首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
2008年1月南方一次冰冻天气中冻雨区的层结和云物理特征   总被引:7,自引:3,他引:4  
陶玥  史月琴  刘卫国 《大气科学》2012,36(3):507-522
2008年1月中下旬, 我国南方经历了四次历史罕见的冰冻雨雪天气。本文针对2008年1月25~29日的一次典型冻雨天气过程, 在实测资料、NCEP再分析资料综合分析的基础上, 利用中国气象科学研究院 (CAMS) 中尺度云分辨模式对1月28日~29日的冻雨天气过程进行了数值模拟, 研究了冰冻天气形成的大气层结及云系冻雨区云的宏微观结构特征, 初步分析了冻雨形成的云微物理过程及云物理成因。结果表明, 深厚而稳定的逆温层和低空冷层的存在是大范围冻雨出现的直接原因。此次南方冰冻过程中, 湖南和贵州两地冻雨形成的云物理机理不同, 不同冻雨区上空为两种不同类型的云, 对应两种不同的云微物理结构和大气层结结构。湖南冻雨区云层较厚, 云顶温度较低, 属于混合相云, 云中高层存在丰富的冰相粒子 (雪的比含水量最大)。湖南冻雨在 "冷—暖—冷" 层结下, 通过 "冰相融化过程" 形成, 即在锋面之上的对流层中层水汽辐合中心内形成的雪, 从高空落入暖层, 雪融化形成雨, 再下落到冷层后, 形成过冷雨滴, 最后接触到温度低于 0℃的物体或降落到地面上, 迅速冻结形成冻雨。而贵州冻雨区云层较薄, 云顶温度较高, 属于暖云, 中高层基本无冰相粒子, 低层为云水和雨水 (云水的比含水量最大)。贵州冻雨是在 "暖—冷" 层结下通过 "过冷暖雨过程" 形成的。即水汽沿锋面抬升, 在对流层中低层的水汽辐合中心内, 经过冷却凝结成云滴, 通过碰并云滴增长的雨滴下落到低空冷层, 形成的过冷却雨滴直接冻结形成冻雨。  相似文献   

2.
2008年1月贵州冻雨的数值模拟和层结结构分析   总被引:2,自引:0,他引:2  
张昕  高守亭  王瑾 《高原气象》2015,34(2):368-377
针对2008年初发生在贵州地区的严重冻雨过程,分别从环流背景、低空急流和水汽输送条件等方面分析了准静止锋维持的原因,并选取本次灾害最严重的第3次过程为典型个例,利用WRF模式针对准静止锋影响下的贵州冻雨进行数值模拟来研究冻雨的发生机制。模拟结果较好地反映出高低空环流形势场特征,强雨雪降水带的走向、落区,以及地面温度的分布,均与观测基本吻合。通过分析高分辨率模式的模拟结果,揭示了准静止锋上贵州地区冻雨的层结结构特征及云物质在冻雨区的分布特征。研究结果表明,贵州中部的冻雨区除一般的三层结构(包含冰晶层、暖层和冷层)外,还具有典型的两层结构特征,即:高空的固体降水粒子稀少,900~600 h Pa深厚的逆温层和0℃以上的暖层使中低空存在大量液态粒子,下落的液滴经过近地面的浅薄冷层,形成大量过冷却雨滴,而后降落至地面迅速冻结。  相似文献   

3.
本文通过耦合AFWA(Air Force Weather Agency)冻雨参数化方案的WRF模式,对2020年冬季因暖锋引发的中国北方严重冻雨灾害个例进行了模拟,结果显示模式能够很好地模拟此次冻雨过程中降水相态的空间分布。通过分析暖锋的演变、水成物云微物理特征以及降水相态的变化,得到:在辽宁中北部—吉林中东部地区,暖锋导致中低空形成“冷—暖—冷”的温度层结,该区冻雨形成机制以“冰相机制”为主,即高空的雪花落入大于0℃暖层内融化、再降落到次冻结层后形成冻雨。同时,发现存在高空无固态水成物、逆温层内暖雨下落到次冻结层在地面形成冻雨的现象,这种新机制被定义为“暖雨机制”,更多水成物垂直剖面与同期地面观测降水相态的比对,验证了新机制的存在,并解释了该机制形成的可能原因。为更深入理解冻雨形成机理以及北方冻雨的预报、预警提供科学支撑。  相似文献   

4.
根据冻雨发生时特定的地面温度、地面湿度及高空温度三个基本特征,定义了中国冻雨潜在发生指数(FRGPI)并进行了初步验证。在此基础上利用欧洲中心ERA-Interim再分析及模式预报产品,结合2013/2014年冬季冻雨发生情况,对中国冻雨潜在发生指数进行了推广应用。结论如下:2014年2月上旬,高空槽、中低层切变线、低空急流及暖湿气流的共同作用,造成了中国南方产生冻雨的适宜的地面温度t、温度露点差D及高空温度层结Er,因此出现大范围冻雨灾害。2月中旬贵州受西南低涡及暖湿气流影响,也产生了适宜的t、D及Er条件,遭受了持续性冻雨灾害。2013/2014年冬季期间,适宜冻雨的温度t集中在冬季寒潮过程中0℃等温线所在地区,温度露点差D集中在西南暖湿气流影响区域,高空温度层结Er集中在中高纬与低纬天气系统交界地带;三部分交叉区域则为冻雨高发地带,且地面温度露点差可能是制约冻雨分布的主要因素。将FRGPI指数与欧洲中心数值预报产品相结合发现,可以提前10 d有效地对冻雨灾害进行预报,对防灾减灾有一定的实用性。  相似文献   

5.
南方不同类型冰冻天气的大气层结和云物理特征研究   总被引:4,自引:0,他引:4  
利用观测资料和CAMS中尺度云分辨模式,对南方3次不同类型冻雨天气过程进行模拟,重点研究了冰冻天气中冻雨区云系宏、微观结构及大气层结特征,初步分析了冻雨形成的云物理机制.结果表明:(1)逆温层的存在是冻雨发生的必要条件,低层湿度较大的逆温常与冻雨天气有关.3次冻雨过程的冻雨区都存在逆温层,其中第一、二次过程属于锋面逆温,而第三次过程属于平流逆温.可见,逆温层结有利于冻雨的发生,但逆温层的存在仅是形成冻雨的条件之一.冻雨的发生还与水汽(湿度)、风向风速、地面特征有关.低层有水汽输入到冻雨区、地面温度等于或低于0℃,有利于冻雨形成和过冷雨水的冻结.(2)冻雨的形成需要满足3个主要条件:在对流层中高层存在冻结层,冻结层下要有暖层和逆温层,近地层有一个温度<0℃的冷却层,并且低层的冷却层相对湿度较高.中高层冻结层主要产生冰相降水粒子,中层的暖层可以确保上层降落下来的固态降水粒子(雪或霰)融化成雨滴或在融化层中直接产生液态降水.这样,雨滴下降到低空冷却层后会逐渐变成过冷雨滴,当过冷却雨滴接触到<0℃的地面或者其他物体表面时,迅速冻结形成冻雨.(3)不同冻雨区上空存在2种不同类型的云,对应云中有2种明显不同的温度层结:混合相云中的“冷-暖-冷”层结和水云中的“暖-冷”层结.具有2种不同层结特征的不同冻雨区云系,对应2种不同的微物理结构,具有2种不同的冻雨形成的云物理机制.(4)同一类型天气系统中的冻雨区,可以存在不同的温度层结、云的微物理结构和冻雨形成的机制;不同类型天气系统也可以存在特征相同的冻雨区,即冻雨形成的温度层结、云的微物理结构和冻雨形成的物理机制都相同.  相似文献   

6.
2020年11月17~20日(过程1)和2021年11月7~11日(过程2)在中国东北地区发生了两场历史罕见的冻雨事件,给吉林和黑龙江两省造成了异常严重的灾害。本文利用NCEP/NCAR和EC-ERA5再分析资料、地面气象要素实况和探空资料,对这两次冻雨过程进行了诊断分析。结果表明,地面关键影响系统均为北上发展加强的江淮气旋,冻雨区均位于地面暖锋北部冷空气一侧的等压线密集带中。冻雨形成过程存在差异,过程1主要表现为先有地面降温形成“冷垫”,之后气旋携带的暖空气在“冷垫”上爬升并配合850 hPa暖锋维持;过程2则表现为大量暖湿空气向北输送,地面气温回升,850 hPa暖舌发展,被抬升的暖湿空气降落在前期较冷的下垫面上形成冻雨。冻雨发生时,水汽条件丰沛,并伴有上升速度和锋区的明显加强。温度层结呈现“冷—暖—冷”三明治型垂直分布特征,即低空有逆温层且有融化层和近地面有冻结层同时存在。两次过程均符合多数北方冻雨的“冰相融化”机制。过程1逆温层顶高度、逆温强度及最大融化层厚度均强于过程2,且逆温持续时间长,导致电线积冰厚度差异明显。地形对冻雨有一定的影响。最后提炼出一个东北冻雨天气的三维结构模...  相似文献   

7.
本文针对2021年7月20日河南省郑州市发生的“7·20”特大暴雨天气过程,主要基于FY-4A静止气象卫星成像仪和地基天气雷达遥感数据,利用光流法分别计算遥感数据图像的光流场(Optical Flow Field)。经与FNL数据水平风和地面风速观测对比表明,气象卫星和雷达光流场可以近似反映大气和云系的高空和低空的运动特征。在此基础上,分析了与暴雨天气过程有关的动力条件和水凝物输送特征。结果显示,在20日午后,存在从华南经河南延伸至华北“西南—东北”走向的水汽和云水输送带,其中对流活动非常明显,并一直延伸至河南中北部的既有云系中,为河南郑州地区特大暴雨的形成提供了有利的水汽和云水输送条件。20日午后至16时(北京时)最强降水发生前,郑州地区低空由辐散转为强烈的气旋状辐合,并且高空的反气旋涡度增强,表明郑州地区整个降水系统上升运动增强。在最强降水发生前,从郑州地区南侧输入的水凝物急剧增加。这些结果表明,郑州地区不仅存在大量水汽输入,同时还有大量水凝物随强对流云输送进入到大范围降水系统的上升运动区,可能极大地加速了水汽转化为云水进而形成降水的微物理过程转化速率,这可能是此次郑州特大暴雨快速增强的主要成因。本文提出的基于遥感数据光流场的分析方法在暴雨短临预报和预警中有显著的应用潜力。  相似文献   

8.
利用常规气象资料及T213分析场资料,对2005年6月18日~23日华南大范围持续性暴雨过程的高低空形势、能量及动力条件进行诊断分析。发现:这次过程低空急流维持了低空对流不稳定形势,高空急流维持了高空辐散、低空辐合的有利形势,高空西南急流与高空西北急流一样,能造成暴雨区高空有利的辐散形势,形成高层辐散、底层辐合,触发强烈的上升运动,高低空耦合是此次强降雨爆发的重要机制,强降雨落区位于低空西南风急流出口区的左侧和200hPa西北风急流的出口区西南侧,即低空急流的左侧与切变线的前沿;暴雨区域高湿能条件的维持,保证了强降雨过程的能量供给,是强降雨持续的重要条件。  相似文献   

9.
水汽凝结过程与高低空急流对冷锋环流的作用   总被引:3,自引:0,他引:3       下载免费PDF全文
吕克利  赵德明 《大气科学》1997,21(3):317-323
文中利用包括水汽凝结过程的湿大气原始方程模式,研究了高空西风急流和低空南风急流中冷锋环流和垂直运动场的演变,计算结果显示:水汽凝结过程的加入,使锋区垂直运动和锋面环流大大增强,上升运动随时间发生剧烈的变化;湿过程对锋面环流的作用发生在水汽饱和并发生凝结之后,未饱和水汽的存在对锋面环流没有什么作用;与干大气模式中高空西风急流是造成冷锋环流演变的主要因子情况不同,低空南风急流在湿大气中对锋面环流有极为重要的作用,其作用至少与高空西风急流相等;在激发锋区重力波上,低空南风急流的作用可能更加明显;水汽凝结湿过程的加入,不论是在高空西风急流下还是在低空南风急流中,都能在锋区激发出波长约为300 km的重力波,并以大于锋面移速的相速传入暖区。  相似文献   

10.
高低空急流耦合对长江中游强暴雨形成的机理研究   总被引:16,自引:7,他引:9  
对1998-07-22T08-14发生于武汉附近的一次强暴雨过程的分析发现,这次强暴雨发生于南方暖区与北方冷空气脱离的孤立系统中,副热带经圈环流上升支是暴雨发生的大尺度背景场,它的低空入流和高空出流对大尺度雨区的生成与维持具有重要作用.边界层南风急流、低空西风急流和高空西风急流上下的耦合作用是强暴雨发生的重要原因.925hPa上边界层偏南风急流是暴雨区所需水汽的最大提供者和暴雨区对流不稳定能量释放的触发者,850hPa上低空偏西风急流的主要作用是建立和维持了暴雨区中低空的对流不稳定,200hPa上中纬高空西风急流的主要作用是建立和维持了暴雨区高空的条件对称不稳定,三者上下耦合使得中低空对流上升运动得以向上发展和加强,从而产生强暴雨.  相似文献   

11.
为了探讨北京首都国际机场冻雨过程产生的可能机制,利用NCEP再分析资料、风云2号E星(FY-2E)的云顶亮温(Black Body Temperature,TBB)逐小时资料及风云3号A星(FY-3A)反演的云顶高度日平均资料做为检验依据,使用美国非静力中尺度模式(Weather Research and Forecasting,WRF)对2013年1月31日发生在首都机场附近地区的一次冻雨过程进行模拟,得出以下结论:1)模拟结果中的云顶温度与FY-2E的TBB逐小时资料对应较好:此次冻雨过程,整个降水云系云顶温度在0~-6℃之间,模拟结果水成物的垂直分布也得到了较好的印证;通过FY-3A反演的云顶高度日平均资料的检验,证明此次冻雨过程的云高基本维持在3 km左右,而且云微物理固态项的含量少。2)云顶温度、云顶高度实况与模式模拟表明此次过程是一次典型的暖雨机制冻雨,这说明产生北方冻雨的可能机制并不单一,冰相机制与暖雨机制可以同时存在。  相似文献   

12.
春季霜冻是农业生产的主要气象灾害之一,该文利用毕节1990-2019年0 cm地温和气温资料,分析春季霜冻特征和霜期内不同天气现象下气温与0 cm地温关系。结果表明:近30 a毕节春季霜冻日数随时间呈显著减少趋势,特别在21世纪10年代减少速率跃增,终霜冻期随时间呈显著提早趋势。空间上春季霜冻日数自西向东递减,终霜冻期自东向西推迟,威宁大部和赫章西部高海拔山区是春季霜冻发生最频繁区域,且终霜冻在该区域显著偏晚。突变检验显示毕节春季霜冻日数的减少趋势呈现2个阶段性下降,在21世纪10年代后减少趋势显著,终霜冻提早明显,存在突变年。周期变化中春季霜冻日数存在准3 a和准8 a周期变化,其中3 a周期变化显著性最高。不同天气现象下春季霜冻期内日最低0 cm地温和日最低气温差异大,晴天辐射霜冻是毕节春季主要霜冻类型,期间日最低气温较日最低0 cm地温平均高出4.2℃,且存在月份差异。  相似文献   

13.
江西抚州2008年低温雨雪冰冻天气过程成因分析   总被引:6,自引:4,他引:2  
利用常规气象资料、数值预报产品,从天气形势、物理量等方面,分析了2008年1月12日-2月2日江西抚州长时间低温、雨雪、冰冻天气过程的成因。结果表明,乌拉尔山阻塞高压的建立、青藏高原南侧到孟加拉湾南支低槽异常活跃、西北太平洋副热带高压偏强偏北,为这次过程的发生提供了有利的环流背景;700hPa西南风急流不仅为低温冻雨的发生提供了充沛的水汽条件和动力条件,而且还有利于中低层逆温层结的形成和维持;过程后期赣中、赣南的暴雨区,与垂直速度所表现的强烈上升区相对应。  相似文献   

14.
080125南方低温雨雪冰冻天气持续降水的数值模拟   总被引:3,自引:1,他引:2  
利用WRF模式对2008年1月25—29日中国低温雨雪冰冻天气过程进行模拟。结果表明,雨雪期间长江中下游及以南地区长时间存在着高低空急流的耦合形态,且低空急流不断向雨雪区域输送暖湿水汽,使该地区低层的水汽辐合,促进大范围雨雪发生和维持:强高空辐散的抽吸作用,促进低空辐合、整层上升运动加强以及正涡度的维持.干冷空气从对流层高层倾斜南下加强了对流不稳定能量的积累.本次雨雪冰冻天气过程中存在明显的干侵入,降水区北侧对流层高层高位涡干冷空气沿等相对湿度(RH)线密集带侵入低层,促使雨区低层位涡中心迅速增大,促进强降水发生;本次过程表明位涡和降水有很好的对应关系,这对降水预报有很好的指示意义。由于极涡偏强促使冷空气南下,南方近地面浅薄冷空气使雨水结成冰导致灾害发生。  相似文献   

15.
It is still a challenge today to get the statistical approach accepted by some transmission line engineers, namely for freezing rain icing loads. They see heavy icing storms as rare events and they still believe that in this case a sound engineering judgment is better than poor statistics. When they are convinced that statistics are good, such as for the flood problem, they do not hesitate to accept the probabilistic approach. Developing extreme values distributions of freezing-rain icing is however a difficult task. Because of the relatively small dimension of major freezing rain storms, freezing-rain icing is not a continuous “variate” at a particular site.One way of improving the statistics is to take simple icing measurements on a fine grid stations network. After only 17 years of measurements with Passive Ice Meters, good fit of extreme values is possible if we use “mesh”extreme values instead of “station” ones. Before pooling extreme values into a “mesh” or “region”distribution, some attention must be given to the homogeneity of the data within a given area. This has been done for four different regions of the province of Québec with very conclusive results. A mesh of about 50 km seems adequate with a temporal resolution of 12 h. Since transmission lines are spatial constructions, this finding can easily satisfy the need of the design engineers in defining icing loads. And, if some caution is given to identify special topographical features, a better knowledge of the spatial variation of icing makes also possible better line routing.  相似文献   

16.
辽宁省近50年霜的气候变化特征   总被引:3,自引:0,他引:3  
李辑  严晓瑜  王颖 《气象》2010,36(11):38-45
主要使用辽宁省35个站点1957—2006年霜的地面观测资料以及相应时间的温度资料分析了该区霜的变化特征及其受气候变暖的影响,得到如下结论:近50年辽宁省初霜日期推迟近10 d,终霜日期提前约17 d,无霜期日数增加约26 d;初、终霜日期和无霜期日数在20世纪90年代初发生突变;从空间分布来看,初霜日期明显推后、终霜日期显著提前、无霜期增多的区域主要分布在辽宁中部、西部以及辽东半岛的部分地区;初霜日期与9月份各温度因子相关性较与其他各月高,终霜日期与4月份各温度因子相关性较强,无霜期主要受4—9月间各温度因子的影响;初霜期推迟、终霜期提前以及无霜期延长都主要是由温度的升高引起的,其中平均最低地面温度、平均最低气温是最重要的影响因素;伴随气候变暖,辽宁省初、终霜发生日期以及无霜期长度的空间分布都显示出由西南向东北方向推移的特点。  相似文献   

17.
通过对滑县2005年12月两次低湿天气条件下成霜个例分析发现,在相对湿度较小的晴夜,只要地面或近地物有足够的辐射冷却条件、贴地层有适当的水汽供应,仍可有霜形成。  相似文献   

18.
Precipitation episodes in the form of freezing rain and ice pellets represent natural hazards affecting eastern Canada during the cold season. These types of precipitation mainly occur in the St. Lawrence River valley and the Atlantic provinces of Canada. This study aims to evaluate the ability of the fifth-generation Canadian Regional Climate Model (CRCM5), using a 0.11° horizontal grid mesh, to hindcast mixed precipitation when driven by reanalyses produced by the European Centre for Medium-range Weather Forecasts (ERA-Interim) for a 35-year period. In general, the CRCM5 simulation slightly overestimates the occurrence of freezing rain, but the geographical distribution is well reproduced. The duration of freezing rain events and accompanying surface winds in the Montréal region are reproduced by CRCM5. A case study is performed for an especially catastrophic freezing-rain event in January 1998; the model succeeds in simulating the intensity and duration of the episode, as well as the propitious meteorological environment. Overall, the model is also able to reproduce the climatology and a specific event of freezing rain and ice pellets.  相似文献   

19.
解冻速率对作物霜冻害的影响   总被引:5,自引:3,他引:5       下载免费PDF全文
用人工霜箱研究霜冻危害.霜箱温度控制在-1—1℃,分别模拟解冻速率为0.3℃/10min和1.6℃/10min时的辐射霜夜缓慢降温过程.结果表明霜冻危害程度受作物种类、冻结温度、结冰进程和解冻速率的影响。在某些条件下,缓慢解冻可能使受冻组织恢复,但在另一些条件下则不能.对于不同耐霜性的作物,防霜的着眼点应该是不相同的。  相似文献   

20.
通过对滑县2005年12月两次低湿天气条件下成霜个例分析发现,在相对湿度较小的晴夜,只要地面或近地物有足够的辐射冷却条件、贴地层有适当的水汽供应,仍可有霜形成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号