首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Under increasing population pressure, soil erosion has become a threat in the East African Highlands, and erosion modelling can be useful to quantify this threat. To test its applicability for this region, the LISEM soil erosion model was applied to two small catchments, one in the Usumbara Mountains, Tanzania, and the other on the slopes of Mount Kenya. Input data for the model were collected in both catchments, as were data on runoff and erosion that were used for calibration and validation of the model. LISEM was first calibrated on catchment outlet data, and afterwards simulated spatial patterns of erosion were compared to available erosion data. The results showed that LISEM can, after calibration, give good discharge predictions for some events, but not for all. However, LISEM generally overpredicted soil loss from the catchments. Comparison with observed erosion patterns did not show overprediction, but according to the model, erosion was more widespread than was observed. There are several reasons for these discrepancies. First, it is difficult to obtain enough accurate data to run the model, such as accurate maps, rainfall data and soil and plant characteristics. Second, it is also difficult to obtain accurate data to evaluate the performance of the model, either for the catchment outlet or spatially, therefore observed erosion rates are also uncertain. Third, the model could not deal correctly with complex events, i.e. those having double rainfall peaks, and might also have difficulties with catchment characteristics such as soil type and the complexity of land use. Finally, LISEM could not deal with events in which throughflow or baseflow played a role, which was to be expected since those processes are not simulated by LISEM. Nevertheless, LISEM could be calibrated to give good discharge predictions for some events, and also gave reasonable results when compared to data obtained from erosion plots. Furthermore, only complex, distributed, storm‐based models such as LISEM can give spatial predictions for single storms. Therefore, it is concluded that if the aim is spatial prediction on an event basis, there is no alternative to complex erosion models such as LISEM, but if the aim is to predict average annual erosion, the data‐demanding, physically based LISEM erosion model may not be the most appropriate model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
The intensity of soil loss and sediment delivery, representing hydrologic and geomorphic processes within a catchment, accelerates with rapid changes in land cover and rainfall events. An underlying component of sustainable management of water resources is an understanding of spatial and temporal variability and the adverse influences of regional parameters involved in generating sediment following widespread changes in land cover. A calibrated algorithm of soil loss coupled with a sediment delivery ratio (SDR) was applied in raster data layers to improve the capability of a combined model to estimate annual variability in sediment yields related to changes in vegetation cover identified by analyses of SPOT imagery. Four catchments in Kangaroo River State forest were assessed for annual changes in sediment yields. Two catchments were selectively logged in 2007, while the two other sites remained undisturbed. Results of SDR estimates indicated that only a small proportion of total eroded sediment from hillslopes is transported to catchment outlets. Larger SDR values were estimated in regions close to catchment outlets, and the SDR reduced sharply on hillslopes further than 200–300 m from these areas. Estimated sediment yield increased by up to 30% two years after land cover change (logging) in 2009 when more storm events were recorded, despite the moderate density of vegetation cover in 2009 having almost recovered to its initial pre‐logging (2005) condition. Rainfall had the most significant influence on streamflow and sediment delivery in all catchments, with steeply sloping areas contributing large amounts of sediment during moderate and high rainfall years in 2007 and 2009. It is concluded that the current scenario of single‐tree selection logging utilized in the study area is an acceptable and environmentally sound land management strategy for preservation of soil and water resources. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The impacts of climate change on storm runoff and erosion in Mediterranean watersheds are difficult to assess due to the expected increase in storm frequency coupled with a decrease in total rainfall and soil moisture, added to positive or negative changes to different types of vegetation cover. This report, the second part of a two‐part article, addresses this issue by analysing the sensitivity of runoff and erosion to incremental degrees of change (from ? 20 to + 20%) to storm rainfall, pre‐storm soil moisture, and vegetation cover, in two Mediterranean watersheds, using the MEFIDIS model. The main results point to the high sensitivity of storm runoff and peak runoff rates to changes in storm rainfall (2·2% per 1% change) and, to a lesser degree, to soil water content (?1·2% per 1% change). Catchment sediment yield shows a greater sensitivity than within‐watershed erosion rates to both parameters: 7·8 versus 4·0% per 1% change for storm rainfall, and ? 4·9 versus ? 2·3% per 1% change for soil water content, indicating an increase in sensitivity with spatial scale due to changes to sediment connectivity within the catchment. Runoff and erosion showed a relatively low sensitivity to changes in vegetation cover. Finally, the shallow soils in one of the catchments led to a greater sensitivity to changes in storm rainfall and soil moisture. Overall, the results indicate that decreasing soil moisture levels caused by climate change could be sufficient to offset the impact of greater storm intensity in Mediterranean watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Vegetation and soil properties and their associated changes through time and space affect the various stages of soil erosion. The island of Ishigaki in Okinawa Prefecture, Japan is of particular concern because of the propensity of the red‐soil‐dominated watersheds in the area to contribute substantial sediment discharge to adjacent coastal areas. This paper discusses the application of remote sensing techniques in the retrieval of vegetation and soil parameters necessary for the distributed soil‐loss modelling in small agricultural catchments and analyses the variation in erosional patterns and sediment distribution during rainfall events using numerical solutions of overland flow simulations and sediment continuity equations. To account for the spatial as well as temporal variability of selected parameters of the soil‐loss equations, a method is proposed to account for the variability of associated vegetation cover based on their spectral characteristics as captured by remotely sensed data. To allow for complete spatial integration, modelling the movement of sediment is accomplished under a loose‐coupled GIS computational framework. This study lends a theoretical support and empirical evidence to the role of vegetation as a potential agent for soil erosion control. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Wildfire increases the potential connectivity of runoff and sediment throughout watersheds due to greater bare soil, runoff and erosion as compared to pre-fire conditions. This research examines the connectivity of post-fire runoff and sediment from hillslopes (< 1.5 ha; n = 31) and catchments (< 1000 ha; n = 10) within two watersheds (< 1500 ha) burned by the 2012 High Park Fire in northcentral Colorado, USA. Our objectives were to: (1) identify sources and quantify magnitudes of post-fire runoff and erosion at nested hillslopes and watersheds for two rain storms with varied duration, intensity and antecedent precipitation; and (2) assess the factors affecting the magnitude and connectivity of runoff and sediment across spatial scales for these two rain storms. The two summer storms that are the focus of this research occurred during the third summer after burning. The first storm had low intensity rainfall over 11 hours (return interval <1–2 years), whereas the second event had high intensity rainfall over 1 hour (return interval <1–10 years). The lower intensity storm was preceded by high antecedent rainfall and led to low hillslope sediment yields and channel incision at most locations, whereas the high intensity storm led to infiltration-excess overland flow, high sediment yields, in-stream sediment deposition and channel substrate fining. For both storms, hillslope-to-stream sediment delivery ratios and area-normalised cross-sectional channel change increased with the percent of catchment that burned at high severity. For the high intensity storm, hillslope-to-stream sediment delivery ratios decreased with unconfined channel length (%). The findings quantify post-fire connectivity and sediment delivery from hillslopes and streams, and highlight how different types of storms can cause varying magnitues and spatial patterns of sediment transport and deposition from hillslopes through stream channel networks.  相似文献   

6.
Extreme high-magnitude and low-frequency storm events in arid zones provide the necessary runoff to entrain sediments from source areas and therefore dictate the linkages between hillslopes and channels. Nevertheless, the erosive impact of large storms remains difficult to predict. Most of the uncertainty lies in the lack of topographic change maps associated with single hydro-meteorological events. Consequently, event-based erosion models are poorly constrained and their extrapolation over long time periods remains uncertain. In this study, a 15-month Sentinel-1A coherence time series, optical and field data are used to map the spatial patterns of erosion after the 5-day storm occurred on March 2015, in the Atacama Desert. The coherence change detection (CCD) analysis suggests that temporal loss of coherence is related to variations in soil moisture, while permanent loss of coherence is related to modification of soil texture by erosion and sedimentation. Importantly, permanent loss of coherence is more apparent on gentle rather than steeper slopes, likely reflecting differences in regolith cover and thickness. These findings can contradict the landscape models predicting higher erosion on steeper hillslopes. The CCD technique represents a promising tool for analysing and modelling sediment connectivity in arid areas, giving a clear picture of the relation between sediment sources and sink pathways. © 2020 John Wiley & Sons, Ltd.  相似文献   

7.
The effects of slope, cover and surface roughness on rainfall runoff, infiltration and erosion were determined at two sites on a hillside vineyard in Napa County, California, using a portable rainfall simulator. Rainfall simulation experiments were carried out at two sites, with five replications of three slope treatments (5%, 10% and 15%) in a randomized block design at each site (0%bsol;64 m2 plots). Prior to initiation of the rainfall simulations, detailed assessments, not considered in previous vineyard studies, of soil slope, cover and surface roughness were conducted. Significant correlations (at the 95% confidence level) between the physical characteristics of slope, cover and surface roughness, with total infiltration, runoff, sediment discharge and average sediment concentration were obtained. The extent of soil cracking, a physical characteristic not directly measured, also affected analysis of the rainfall–runoff–erosion process. Average cumulative runoff and cumulative sediment discharge from site A was 87% and 242% greater, respectively, than at site B. This difference was linked to the greater cover, extent of soil cracking and bulk density at site B than at site A. The extent of soil cover was the dominant factor limiting soil loss when soil cracking was not present. Field slopes within the range of 4–16%, although a statistically significant factor affecting soil losses, had only a minor impact on the amount of soil loss. The Horton infiltration equation fit field data better than the modified Philip's equation. Owing to the variability in the ‘treatment’ parameters affecting the rainfall–runoff–erosion process, use of ANOVA methods were found to be inappropriate; multiple‐factor regression analysis was more useful for identifying significant parameters. Overall, we obtained similar values for soil erosion parameters as those obtained from vineyard erosion studies in Europe. In addition, it appears that results from the small plot studies may be adequately scaled up one to two orders of magnitude in terms of land areas considered. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
Wildfire denudes vegetation and impacts chemical and physical soil properties, which can alter hillslope erosion rates. Post‐wildfire erosion can also contribute disproportionately to long‐term erosion rates and landscape evolution. Post‐fire hillslope erosion rates remain difficult to predict and document at the hillslope scale. Here we use 210Pbaex (lead‐210 mineral‐adsorbed excess) inventories to describe net sediment erosion on steep, convex hillslopes in three basins (unburned, moderately and severely burned) in mountainous central Idaho. We analyzed nearly 300 soil samples for 210Pbaex content with alpha spectrometry and related net sediment erosion to burn severity, aspect, gradient, curvature and distance from ridgetop. We also tested our data against models for advective, linear and non‐linear diffusive erosion. Statistically lower net soil losses on north‐ versus south‐facing unburned hillslopes suggest that greater vegetative cover and soil cohesion on north‐facing slopes decrease erosion. On burned hillslopes, erosion differences between aspects were less apparent and net erosion was more variable, indicating that vegetation influences erosion magnitude and fire drives erosion variability. We estimated net soil losses throughout the length of unburned hillslopes, including through a footslope transition to concave form. In contrast, on burned hillslopes, the subtle shift from convex to concave form was associated with deposition of a post‐fire erosion pulse. Such overall patterns of erosion and deposition are consistent with predictions from a non‐linear diffusion equation. This finding also suggests that concave sections of overall convex hillslopes affect post‐disturbance soil erosion and deposition. Despite these patterns, no strong relationships were evident between local net soil losses and gradient, curvature, distance from ridgetop, or erosion predicted with advection or diffusion equations. The observed relationship between gradient and erosion is therefore likely more complex or stochastic than often described theoretically, especially over relatively short timescales (60–100 years). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Qihua Ran  Feng Wang  Jihui Gao 《水文研究》2020,34(23):4526-4540
Rainfall characteristics are key factors influencing infiltration and runoff generation in catchment hydrology, particularly for arid and semiarid catchments. Although the effect of storm movement on rainfall-runoff processes has been evaluated and emphasized since the 1960s, the effect on the infiltration process has barely been considered. In this study, a physically based distributed hydrological model (InHM) was applied to a typical semi-arid catchment (Shejiagou, 4.26 km2) located in the Loess Plateau, China, to investigate the effect of storm movement on infiltration, runoff and soil erosion at the catchment scale. Simulations of 84 scenarios of storm movement were conducted, including storms moving across the catchment in both the upstream and downstream directions along the main channel, while in each direction considering four storm moving speeds, three rainfall depths and two storm ranges. The simulation results showed that, on both the hillslopes facing downstream (facing south) and in the main channel, the duration of the overland flow process under the upstream-moving storms was longer than that under the downstream-moving storms. Thus, the duration and volume of infiltration under upstream-moving storms were larger in these areas. For the Shejiagou catchment, as there are more hillslopes facing downstream, more infiltration occurred under the upstream-moving storms than the downstream-moving storms. Therefore, downstream-moving storms generated up to 69% larger total runoff and up to 351% more soil loss in the catchment than upstream-moving storms. The difference in infiltration between the storms moving upstream and downstream decreased as the storm moving speed increased. The relative difference in total runoff and sediment yield between the storms moving upstream and downstream decreased with increasing rainfall depth and storm speed. The results of this study revealed that the infiltration differences under moving storms largely influenced the total runoff and sediment yield at the catchment scale, which is of importance in runoff prediction and flood management. The infiltration differences may be a potential factor leading to different groundwater, vegetation cover and ecology conditions for the different sides of the hillslopes.  相似文献   

10.
Investigating the causes of soil erosion is difficult in natural conditions owing to the presence of other factors. Without simplifying the experimental conditions, studying soil behavior with its numerous parameters while considering factors such as vegetation cover, topography, and rainfall is difficult and in most conditions impossible. The application of simulation approaches is therefore necessary to simplify the prototype. In this research, the effects of physical soil factors such as texture and antecedent soil moisture, along with land slope and vegetation cover were evaluated in the Taleghan watershed, Iran, using a rainfall simulator and soil erosion plots. For this purpose, a 89 × 120 cm rainfall simulator producing 24.5 and 32 mm/h rainfall intensities of 30 min duration, as a common condition of the study area, was used at 144 locations over soil erosion plots with dimensions of 95 × 125 cm. Plots had slope classes of 12-20 and 20-30 %, different soil textures, different antecedent soil moistures, and medium to poor vegetation cover conditions. It was found that for 24.5 and 32 mm/h rainfall intensities, the sediment yield had high correlations of-0.771 and -0.796 with vegetation cover and slight correlations of 0.045 and 0.029 with land slope respectively. Regression equations for predicting the sediment yield were also developed for different conditions.  相似文献   

11.
In the semi‐arid Mediterranean environment, the rainfall–runoff relationships are complex because of the markedly irregular patterns in rainfall, the seasonal mismatch between evaporation and rainfall, and the spatial heterogeneity in landscape properties. Watersheds often display considerable non‐linear threshold behavior, which still make runoff generation an open research question. Our objectives in this context were: to identify the primary processes of runoff generation in a small natural catchment; to test whether a physically based model, which takes into consideration only the primary processes, is able to predict spatially distributed water‐table and stream discharge dynamics; and to use the hydrological model to increase our understanding of runoff generation mechanisms. The observed seasonal dynamics of soil moisture, water‐table depth, and stream discharge indicated that Hortonian overland‐flow was negligible and the main mechanism of runoff generation was saturated subsurface‐flow. This gives rise to base‐flow, controls the formation of the saturated areas, and contributes to storm‐flow together with saturation overland‐flow. The distributed model, with a 1D scheme for the kinematic surface‐flow, a 2D sub‐horizontal scheme for the saturated subsurface‐flow, and ignoring the unsaturated flow, performed efficiently in years when runoff volume was high and medium, although there was a smoothing effect on the observed water‐table. In dry years, small errors greatly reduced the efficiency of the model. The hydrological model has allowed to relate the runoff generation mechanisms with the land‐use. The forested hillslopes, where the calibrated soil conductivity was high, were never saturated, except at the foot of the slopes, where exfiltration of saturated subsurface‐flow contributed to storm‐flow. Saturation overland‐flow was only found near the streams, except when there were storm‐flow peaks, when it also occurred on hillslopes used for pasture, where soil conductivity was low. The bedrock–soil percolation, simulated by a threshold mechanism, further increased the non‐linearity of the rainfall–runoff processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The response of runoff and erosion to soil crusts has been extensively investigated in recent decades. However, there have been few attempts to look at the effects of spatial configuration of different soil crusts on erosion processes. Here we investigated the effects of different spatial distributions of physical soil crusts on runoff and erosion in the semi‐arid Loess Plateau region. Soil boxes (1.5 m long × 0.2 m wide) were set to a slope of 17.6% (10°) and simulated rainfall of 120 mm h?1 (60 minutes). The runoff generation and erosion rates were determined for three crust area ratios (depositional crust for 20%, 33%, and 50% of the total slope) and five spatial distribution patterns (depositional crust on the lower, lower‐middle, middle, mid‐upper, and upper slope) of soil crusts. The reduction in sediment loss (‘sediment reduction’) was calculated to evaluate the effects of different spatial distributions of soil crusts on erosion. Sediment yield was influenced by the area ratio and spatial position of different soil crusts. The runoff rate reached a steady state after an initial trend of unsteadily increasing with increasing rainfall duration. Sediment yield was controlled by detachment limitation and then transport limitation under rainfall. The shifting time of erosion from a transport to detachment‐limiting regime decreased with increasing area of depositional crust. No significant differences were observed in the total runoff among treatments, while the total sediment yield varied under different spatial distributions. At the same area ratio, total sediment yield was the largest when the depositional crust was on the upper slope, and it was smallest when the crust was deposited on the lower slope. The sediment reduction of structural crust (42.5–66.5%) was greater than that of depositional crust (16.7–34.3%). These results provide a mechanistic understanding of how different spatial distributions of soil crusts affect runoff and sediment production. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Natural hillslopes are mostly composed of complex slope shapes, which significantly affect soil erosion. However, existing studies have mainly focused on uniform slopes to simplify complex hillslopes, and the mechanisms responsible for the influence of slope shape on soil and nutrient losses are still not well understood, especially in the application of soil improvers to reduce soil loss. To investigate the effects of slope shape and polyacrylamide (PAM) application on runoff, soil erosion and nutrient loss, this study conducted artificial field rainfall experiments involving two PAM application rates and nine slope shapes. The results indicate that the average amount of soil loss from convex slopes was 1.5 and 1.3 times greater than that from concave and uniform slopes, respectively, and the average amount of ammonia nitrogen loss and phosphate loss increased by 24.0%–58.6%. Soil and nutrient losses increased as the convexity of the convex slopes increased. For runoff, there was little difference between concave and convex slopes, but the runoff amount for both slopes was greater than that for uniform slopes. After PAM application, the soil loss decreased by more than 90%, and the nutrient loss decreased by 28.2%–68.1%. The application of PAM was most effective in reducing soil erosion and nutrient loss from convex slopes, and it is recommended to appropriately increase the PAM application rate for convex slopes. A strong linear relationship between ammonia nitrogen and phosphate concentrations and sediment concentrations was found in the runoff on slopes with no PAM application. However, this linear relationship weakened for slopes with PAM application. The findings of this study may be valuable for optimizing nonpoint source pollution management in basins.  相似文献   

14.
Modifications are made to the revised Morgan–Morgan–Finney erosion prediction model to enable the effects of vegetation cover to be expressed through measurable plant parameters. Given the potential role of vegetation in controlling water pollution by trapping clay particles in the landscape, changes are also made to the way the model deals with sediment deposition and to allow the model to incorporate particle‐size selectivity in the processes of erosion, transport and deposition. Vegetation effects are described in relation to percentage canopy cover, percentage ground cover, plant height, effective hydrological depth, density of plant stems and stem diameter. Deposition is modelled through a particle fall number, which takes account of particle settling velocity, flow velocity, flow depth and slope length. The detachment, transport and deposition of soil particles are simulated separately for clay, silt and sand. Average linear sensitivity analysis shows that the revised model behaves rationally. For bare soil conditions soil loss predictions are most sensitive to changes in rainfall and soil parameters, but with a vegetation cover plant parameters become more important than soil parameters. Tests with the model using field measurements under a range of slope, soil and crop covers from Bedfordshire and Cambridgeshire, UK, give good predictions of mean annual soil loss. Regression analysis of predicted against observed values yields an intercept value close to zero and a line slope close to 1·0, with a coefficient of efficiency of 0·81 over a range of values from zero to 38·6 t ha?1. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Changing fire regimes and prescribed‐fire use in invasive species management on rangelands require improved understanding of fire effects on runoff and erosion from steeply sloping sagebrush‐steppe. Small (0·5 m2) and large (32·5 m2) plot rainfall simulations (85 mm h–1, 1 h) and concentrated flow methodologies were employed immediately following burning and 1 and 2 years post‐fire to investigate infiltration, runoff and erosion from interrill (rainsplash, sheetwash) and rill (concentrated flow) processes on unburned and burned areas of a steeply sloped sagebrush site on coarse‐textured soils. Soil water repellency and vegetation were assessed to infer relationships in soil and vegetation factors that influence runoff and erosion. Runoff and erosion from rainfall simulations and concentrated flow experiments increased immediately following burning. Runoff returned to near pre‐burn levels and sediment yield was greatly reduced with ground cover recovery to 40 per cent 1 year post‐fire. Erosion remained above pre‐burn levels on large rainfall simulation and concentrated flow plots until ground cover reached 60 per cent two growing seasons post‐fire. The greatest impact of the fire was the threefold reduction of ground cover. Removal of vegetation and ground cover and the influence of pre‐existing strong soil‐water repellency increased the spatial continuity of overland flow, reduced runoff and sediment filtering effects of vegetation and ground cover, and facilitated increased velocity and transport capacity of overland flow. Small plot rainfall simulations suggest ground cover recovery to 40 per cent probably protected the site from low‐return‐interval storms, large plot rainfall and concentrated flow experiments indicate the site remained susceptible to elevated erosion rates during high‐intensity or long duration events until ground cover levels reached 60 per cent. The data demonstrate that the persistence of fire effects on steeply‐sloped, sandy sagebrush sites depends on the time period required for ground cover to recover to near 60 per cent and on the strength and persistence of ‘background’ or fire‐induced soil water repellency. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

16.
The combined use of water erosion models and geographic information systems has facilitated soil loss estimation at the watershed scale. Tools such as the Geo‐spatial interface for the Water Erosion Prediction Project (GeoWEPP) model provide a convenient spatially distributed soil loss estimate but require discretization to identify hillslopes and channels. In GeoWEPP, the TOpographic PArameteriZation (TOPAZ) model is used as an automated procedure to extract a watershed boundary, hillslopes and channels from a digital elevation model (DEM). Previous studies in small watersheds have shown that the size of the hillslopes and the channel distribution affect the model estimates, but in large watersheds, the effects on the soil loss estimates have yet to be tested. Therefore, the objective of this study was to evaluate the effect of discretization on the hillslope sediment yield estimates using GeoWEPP in two large watersheds (>10 km2). The watersheds were selected and discretized varying the TOPAZ parameters [critical source area (CSA) and minimum source channel length (MSCL)] in a 30‐m resolution digital elevation model. The drainage networks built with TOPAZ were compared with each other using the drainage density index. The results showed that the discretization affected hillslope sediment yield estimates and their spatial distribution more than the total runoff. The drainage density index and the hillslope sediment yield were proportional but inversely related; thus, soil loss estimates were highly affected by the spatial discretization. As a result of this analysis, a method to choose the CSA and MSCL values that generates the greatest fraction of hillslopes having profile lengths less than 200 m was developed. This slope length condition is particularly crucial when using the WEPP and GeoWEPP models, in order for them to produce realistic estimates of sheet and rill erosion. Finally, and as a result of this analysis, a more reliable method was developed for selecting the TOPAZ channel network parameters (CSA and MSCL). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Although numerous studies have acknowledged that vegetation can reduce erosion, few process-based studies have examined how vegetation cover affect runoff hydraulics and erosion processes. We present field observations of overland flow hydraulics using rainfall simulations in a typical semiarid area in China. Field plots (5 × 2 m2) were constructed on a loess hillslope (25°), including bare soil plot as control and three plots with planted forage species as treatments—Astragalus adsurgens, Medicago sativa and Cosmos bipinnatus. Both simulated rainfall and simulated rainfall + inflow were applied. Forages reduced soil loss by 55–85% and decreased overland flow rate by 12–37%. Forages significantly increased flow hydraulic resistance expressed by Darcy–Weisbach friction factor by 188–202% and expressed by Manning's friction factor by 66–75%; and decreased overland flow velocity by 28–30%. The upslope inflow significantly increased overland flow velocity by 67% and stream power by 449%, resulting in increased sediment yield rate by 108%. Erosion rate exhibited a significant linear relationship with stream power. M. sativa exhibited the best in reducing soil loss which probably resulted from its role in reducing stream power. Forages on the downslope performed better at reducing sediment yield than upslope due to decreased rill formation and stream power. The findings contribute to an improved understanding of using vegetation to control water and soil loss and land degradation in semiarid environments.  相似文献   

18.
Reliable assessment of the spatial distribution of soil erosion is important for making land management decisions, but it has not been thoroughly evaluated in karst geo‐environments. The objective of this study was to modify a physically based, spatially distributed erosion model, the revised Morgan, Morgan and Finney (RMMF) model, to estimate the superficial (as opposed to subsurface creep) soil erosion rates and their spatial patterns in a 1022 ha karst catchment in northwest Guangxi, China. Model parameters were calculated using local data in a raster geographic information system (GIS) framework. The cumulative runoff on each grid cell, as an input to the RMMF model for erosion computations, was computed using a combined flow algorithm that allowed for flow into multiple cells with a transfer grid considering infiltration and runoff seepage to the subsurface. The predicted spatial distributions of soil erosion rates were analyzed relative to land uses and slope zones. Results showed that the simulated effective runoff and annual soil erosion rates of hillslopes agreed well with the field observations and previous quantified redistribution rates with caesium‐137 (137Cs). The estimated average effective runoff and annual erosion rate on hillslopes of the study catchment were 18 mm and 0.27 Mg ha?1 yr?1 during 2006–2007. Human disturbances played an important role in accelerating soil erosion rates with the average values ranged from 0.1 to 3.02 Mg ha?1 yr?1 for different land uses. The study indicated that the modified model was effective to predict superficial soil erosion rates in karst regions and the spatial distribution results could provide useful information for developing local soil and water conservation plans. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
1 INTRODUCTION Soil erosion in the foothills of the Hindu Kush-Himalayas (HKH) is considered to be a hot topic in land degradation research in the region (Scherr and Yadav, 1996). The land degradation research has mainly addressed the issue of topsoil los…  相似文献   

20.
Experimentally determined spatial patterns of soil redistribution across a break in slope derived using 10 rare earth element (REE) oxides as sediment tracers are presented. An erosion experiment was conducted using simulated rainfall within a laboratory slope model measuring 2·5 m wide by 6 m long with a gradient of 15° declining to 2°. Soil was tagged with multiple REE and placed in different locations over the slope and at the end of the experiment REE concentrations were measured in samples collected spatially. A new method was developed to quantify the erosion and deposition depths spatially, the relative source contributions to deposited sediment and the sediment transport distances. Particle‐size selectivity over an area of net deposition was also investigated, by combining downslope changes in particle‐size distributions with changes in sediment REE composition within a flow pathway. During the experiment, the surface morphology evolved through upslope propagation of rill headcuts, which gradually incised the different REE‐tagged zones and led to sediment deposition at the break in slope and the development of a fan extending over the shallow slope segment. The spatial patterns in REE concentrations, the derived erosion and deposition depths, the relative source contributions to deposition zones and the sediment transport distances, corroborate the morphological observations and demonstrate the potential of using REE for quantifying sediment transport processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号