煤之下有活动的潮道及河口潮汐砂脊发育时,煤层较薄或不发育。  相似文献   

3.
Pennsylvanian strata of the Hazard coalfield, Eastern Kentucky, contain fluvial, upper-delta plain facies characterized by thick localized coals, bay-fill shales, levee silt- and sandstones, and channel-fill sands and gravels. Although the deltaic nature of these sediments has long been established, mining and exploration activities in the district require a thorough understanding of small areas within the delta environment. Coal quantity and quality trends in the Hazard #7 seam, the major producer in the area, have been examined in detail.The #7 coal accumulated in a peat swamp restricted laterally by a major fluvial channel. Three types of non-coal parting are recognized. Thin, tabular, fine-grained partings resulted from periods of increased terrigenous influx into the swamp. Lenticular crevasse-splay deposits locally split the coal. Wedge-shaped, fine- to coarse-grained partings, of probable levee origin, are found along the channel margin. Post-swamp deposits consist of thick bay-fill shales, thin shales, silt- and sandstones deposited on floodplains, and channel-fill sandstones and gravels.The modeling technique discussed provides guidance for mine development and regional exploration by prediction of coal seam quantity and quality trends from local geologic features. The thickest #7 coal is split by thin tabular partings and is overlain by thick shale sequences. Coal overlain by silt and sandstone is thinner and unsplit, and typically of higher heat value. Regional seam thinning due to channel scour is recognized. Factors which control the configuration of the coal seam include position within the peat swamp, proximity to the fluvial channel, swamp burial processes, and paleochannel sinuosity.  相似文献   

4.
本文通过滇东田坝黔西土城晚二叠世煤系上段沉积相、煤层特征和煤岩煤质的综合研究,系统分析了区内煤层形成时的沉积环境.按成煤的古地理位置分为上三角洲煤相和上、下三角洲过渡带-下三角洲煤相两大类型.根据成煤的原始质料、结构构造、煤岩特征和成煤前后环境,详细划分出八种泥炭沼泽相.着重探讨3号煤层形成时的泥炭沼泽相特征及其变化.  相似文献   

5.
The coal-bearing sediments and coal seams of the Karoo Basin, Southern Africa are described and discussed. The Karoo Basin is bounded on its southern margin by the Cape Fold Belt, onlaps onto the Kaapvaal Craton in the north and is classified as a foreland basin. Coal seams are present within the Early Permian Vryheid Formation and the Triassic Molteno Formation.The peats of the Vryheid Formation accumulated within swamps in a cool temperate climatic regime. Lower and upper delta plain, back-barrier and fluvial environments were associated with peat formation. Thick, laterally extensive coal seams have preferentially accumulated in fluvial environments. The coals are in general inertinite-rich and high in ash. However, increasing vitrinite and decreasing ash contents within seams occur from west to east across the coalfields. The Triassic Molteno coal seams accumulated with aerially restricted swamps in fluvial environments. These Molteno coals are thin, laterally impersistent, vitrinite-rich and shaly, and formed under a warm temperate climatic regime.Palaeoclimate, depositional systems, differential subsidence and basin tectonics influence to varying degrees, the maceral content, thickness and lateral extent of coal seams. However, the geographic position of peat-forming swamps within a foreland basin, coupled with basin tectonics and differential subsidence are envisaged as the primary controls on coal parameters. The Permian coals are situated in proximal positions on the passive margin of the foreland basin. Here, subsidence was limited which enhanced oxidation of organic matter and hence the formation of inertinitic coals. The coals in this tectonic setting are thick and laterally extensive. The Triassci coals are situated within the tectonically active foreland basin margin. Rapid subsidence and sedimentation rates occurred during peat formation which resulted in the preservation of thin, laterally impersistent, high ash, vitrinite-rich, shaly coals.  相似文献   

6.
山西静乐舍科勘查区主要含煤地层为上石炭统太原组和下二叠统山西组,通过对区内地质成果分析,本区太原组沉积环境由河控三角洲到潟湖、潮坪交替出现,期间发育两次碳酸盐台地,岩性主要以灰岩、泥岩、中粗砂岩和粉、细砂岩为主,含主要可采煤层9煤层;山西组主要为三角洲平原分流河道相、泛滥盆地相和泥炭沼泽相,以砂岩、粉砂岩、砂质泥岩为主,含主要可采煤层4-1、4煤层;4-1号煤层属大部可采的较稳定煤层,4和9号煤层属全区可采的较稳定煤层;本区主要煤类均为焦煤,资源量丰富,煤质较好,具有较高的开发价值。  相似文献   

7.
平沟矿区山西组潮控三角洲—河流沉积及聚煤特点   总被引:3,自引:0,他引:3  
通过野外和室内研究,提出山西组形成于河流—潮控三角洲环境。河流沉积包括辫状曲流河和高弯度曲流河。潮控三角洲以潮汐沉积发育为标志,潮汐沙坝、潮河道构成其沉积骨架,揭示了沉积期仍受海水内泛影响。煤聚积发生在河道岸后边缘沼泽环境、废弃潮汐沙坝上发育起来的潮坪环境及分流间湾充填变浅形成的泥炭沼泽环境。总结了不同沉积环境的聚煤特点。  相似文献   

8.
We present new original data on the geochemistry of scandium in the coals of Asian Russia, Mongolia, and Kazakhstan. In general, the studied coals are enriched in Sc as compared with the average coals worldwide. Coal deposits with abnormally high, up to commercial, Sc contents were detected in different parts of the study area. The factors for the accumulation of Sc in coals have been identified. The Sc contents of the coals depend on the petrologic composition of coal basins (composition of rocks in their framing) and the facies conditions of coal accumulation. We have established the redistribution and partial removal of Sc from a coal seam during coal metamorphism. The distribution of Sc in deposits and coal seams indicates the predominantly hydrogenic mechanism of its anomalous concentration in coals and peats. The accumulation of Sc in the coals and peats is attributed to its leaching out of the coal-bearing rocks and redeposition in a coal (peat) layer with groundwater and underground water enriched in organic acids. The enrichment of coals with Sc requires conditions for the formation of Sc-enriched coal-bearing rocks and conditions for its leaching and transport to the coal seam. Such conditions can be found in the present-day peatland systems of West Siberia and, probably, in ancient basins of peat (coal) accumulation.  相似文献   

9.
Coal seams preserve high-resolution records of ancient terrestrial water table (base level) fluctuations in ancient peat accumulations, but little is known about base level change in anomalously thick coal seams. Using the Early Cretaceous 91 m anomalously thick No. 6 coal (lignite) seam in the Erlian Basin (north-east China) as a case study, the origin and evolution of peat accumulation in a continental faulted basin is revealed by sedimentological, sequence stratigraphic and coal petrological analyses. The lignite is dominated by huminite, indicating oxygen-deficient and waterlogged conditions in the precursor mire. Four types of key sequence stratigraphic surfaces are recognized, including paludification, terrestrialization, accommodation-reversal and give-up transgressive surfaces. Vertically, the No. 6 coal seam consists of fourteen superimposed wetting-up and drying-up cycles separated by key sequence stratigraphic surfaces, with each of these cycles having a mean duration of about 156 to 173 kyr. In a high accommodation peat swamp system, the wetting-up cycles are generally characterized by an upward increase in mineral matter and inertodetrinite and an upward decrease in huminite with the paludification surface as their base and the give-up transgressive surface or accommodation-reversal surface as their top, representing a trend of upward-increasing accommodation. In contrast, the drying-up cycles are generally characterized by an upward decrease in mineral matter and inertodetrinite and an upward increase in huminite, with the terrestrialization surface as their base and the accommodation-reversal surface as their top, representing a trend of upward-decreasing accommodation. A multi-phase mire stacking model for accumulation of the coal seam is proposed based on high-frequency accommodation cycles and the stratigraphic relationships between coal and clastic sediments. High-frequency accommodation cycles in the coal are closely related to water table fluctuations in the precursor mires and are driven by high-frequency climate via changes in the intensity and seasonality of precipitation in a relatively stable subsidence regime. Recognition that the No. 6 coal seam is composed of multiple stacked mires has implications for studies addressing palaeoclimatic inferences and genesis of anomalously thick coals seams.  相似文献   

10.
The Sakoa Group is the lowermost stratigraphical succession of the Karoo Supergroup and the oldest sedimentary unit in Madagascar, spanning the Late Carboniferous through Early Permian epochs. The Sakoa Group is exposed in the southern Morondava Basin. It is predominantly a siliciclastic sequence comprising seven lithofacies associations: (1) diamictites; (2) conglomeratic sandstones; (3) sandstones; (4) interbedded thin sandstones and mudstones; (5) mudstones; (6) coals; and (7) limestones. These facies represent deposition in the early extensional stages of continental rift development. The sediments were deposited predominantly on alluvial fans, and in braided to meandering stream and overbank environments. Locally lacustrine and coal swamp environments formed in low areas of the basin floor during rift initiation. Subsidence rates remained fairly constant throughout the Early Permian and were accompanied by a gradual reduction in relief of the basin margins and an increased geomorphic maturity of the fluvial systems flowing across the basin floor. Near the end of the Early Permian the southern Morondava Basin was inundated by a marine transgression , which resulted in deposition of the Vohitolia Limestone. Subsequent tectonic uplift and erosion resulted in a regional unconformity between the Sakoa Group and the overlying Sakamena Group.  相似文献   

11.
为了探讨中国西南地区二叠系乐平统(上二叠统)龙潭组中下部煤系不同煤组分中砷、硒的含量和演化及古环境意义,对近10年来采集于中国西南扬子地台的二叠系乐平统龙潭组主采煤层的原煤、亮煤、煤矸石、黄铁矿结核等样品中砷、硒元素含量进行了测定和分析,并与中国华北地台一些煤矿的上石炭统-下二叠统太原组、山西组的原煤、镜煤、亮煤、煤矸石、黄铁矿结核等样品中砷、硒含量进行对比分析。结果表明:西南地区乐平统龙潭组煤的砷、硒含量变化较大,但总体高于华北晚石炭世和早二叠世煤的砷、硒含量;西南二叠系乐平统龙潭组大多数的亮煤中砷、硒含量高于原煤全煤样(刻槽样)中的砷、硒含量,也远远高于同煤层煤矸石的含量,龙潭组部分亮煤的砷含量尤其高,为55~338 mg/kg,还发现砷含量为89 mg/kg的亮煤。但华北上石炭统-下二叠统的镜煤中的砷、硒含量与之相反,低于原煤全煤样的砷、硒含量,其中砷含量非常低,为063~129 mg/kg。说明西南地区上二叠统煤中的砷和硒与煤的有机质密切相关,可能主要来源于成煤古植物。在西南乐平世早、中期第Ⅰ幕陆生生物集群灭绝事件期间,陆生动物的食物--植物中有毒有害元素砷、硒含量明显增加,陆生环境或泥炭沼泽中可溶性砷、硒含量增加。  相似文献   

12.
The Middle Permian Collinsville Coal Measures of the northern Bowen Basin illustrate a range of cold to cold-temperate, coal-forming environments. Cold climate is indicated by Glossopteris flora in the coal measures, and by restricted marine fauna dominated by brachiopods and bryozoa in correlative marine sequences of the Back Creek Group which contains also abundant lonestones (dropstones). Sedimentation was characterised by an overall transgression, interrupted by local fluvial and coastal progradation in a shallow, epicontinental sea during a relatively quiescent tectonic period.Six sedimentary environments are represented: fluvial, fluvio-paralic, barrier-strandplain, back-barrier, tidal flat and open marine. The basal coal formed from peat of swamps of abandoned areas of gravelly braided streams, and is massive, dull, and with high ash (20%), low sulphur (1%) contents. Overlying coals developed from peats formed in fluvio-paralic and paralic environments, and thicker seams are generally brighter, with low to moderate ash (8–17%) and moderate to high total sulphur (1–6%) contents. Seams associated with fluvial influence show splits and high ash yield, while seams associated with coastal deposits show high sulphur levels (up to 21%).In contrast to reported models of coal-forming environments, no clearly defined deltaic or inter-distributary bay-fill sequences were identified in the area studied. Rather, vast freshwater wetlands backed low-gradient, progradational coasts locally having bars and barriers. The barriers were not prerequisites for substantial peat accumulation, although may have locally assisted peatland development by raising the profile of coastal equilibrium.  相似文献   

13.
贵州大方县白布勘探区煤系地层龙潭组为海陆交互相沉积,厚度177~211m,含煤21~36层,煤层总厚18.04~30.29m,可采煤层6层。根据岩性、岩相特征自下而上分为3段,下段为潟湖—潮坪相沉积,并在大部分地区形成泥炭沼泽,形成了可采的33、28号煤层;中段为三角洲相,泥岩沼泽相多在三角洲分流河道间的湖沼区及湖波浪带基础上发育而成,煤层层位稳定,厚度不大;上段为潮坪三角洲相,该期构造活动趋于平稳,形成的煤层层位稳定,厚度大,6中煤0.39~6.88m,7号煤0~3.09m。三段厚度比较接近,反映该区晚二叠世期间地壳沉降均衡。沉积环境差异是本区成煤条件的主要控制因素。  相似文献   

14.
The Carboniferous succession in the Donets Basin hosts about 130 seams, each with a thickness over 0.45 m. Nine economically important seams from the (south)western Donets Basin are studied using organic petrographical, inorganic geochemical, and organic geochemical techniques. The main aim of the study is the reconstruction of peat facies of Serpukhovian (Mississippian) and Moscovian (Middle Pennsylvanian) coals.Formation of major coal seams commenced during Serpukhovian times. Early Serpukhovian coal accumulated in a relatively narrow shore-zone and is rich in inertinite and liptinite. Very low ash yields, low to moderate sulphur contents, and upward increasing inertinite contents suggest coal deposition in raised mires.Moscovian coal has a significantly wider lateral extension and is generally rich in vitrinite. Coal properties vary widely in response to different peat facies. Low-sulphur, low-ash k7 coal was formed in a raised mire or in a low-lying mire without detrital input. l1 and l3 seams containing several fluvial partings were formed in low-lying mires. Both seams are more than 2 m thick. Seams m2 and m3 contain high-sulphur coal, a consequence of deposition in a peat with marine influence. In contrast, syngenetic sulphur content is low in the m51 upper seam, which was formed in a lacustrine setting. The late Moscovian n1 seam, up to 2.4 m thick, accumulated in a swamp with a vegetation rich in bryophytes and pteridophytes. The properties of the n1 seam are transitional between those of Serpukhovian and other Moscovian seams. Differences in maceral composition between Serpukhovian and Moscovian coals probably reflect changes in climate and vegetation type.Tuff layers are observed in the l1, l3, and m3 seams. The l3 and m3 seams contain abundant authigenic quartz. Trace element contents are high in many seams. As contents are especially high in seams c102, k7, l3 and m3. Ash in the l3 seam contains up to 8000 ppm As. Co is enriched near the base of several seams. Maxima up to 2400 ppm occur in the ash of the k7 and l3 seams. Cd contents in ash are frequently as high as 30 or 40 ppm.  相似文献   

15.
平顶山矿区二_1煤层煤相分析   总被引:2,自引:0,他引:2  
应用煤岩学和煤化学方法,对平顶山矿区二_1煤层的煤相组成、泥炭沼泽类型及其形成条件进行了探讨。将煤相划分为还原相和氧化相。它们具有相应的定性和定量指标。二_1煤层由3~4个周期性相序构成,反映了成煤沼泽由森林沼泽向草本或草本木本混生沼泽的演化过程。这种相序可能代表一种滨海平原环境下的聚煤特征。二_1煤属贫营养的雨成凸起沼泽,基本上为原地堆积成煤。二_1煤层形成于淡水泥炭沼泽,但其顶部曾受过半咸水环境影响。  相似文献   

16.
The stratigraphic and regional variation of petrographic and chemical properties within the coals of the Upper Carboniferous Tradewater Formation and surrounding rocks in the Western Kentucky coal field were analyzed with the intent of constructing a depositional model for the occurrence of these low sulfur coals. Cores were megascopically described, and coal samples were analyzed for maceral, ash, and sulfur contents. These data were then analyzed to determine regional variation within the study area, as well as vertical variation within single coal columns.Sedimentological data from core logs indicate that the majority of the Tradewater rocks consist of irregularly distributed, coarsening-upward, fine-grained detrital material that was deposited in shallow bodies of water. Fossiliferous shales and limestones indicate a marine influence. Less common coarse-grained, fining-upward sequences appear to represent deposits of meandering or braided channels.Like the detrital rocks, the coal seams are irregularly distributed and exhibit substantial variation in petrographic and chemical properties which reflect changes in the Eh and pH of the coal swamp waters. These individual swamps were relatively limited in extent and probably occupied a low-lying coastal area. The relatively high vitrinite content of most of the coals suggests a reasonable degree of preservation of decaying plant materials. The study of benched samples from surface mines suggests a distinct dichotomy between swamps that were in more or less continuous contact with sulfate-rich marine or brackish water and those in which peat accumulated in a dominantly fresh-water setting. Most of the latter show a pattern of upward increasing sulfur content and decreasing vitrinite content, indicating increasing influences of oxygenated water that would encourage microbial action and which would degrade the peat and increase the tendency for sulfide precipitation. The high sulfur coals do not display this variability. The high rates of lateral variability encountered in the data suggest that future study should concentrate on smaller areas where variation can be completely documented.  相似文献   

17.
华北晚古生代成煤环境与成煤模式多样性研究   总被引:23,自引:2,他引:23  
华北晚古生代聚煤盆地存在活动体系成煤环境和废弃体系成煤环境。前者的海相成煤环境主要为泻湖泥炭坪,陆相成煤环境以三角洲平原沼泽意义最大。晚石炭世至晚二叠世,海相为主的成煤环境逐渐被陆相为主的成煤环境所取代,由盆缘到盆内成煤环境总体呈环带状展布。成煤环境差异性影响了成煤特点,这些成煤特点成为识别海、陆相煤层的显著相标志。华北晚古生代聚煤盆地在时间上和空间上存在成煤模式的多样性,以陆表海滨岸成煤模式、废弃碎屑体系成煤模式和浅水三角洲成煤模式为主。  相似文献   

18.
新疆中天山侏罗纪盆地群沉积演化   总被引:3,自引:0,他引:3       下载免费PDF全文
侏罗纪时中天山地区沉积盆地由伊-昭盆地,尤尔都斯盆地及焉-库盆地构成,其内沉积了一套厚度巨大的冲积和湖泊成因的碎屑岩沉积体,可识别出6种相类型。18种亚相及44种微相,早侏罗世至中侏罗世西山窑期,气候潮湿,植物繁盛,沼泽密布,形成多层煤层;中侏罗世头屯河期开始,气候变为干燥,下侏罗统三工河组及西山窑组中,辫状河和辫状河三角洲沉积发育,其砂体为好的储集体,下侏罗统八道湾组深湖-半深湖相黑色页岩及煤层是好的生油岩。  相似文献   

19.
The early Permian Vryheid Formation is a fluviodeltaic tongue of sediment deposited on the passive northern margin of an asymmetric, intracontinental linear trough (Karoo basin). In the study area these strata attain a maximum thickness of about 270 m, comprising three informal lithostratigraphic members (Lower zone, Coal zone and Upper zone).The Coal zone is characterized by arkosic, coarse to very coarse, pebbly sandstones and subordinate fines arranged in upward-fining sequences, many of which are coal-capped. These units are interpreted as distal outwash fan deposits.Sedimentation patterns in the Upper and Lower zones are dominated by superimposed upward-coarsening sequences representing repeated wave/fluvially-dominated fan delta progradation.Peat accumulation in the cool, seasonal climate which prevailed during Vryheid Formation sedimentation was slow. Significant peat thicknesses were deposited only in areas of low basin/compaction subsidence in the Coal zone during a period of general stability. Extensive upper delta plain and alluvial plain peats formed on broad platforms created by abandonment of braided channel systems. The thickest peats accumulated in raised swamps where vegetation-stabilized contemporaneous channels promoted a high water table. Peat erosion by later channel activity was slight since channel widening rather than stream-bed erosion prevailed. Coals thin, split and contain more ash near loci of contemporaneous channel activity. Upper delta plain coals were not marine-influenced. Some lower delta plain coals also formed on broad abandoned deltas and are likewise extensive. Rapid compaction subsidence rates attracted channel activity or marine incursions and the seams are thin. Peats also accumulated in restricted emergent interdistributory bays during delta construction. These coals are thin, discontinuous, marine-influenced and contain numerous clastic partings.  相似文献   

20.
The formation environment of the main coal seam in Shengli coal mine is analyzed, and the effect of coal ash parameters on the coal-forming environment is mainly discussed according to gray component parameters combined with other coal quality test analysis data. Results show that the hydrodynamic conditions of the main coal during coal accumulation have a general pattern of strong northeast and weak southwest, and lakeside swamp is generally in the retrograde process from south to north. The No.5 coal seam is a water entry cycle, and the No.5lower coal is a water withdrawal cycle. The No.6 thick coal seam is formed in the peat swamp environment where the water is shallow and the groundwater activity is weak. The input of terrestrial debris material was most abundant in the formation period of No.5lower coal, followed by No.5 coal, and that in No.6 coal is the least. Vertically, the peat swamp environment changed from weak reduction to weak oxidation to strong reducing environment. The ash yield was low to high to low from bottom to top. The organic sulfur is the main type of sulfur in the main coal seam. The weaker the hydrodynamic condition, the higher the organic sulfur content in the reduction environment, while lower organic sulfur content in the oxidation environment. The peat swamp water of No.5lower coal is medium alkaline, and the peat swamp water of No.5 and No. 6 coals is weakly alkaline or acidic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号