首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Ultramafic hornfelses containing the assemblages hornblende + olivine + spinel + magnetite, and clinopyroxene + olivine + spinel + magnetite, are reported from two localities in the Biggenden Beds in southeastern Queensland. They are associated with mafic hornfelses in the contact metamorphic aureoles of the Mungore Adamellite and the Wateranga Gabbro. Chemical composition and minerology of the olivine + amphibole + spinel + magnetite hornfelses suggest that they represent metamorphosed picritic rocks, or possibly, altered serpentinites (blackwall rocks), whereas the clinopyroxene + olivine + spinel + magnetite hornfelses are interpreted as metamorphosed altered clinopyroxene‐rich picritic rocks. Cr‐Fe spinel relations in the hornfelses indicate partial homogenisation of primary chromian spinel with secondary magnetite ± ferrichromite during contact metamorphism.  相似文献   

2.
Abstract The Rockley Volcanics from near Oberon, New South Wales occur within the aureole of the Carboniferous Bathurst Batholith and have been contact metamorphosed at P ∼ 100 ± 50MPa (10.5kbar) and a maximum T ∼ 565°C in the presence of a C–O–H fluid. Prior to contact metamorphism the volcanics were regionally metamorphosed and altered with the extensive development of actinolite, chlorite, plagioclase, quartz and calcite. The contact metamorphosed equivalents of these rocks have been subdivided into: Ca-poor (cordierite + gedrite), Mg-rich (amphibole + olivine + spinel), mafic (amphibole + plagioclase) and Ca-rich (amphibole + garnet + diopside; diopside + plagioclase; garnet + diopside + wollastonite) rocks.
The chemistry of the minerals in the hornfelses was controlled by the bulk rock chemistry and fluid composition. Pargasites and hastingsites as well as an unusual phlogopite with blue green pleochroism, are found in Ca-rich hornfelses. A comparison of the assemblages with experimentally derived equilibria suggests that the fluid phase associated with the Ca-rich hornfelses was water-rich (Xco2= 0.1 to 0.3) while that associated with the Mg-rich hornfelses was enriched in CO2 (Xco2 > 0.7). The different hornfels types have reacted to contact metamorphism independently in both their solid and fluid chemistries.  相似文献   

3.
The Shivar pluton, a large granodiorite–monzonite intrusion in NW Iran, was intruded into Cretaceous sedimentary rocks during the Oligo‐Miocene. Its thermal aureole contains a variety of pelitic, basic and calc‐silicate hornfelses. Mineral parageneses in the pelitic and calc‐silicate hornfelses are studied here and mineralogical zones are determined. The maximum pressure of contact metamorphism is estimated to have been about 2.2 kbar on the basis of mineral parageneses in the pelitic rocks, indicating that the intrusion was emplaced no deeper than 8 km in the crust. Crystal size distribution (CSD) studies in the calc‐silicate hornfelses indicate that the degree of overstepping was high near the igneous contact. Secondary solid phases (SSP) inhibited growth of calcite grains in the calc‐silicate rocks and impure marbles. Garnet had a greater inhibitory effect as a SSP than tremolite or clinopyroxene. The time required for coarsening of calcite is calculated for two samples collected at different distances from the igneous contact. The time required for calcite coarsening is about 33 000 years for the sample 800 m from the contact and about 226 000 years for the sample 120 m from the contact. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Troctolitic gabbros from Valle Fértil and La Huerta Ranges, San Juan Province, NW‐Argentina exhibit multi‐layer corona textures between cumulus olivine and plagioclase. The corona mineral sequence, which varies in the total thickness from 0.5 to 1 mm, comprises either an anhydrous corona type I with olivine|orthopyroxene|clinopyroxene+spinel symplectite|plagioclase or a hydrous corona type II with olivine|orthopyroxene|amphibole|amphibole+spinel symplectite|plagioclase. The anhydrous corona type I formed by metamorphic replacement of primary olivine and plagioclase, in the absence of any fluid/melt phase at <840 °C. Diffusion controlled metamorphic solid‐state replacement is mainly governed by the chemical potential gradients at the interface of reactant olivine and plagioclase and orthopyroxene and plagioclase. Thus, the thermodynamic incompatibility of the reactant minerals at the gabbro–granulite transition and the phase equilibria of the coronitic assemblage during subsequent cooling were modelled using quantitative μMgO–μCaO phase diagrams. Mineral reaction textures of the anhydrous corona type I indicate an inward migration of orthopyroxene on the expense of olivine, while clinopyroxene+spinel symplectite grows outward to replace plagioclase. Mineral textures of the hydrous corona type II indicate the presence of an interstitial liquid trapped between cumulus olivine and plagioclase that reacts with olivine to produce a rim of peritectic orthopyroxene around olivine. Two amphibole types are distinguished: an inclusion free, brownish amphibole I is enriched in trace elements and REEs relative to green amphibole II. Amphibole I evolves from an intercumulus liquid between peritectic orthopyroxene and plagioclase. Discrete layers of green amphibole II occur as inclusion‐free rims and amphibole II+spinel symplectites. Mineral textures and geochemical patterns indicate a metamorphic origin for amphibole II, where orthopyroxene was replaced to form an inner inclusion‐free amphibole II layer, while clinopyroxene and plagioclase were replaced to form an outer amphibole+spinel symplectite layer, at <770 °C. Calculation of the possible net reactions by considering NCKFMASH components indicates that the layer bulk composition cannot be modelled as a ‘closed’ system although in all cases the gain and loss of elements within the multi‐layer coronas (except H2O, Na2O) is very small and the main uncertainties may arise from slight chemical zoning of the respective minerals. Local oxidizing conditions led to the formation of orthopyroxene+magnetite symplectite enveloping and/or replacing olivine. The sequence of corona reaction textures indicates a counter clockwise P–T path at the gabbro–granulite transition at 5–6.5 kbar and temperatures below 900 °C.  相似文献   

5.
Mantle xenoliths (lherzolites, clinopyroxene dunites, wehrlites, and clinopyroxenites) in the Early Cretaceous volcanic rocks of Makhtesh Ramon (alkali olivine basalts, basanites, and nephelinites) represent metasomatized mantle, which served as a source of basaltic melts. The xenoliths bear signs of partial melting and previous metasomatic transformations. The latter include the replacement of orthopyroxene by clinopyroxene in the lherzolites and, respectively, the wide development of wehrlites and olivine clinopyoroxenites. Metasomatic alteration of the peridotites is accompanied by a sharp decrease in Mg, Cr, and Ni, and increase of Ti, Al, Ca contents and 3+Fe/2+Fe ratio, as well as the growth of trace V, Sc, Zr, Nb, and Y contents. The compositional features of the rocks such as the growth of 3+Fe/2+Fe and the wide development of Ti-magnetite in combination with the complete absence of sulfides indicate the high oxygen fugacity during metasomatism and the low sulfur concentration, which is a distinctive signature of fluid mode during formation of the Makhtesh Ramon alkali basaltic magma. Partial melting of peridotites and clinopyroxenites is accompanied by the formation of basanite or alkali basaltic melt. Clino- and orthopyroxenes are subjected to melting. The crystallization products of melt preserved in the mantle rock are localized in the interstices and consist mainly of fine-grained clinopyroxene, which together with Ti-magnetite, ilmenite, amphibole, rhenite, feldspar, and nepheline, is cemented by glass corresponding to quartz–orthopyroxene, olivine–orthopyroxene, quartz–feldspar, or nepheline–feldspar mixtures of the corresponding normative minerals. The mineral assemblages of xenoliths correspond to high temperatures. The high-Al and high-Ti clinopyroxene, calcium olivine, feldspar, and feldspathoids, amphibole, Ti-magnetite, and ilmenite are formed at 900–1000°. The study of melt and fluid inclusions in minerals from xenoliths indicate liquidus temperatures of 1200–1250°C, solidus temperatures of 1000–1100°C, and pressure of 5.9–9.5 kbar. Based on the amphibole–plagioclase barometer, amphibole and coexisting plagioclase were crystallized in clinopyroxenites at 6.5–7.0 kbar.  相似文献   

6.
Experimental modelling of corona textures   总被引:1,自引:0,他引:1  
Formation of corona textures along olivine–plagioclase and orthopyroxene–plagioclase interfaces has been experimentally reproduced at 670 and 700 °C and 5 kbar with either a pure H2O fluid phase or 0.1 and 37 m NaCl–H2O solution fluid. In these experiments, we investigate the interaction of primary olivine and/or orthopyroxene and plagioclase in powders and polished crystals, and in small samples of a natural gabbro. The experiments result in the formation of corona textures with several layers of different assemblages (according to the experimental conditions) consisting of garnet (grossular), clinopyroxene, orthopyroxene, amphibole, chlorite and phlogopite. The experiments show major differences in the number of layers, the mineral assemblages and mineral composition, and in the trends of composition of plagioclase in coronas around olivine and orthopyroxene. The fluid phase composition influences the corona assemblages and the composition of the minerals in the experimental coronas; for example, garnet appears in the coronas in the second experiment where the NaCl–H2O ratio is low. Experimental modelling of corona textures confirms a model of simultaneous growth of layers by the mechanism of diffusion metasomatism with participation of a fluid phase through which mass is transferred. Zoning in the experimental coronas shows opposing diffusion of Al and Ca from plagioclase and Mg and Fe from olivine/orthopyroxene; difference in the mobility of the components is inferred from observations in the coronas. The experimental corona textures are compared with natural coronas from the Belomorian belt (Baltic shield), developed at 670–690 °C and 7–8 kbar, and the Marun‐Keu complex (Polar Urals), developed at 670–700 °C and 14–16 kbar, where the corona textures correspond to a transitional stage of the gabbro‐to‐eclogite transformation.  相似文献   

7.
Anthophyllite or another species of Mg‐amphibole commonly occurs in an intervening zone between the higher grade orthopyroxene zone and lower grade talc zone in progressively metamorphosed peridotites. However, the anthophyllite zone is absent in some of the thermally metamorphosed peridotite complexes in SW Japan despite the existence of the other zones. A comparative study presented here reveals similarities in rock composition and metamorphic pressure–temperature conditions at high‐grade zones between the metaperidotite complexes, and differences in the following respects. The metaperidotite complex that contains an anthophyllite zone has less abundant magnetite and olivine that is more homogeneous than the complex where the anthophyllite zone is absent. It is likely that the degree of cation diffusion in olivine crystals depends on duration of heat retention in metaperidotites during thermal metamorphism, which is supported by the variation in mineralogy of intrusive rocks and pelitic hornfelses surrounding the metaperidotites, and by calculations based on a simplified model of thermal conduction. The long duration of heat retention looks to be a necessary condition for the formation of anthophyllite crystals, which have a sluggish nucleation rate. In addition, the circulation of reducing fluids during prolonged metamorphism likely promoted the decomposition of magnetite and the growth of anthophyllite, into which iron is preferentially distributed. This study cautions about kinetic controls and redox conditions for anthophyllite formation in metaperidotites.  相似文献   

8.
Experiments in the system high-A1 basalt (HAB)-water have been conducted in the melting range at pressures between 1 atm. and 10 kbar, defining the amphibole stability field and the composition of liquids which coexist with this amphibole. Plagioclase is the anhydrous liquidus phase between 1 atm. and 10 kbar but in the hydrous runs this role is taken by olivine at <7 kbar and then by clinopyroxene at higher pressures. Because amphibole is never on the high-A1 basalt liquidus it is not likely that andesite is derived from primary basalt by pure fractional crystallisation, although as we discuss, other mechanisms including equilibrium crystallisation might implicate amphibole. If primary basaltic magma undergoes closed-system equilibrium crystallisation, then the amphibole field will be intersected at between 50 and 100°C below the liquidus. The compositions of melts coexisting with amphibole alone do not match those of any of the natural andesite or dacitic lavas associated with the particular high-A1 basalt investigated. Like natural andesites, they become rapidly silica enriched, but they also become far more depleted in TiO2 and MgO. However, the compositions of liquids lying directly on the divariant amphibole-out reaction zone, where amphibole +liquid coexist with clinopyroxene or olivine (±plagioclase), do resemble those of naturally occurring low-silica andesites. With increasing temperature pargasitic amphibole breaks down via incongruent melting reactions over a narrow temperature range to form a large volume of relatively low-silica basaltic andesite liquid and a crystalline assemblage dominated by either clinopyroxene or olivine. Our important conclusion is that basaltic andesite liquid will be the product of reaction between cooling, hydrous mafic liquid and anhydrous ferromagnesian phases. The solid reactants could represent earlier cumulates from the same or different magma batches, or they could be peridotite wall-rock material. Because the amphibole-out boundary coexisting with liquid is one of reaction, it will not be traversed so long as the phases on the high temperature side remain. Thus, the assemblage amphibole+clinopyroxene±olivine±plagioclase+liquid is one in which the liquid is buffered (within limits), and results reported here indicate that this buffering generates melts of low-silica andesite composition. When tapped to lower pressures these liquids will rise, eventually to fractionate plagioclase-rich assemblages yielding silicarich andesite and dacite melts. Conversely, the partial melting of hornblende pyroxenite, hornblende peridotite or hornblende gabbro can also yield basaltic andesite liquids. The phase relationships suggested by these experiments are discussed in the light of naturally occurring phenocryst and xenolith assemblages from the east Sunda Arc. Primary magmatic additions to the lithosphere of volcanic arcs are basaltic and voluminous upper crustal andesite in these terranes, complemented by mafic and ultramafic crystalline deposits emplaced in the lower crust or close to the Moho. Together these components constitute total arc growth with a basaltic composition and represent the net accreted contribution to continental growth.  相似文献   

9.
The Raobazhai ultramafic body of the North Dabie Complex is re-interpreted as a mantle-derived peridotitic slice enclosed in, and isofacially metamorphosed with, surrounding granulite-to-amphibolite facies gneisses. The ultramafic sheet consists mainly of metaharzburgite, but includes subunits of metadunite and mylonitic lherzolite. The rocks contain spinel but neither garnet nor plagioclase. However, in the mylonitic lherzolite, fine-grained intergrowths of spinel, orthopyroxene and clinopyroxene outline domains resembling the habit of garnet in two dimensions; broad-beam microprobe analyses imply pseudomorphs after a pyropic garnet precursor. The mineral assemblage of the metadunite and metaharzburgite is: olivine (Fo92)+orthopyroxene (En92)+tremolitic-to-magnesiohornblende+Mg–Al-chromite, indicating amphibolite facies recrystallization. The mineral assemblage of the mylonitic lherzolite is: olivine (Fo90)+orthopyroxene (En90)+clinopyroxene+Cr-bearing spinel+pargasitic amphibole, indicative of granulite-to-amphibolite facies metamorphism. Phase equilibria and geothermometric estimations show that the Raobazhai meta-ultramafics have undergone at least three stages of recrystallization: (I) 950–990 °C, (II) 750–860 °C, and (III) 670–720 °C, assuming equilibrium in the spinel peridotite stability field ( c. 6–15 kbar), although an early, high-pressure stage (≥18 kbar) is probable, based on the inferred garnet pseudomorphs. Petrochemical and geothermobarometric data suggest that the ultramafic slice represents a fragment of the mantle wedge, tectonically incorporated into subducted continental crust and re-equilibrated at granulite-to-amphibolite facies conditions while being exhumed to shallow levels.  相似文献   

10.
A contact zone sandwiched between an arc and an oceanic crust was discovered in the Laohushan area in the present study. It consists of a series of north-dipping imbricated thrust sheets and is exposed on the surface as a narrow arcuate belt, which extends for about 30 km in an E-W direction and measures about 1-3 km wide. Lithologically, it can be divided into four subzones. Subzone 1 consists of meta-andesite and metasandstone; subzone 2, psammitic schists; subzone 3, psammitic and pelitic schists, quartz diorite and hornfelses; and subzone 4, metagabbro, epidote amphibolite and pelitic schists. The metamorphism has the following grading sequence: low greenschist facies in subzone 1 → high greenschist facies in subzone 2 →low amphibolite facies in subzone 3→ epidote amphibolite facies in subzone 4. Petrographic and geochemical evidence shows that rocks in subzones 1, 2 and 3 are arc rocks, whereas those of subzone 4 are oceanic crustal rocks. The metamorphic mineral assemblages and especially miner  相似文献   

11.
Northern Victoria Land is a key area for the Ross Orogen – a Palaeozoic foldbelt formed at the palaeo‐Pacific margin of Gondwana. A narrow and discontinuous high‐ to ultrahigh‐pressure (UHP) belt, consisting of mafic and ultramafic rocks (including garnet‐bearing types) within a metasedimentary sequence of gneisses and quartzites, is exposed at the Lanterman Range (northern Victoria Land). Garnet‐bearing ultramafic rocks evolved through at least six metamorphic stages. Stage 1 is defined by medium‐grained garnet + olivine + low‐Al orthopyroxene + clinopyroxene, whereas finer‐grained garnet + olivine + orthopyroxene + clinopyroxene + amphibole constitutes the stage 2 assemblage. Stage 3 is defined by kelyphites of orthopyroxene + clinopyroxene + spinel ± amphibole around garnet. Porphyroblasts of amphibole replacing garnet and clinopyroxene characterize stage 4. Retrograde stages 5 and 6 consist of tremolite + Mg‐chlorite ± serpentine ± talc. A high‐temperature (~950 °C), spinel‐bearing protolith (stage 0), is identified on the basis of orthopyroxene + clinopyroxene + olivine + spinel + amphibole inclusions within stage 1 garnet. The P–T estimates for stage 1 are indicative of UHP conditions (3.2–3.3 GPa and 764–820 °C), whereas stage 2 is constrained between 726–788 °C and 2.6–2.9 GPa. Stage 3 records a decompression up to 1.1–1.3 GPa at 705–776 °C. Stages 4, 5 and 6 reflect uplift and cooling, the final estimates yielding values below 0.5 GPa at 300–400 °C. The retrograde P–T path is nearly isothermal from UHP conditions up to deep crustal levels, and becomes a cooling–unloading path from intermediate to shallow levels. The garnet‐bearing ultramafic rocks originated in the mantle wedge and were probably incorporated into the subduction zone with felsic and mafic rocks with which they shared the subsequent metamorphic and geodynamic evolution. The density and rheology of the subducted rocks are compatible with detachment of slices along the subduction channel and gravity‐driven exhumation.  相似文献   

12.
Contact metamorphism of greenschist facies Neoproterozoic turbidites by the Cretaceous Bugaboo Batholith in southeastern British Columbia has resulted in a well‐developed contact aureole. The aureole is about 1 km wide and can be divided into three main zones: (i) spotted phyllite zone, extending from the first appearance of spots of cordierite or andalusite to the last occurrence of primary chlorite; (ii) cordierite + andalusite + biotite zone, comprising hornfelses or schists with abundant porphyroblasts of cordierite and andalusite and, at higher grades, fibrolitic sillimanite; and (iii) K‐feldspar zone, characterized by hornfelses and schists that, in the inner part of this zone, are variably migmatitic. Four parts of the aureole were examined, three of which are characterized by schists, and one of which (Cobalt Lake area) is characterized by hornfelses and has exceptional exposure and comparatively unaltered rocks. Petrographic, modal, mineral‐compositional and whole rock‐compositional data were collected from the Cobalt Lake transect, allowing the prograde reaction sequence to be inferred. Notable features of the aureole at Cobalt Lake include: initial development of andalusite and plagioclase at the expense of paragonite‐rich white mica; a narrow interval across which cordierite, andalusite and biotite increase markedly at the expense of chlorite; gradual development of andalusite and biotite at the expense of cordierite and muscovite upgrade of chlorite consumption; and near‐simultaneous development of andalusite + K‐feldspar and sillimanite, the latter indicating a pressure of contact metamorphism of ~3 kbar. In other parts of the aureole, the development of sillimanite downgrade of the initial development of K‐feldspar suggests slightly higher pressures of contact metamorphism. Lack of correspondence between the observed sequence of reactions in the aureole and those predicted thermodynamically suggests that modifications to some of the thermodynamic data or activity–composition models may be required. Textural features in the aureole suggest the influence of kinetic factors on metamorphic recrystallization, including: (i) deformation‐catalysed reaction in the schists compared to the hornfelses, as indicated by different mineral‐growth sequences inferred from microstructures, and (ii) heating rate‐controlled recrystallization, as indicated by the decrease in grain size of hornfelses with increasing metamorphic grade.  相似文献   

13.
《Gondwana Research》2001,4(3):427-436
The ‘Three Phenocryst Basalts’ (TPB) from Pavagadh hill constitute one of the most primitive basalts in Deccan traps. Electron microprobe analyses of phenocryst minerals from the TPB reveal that the Fo % of olivine varies from 89 to 68, the clinopyroxene grains are diopside/salite or augite and the Cr# [Cr/(Cr+Al)] in spinel is about 0.65. The An content of feldspar varies from 63 to 67. The mineral chemical data allow us to infer that olivine and spinel crystallized early, and when olivine attained Fo76–73%, the crystallization of clinopyroxene was initiated. Plagioclase crystallization occurred at the late stage. It is indicated that the source region of the TPB may possibly be undepleted mantle (lherzolite zone) at about 85 km depth and 27 kbar pressure, where Cr# of spinel is about 0.47.  相似文献   

14.
呼斯特岩体位于新疆西天山博罗科努岛弧带中北缘,是博罗科努成矿带东段典型的与矽卡岩矿床成矿有关的中酸性杂岩体。对岩体中的二长花岗岩、花岗闪长岩和暗色包体进行了系统的矿物化学研究,探讨了岩浆的成岩演化过程以及矿物成分与成岩成矿的关系。造岩矿物的化学成分研究表明,呼斯特岩体为典型的I型花岗岩,形成于与俯冲有关的大陆边缘弧环境,成岩物质来自壳幔混源,成岩过程中经历了岩浆混合作用。岩体形成于较高温度(738~770 ℃)、较低压力(057~142 kbar,1 kbar=01 GPa)和高氧逸度环境。二长花岗岩和花岗闪长岩的侵位深度(22~42 km)和高氧逸度有利于可克萨拉—艾木斯呆依铁铜矿床的形成。岩石中的黑云母相对富镁且氧化系数较高,角闪石富镁、富硅且化学成分变化较大,二者均表现出与铁铜矿化有关的成分特征。岩浆混合作用与矿床的形成关系密切,对区内斑岩-矽卡岩型多金属矿床的找矿具有指示意义。  相似文献   

15.
海阳所堆积辉长岩由橄长岩、橄榄辉长岩和辉长岩组成。在橄长岩和橄榄辉长岩中发育有典型的变质反应结构:主要为橄榄石与斜长石之间形成由斜方辉石、尖晶石、角闪石和石榴石等矿物组成的多期次次变边,并有三个不同世代变质矿物,早期Cpx+Opx+Spl,中期Amp,晚期Grt;期次是钛铁矿与斜长石之间形成石榴石次变边,相对比较简单,只有一个世代变质矿物,为Grt+Amp+Rut或Grt+Rut岩中石榴石是通过斜长石与角闪石或斜长石与钛铁矿之间的变质反应形成的,虽为峰值变质作用的产物,但变质反应的期次及类型不同导致了所形成石榴石的温度和压力有所不同。堆积辉长岩形成演化的温压计算表明,堆积辉长岩在经过近等压降温的岩浆作用之后的变质作用早期,仍为近等压降温,而晚期则表现为近等温升压。这一特殊的P-T演化可能反映了堆积辉长冷侵位与深俯冲特征。  相似文献   

16.
Corona and inclusion textures of a metatroctolite at the contact between felsic granulite and migmatites of the Gföhl Unit from the Moldanubian Zone provide evidence of the magmatic and metamorphic evolution of the rocks. Numerous diopside inclusions (1–10 μm, maximum 20 μm in size) in plagioclase of anorthite composition represent primary magmatic textures. Triple junctions between the plagioclase grains in the matrix are occupied by amphibole, probably pseudomorphs after clinopyroxene. The coronae consist of a core of orthopyroxene, with two or three zones (layers); the innermost is characterized by calcic amphibole with minor spinel and relicts of clinopyroxene, the next zone consists of symplectite of amphibole with spinel, sapphirine and accessory corundum, and the outermost is formed by garnet and amphibole with relicts of spinel. The orthopyroxene forms a monomineralic aggregate that may contain a cluster of serpentine in the core, suggesting its formation after olivine. Based on mineral textures and thermobarometric calculations, the troctolite crystallized in the middle to lower crust and the coronae were formed during three different metamorphic stages. The first stage relates to a subsolidus reaction between olivine and anorthite to form orthopyroxene. The second stage involving amphibole formation suggests the presence of a fluid that resulted in the replacement of igneous orthopyroxene and governed the reaction orthopyroxene + anorthite = amphibole + spinel. The last stage of corona formation with amphibole + spinel + sapphirine indicates granulite facies conditions. Garnet enclosing spinel, and its occurrence along the rim of the coronae in contact with anorthite, suggests that its formation occurred either during cooling or both cooling and compression but still at granulite facies conditions. The zircon U–Pb data indicate Variscan ages for both the troctolite crystallization (c. 360 Ma) and corona formation during granulite facies metamorphism (c. 340 Ma) in the Gföhl Unit. The intrusion of troctolite and other Variscan mafic and ultramafic rocks is interpreted as a potential heat source for amphibolite–granulite facies metamorphism that led to partial re‐equilibration of earlier high‐ to ultrahigh‐P metamorphic rocks in the Moldanubian Zone. These petrological and geochronological data constrain the formation of HP–UHP rocks and arc‐related plutonic complex to westward subduction of the Moldanubian plate during the Variscan orogeny. After exhumation to lower and/or middle crust, the HP–UHP rocks underwent heating due to intrusion of mafic and ultramafic magma that was generated by slab breakoff and mantle upwelling.  相似文献   

17.
Fe–Ti oxides (magnetite, Ti-magnetite, ilmenite, and associated high-Al spinel) in the ferrogabbroids of the Middle Paleoproterozoic Elet’ozero syenite–gabbro intrusion are intercumulus minerals usually surrounded by coronitic rims of two types. The first type usually represents multilayer amphibole–biotite ± olivine coronas along contacts of Fe–Ti oxides with cumulus moderate-Ca plagioclase and more rarely, clinopyroxene. Two-layer rim is developed in contact with high-Ca plagioclase; the inner rim consists of pargasite and spinel, while the outer rim is made up of sadanagaite and spinel. The second type is represented by two-stage coronitic textures developed along boundaries of olivine and Fe–Ti oxide clusters with plagioclase. Initially, the olivine was surrounded by orthopyroxene rim, while Fe–Ti oxides were rimmed by pargasite with thin ingrowths of high-Al spinel (hercynite). At the next stage, the entire cluster was fringed by a common symplectite reaction rim, the composition of which also depended on the composition of plagioclase matrix: the spinel–sadanagaite rim was formed in contact with high-Ca plagioclase, while pargasite–muscovite–scapolite rim was formed in contact with moderate-Ca plagioclase. The formation of the outer rims occurred after hydration of the inner parts of coronas around olivine and oxides within the clusters. It is suggested that the Fe–Ti oxides and surrounding coronitic rims were microsystems formed by crystallization of drops of residual hydrous Fe-rich liquid.  相似文献   

18.
Meta‐anorthosite bodies are typical constituents of the Neoproterozoic Eastern Granulites in Tanzania. The mineral assemblage (and accessory components) is made up of clinopyroxene, garnet, amphibole; scapolite, epidote, biotite, rutile, titanite, ilmenite and quartz. Within the feldspar‐rich matrix (70–90% plagioclase), mafic domains with metamorphic corona textures were used for P–T calculations. Central parts of these textures constitute high‐Al clinopyroxene – which is a common magmatic mineral in anorthosites – and is therefore assumed to be a magmatic relict. The clinopyroxene rims have a diopsidic composition and are surrounded by a garnet corona. Locally the pyroxene is surrounded by amphibole and scapolite suggesting that a mixed CO2–H2O fluid was present during their formation. Thermobarometric calculations give the following conditions for the metamorphic peak of the individual meta‐anorthosite bodies: Mwega: 11–13 kbar, 850–900 °C; Pare Mountains: 12–14 kbar, 850–900 °C; Uluguru Mountains: 12–14 kbar, 850–900 °C. The P–T evolution of these bodies was modelled using pseudosections. The amount and composition of the metamorphic fluid and <0.5 mol.% fluid in the bulk composition is sufficient to produce fluid‐saturated assemblages at 10 kbar and 800 °C. Pseudosection analysis shows that the corona textures most likely formed under fluid undersaturated conditions or close to the boundary of fluid saturation. The stabilities of garnet and amphibole are dependent on the amount of fluid present during their formation. Mode isopleths of these minerals change their geometry drastically between fluid‐saturated and fluid‐undersaturated assemblages. The garnet coronae developed during isobaric cooling following the metamorphic peak. The cooling segment is followed by decompression as indicated by the growth of amphibole and plagioclase. The estimated of the metamorphic fluid is ~0.3–0.5. Although the meta‐anorthosites have different formation ages (Archean and Proterozoic) they experienced the same Pan‐African metamorphic overprint with a retrograde isobaric cooling path. Similar P–T evolutionary paths are known from the hosting granulites. The presented data are best explained by a tectonic model of hot fold nappes that brought the different aged anorthosites and surrounding rocks together in the deep crust followed by an isobaric cooling history.  相似文献   

19.
Mid-ocean ridge basalts (MORBs) from East Pacific Rise (EPR) 13°N are analysed for major and trace elements, both of which show a continuous evolving trend. Positive MgO–Al2O3 and negative MgO–Sc relationships manifest the cotectic crystallization of plagioclase and olivine, which exist with the presence of plagioclase and olivine phenocrysts and the absence of clinopyroxene phenocrysts. However, the fractionation of clinopyroxene is proven by the positive correlation of MgO and CaO. Thus, MORB samples are believed to show a “clinopyroxene paradox”. The highest magnesium-bearing MORB sample E13-3B (MgO=9.52%) is modelled for isobaric crystallization with COMAGMAT at different pressures. Observed CaO/Al2O3 ratios can be derived from E13-3B only by fractional crystallization at pressure >4 ±1 kbar, which necessitates clinopyroxene crystallization and is not consistent with cotectic crystallization of olivine plus plagioclase in the magma chamber (at pressure ~1 kbar). The initial compositions of the melt inclusions, which could represent potential parental magmas, are reconstructed by correcting for post-entrapment crystallization (PEC). The simulated crystallization of initial melt inclusions also produce observed CaO/Al2O3 ratios only at >4±1 kbar, in which clinopyroxene takes part in crystallization. It is suggested that MORB magmas have experienced clinopyroxene fractionation in the lower crust, in and below the Moho transition zone. The MORB magmas have experienced transition from clinopyroxene+plagioclase+olivine crystallization at >4±1 kbar to mainly olivine+plagioclase crystallization at <1 kbar, which contributes to the explanation of the “clinopyroxene paradox”.  相似文献   

20.
Low‐pressure and high‐temperature (LP–HT) metamorphism of basaltic rocks, which occurs globally and throughout geological time, is rarely constrained by forward phase equilibrium modelling, yet such calculations provide valuable supplementary thermometric information and constraints on anatexis that are not possible to obtain from conventional thermometry. Metabasalts along the southern margin of the Sudbury Igneous Complex (SIC) record evidence of high‐grade contact metamorphism involving partial melting and melt segregation. Peak metamorphic temperatures reached at least ~925°C at ~1–3 kbar near the SIC contact. Preservation of the peak mineral assemblage indicates that most of the generated melt escaped from these rocks leaving a residuum characterized by a plagioclase–orthopyroxene–clinopyroxene–ilmenite‐magnetite±melt assemblage. Peak temperatures reached ~875°C up to 500 m from the SIC lower contact, which marks the transition to metabasalts that only experienced incipient partial melting without melt loss. Metabasalts ~500 to 750 m from the SIC contact are characterized by a similar two‐pyroxene mineral assemblage, but typically contain abundant hornblende that overgrew clino‐ and orthopyroxene along an isobaric cooling path. Metabasalts ~750 to 1,000 m from the SIC contact are characterized by a hornblende–plagioclase–quartz–ilmenite assemblage indicating temperatures up to ~680°C. Mass balance and phase equilibria calculations indicate that anatexis resulted in 10–20% melt generation in the inner ~500 m of the aureole, with even higher degrees of melting towards the contact. Comparison of multiple models, experiments, and natural samples indicates that modelling in the Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (NCFMASHTO) system results in the most reliable predictions for the temperature of the solidus. Incorporation of K2O in the most recent amphibole solution model now successfully predicts dehydration melting by the coexistence of high‐Ca amphibole and silicate melt at relatively low pressures (~1.5 kbar). However, inclusion of K2O as a system component results in prediction of the solidus at too low a temperature. Although there are discrepancies between modelling predictions and experimental results, this study demonstrates that the pseudosection approach to mafic rocks is an invaluable tool to constrain metamorphic processes at LP–HT conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号