首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Central Yakutia, frozen river banks are affected by a combination of thermal and mechanical erosion. Exceptional bank retreat of up to 40 m per year is observed. This results from ground thawing produced by heat transfer from the ?ow of water through the frozen ground, followed by mechanical transport of the thawed sediments. A one‐dimensional model is proposed to estimate the thermal erosion ef?ciency. A test of this model is a comparison of results obtained from experiments carried out in a cold room. A hydraulic channel allows measurements of the thaw front propagation, as well as the thermal erosion rate, in simulated ground ice that is subjected to warm water ?ow. Various laboratory simulations demonstrate the validity of the mathematical model for the range of laboratory conditions. A hierarchy of parameters (Reynolds number, water and ground ice temperatures) is proposed to explain the present ef?ciency of thermal erosion along the Siberian rivers. From the characteristics of the Lena River (geometry, temperature and discharge) during the ?ood season, the erosion of banks with different ice content predicted by the model is in agreement with ?eld observations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.  相似文献   

3.
An updated linear computer model for meandering rivers with incision has been developed. The model simulates the bed topography, flow field, and bank erosion rate in an incised meandering channel. In a scenario where the upstream sediment load decreases (e.g., after dam closure or soil conservation), alluvial river experiences cross section deepening and slope flattening. The channel migration rate might be affected in two ways: decreased channel slope and steeped bank height. The proposed numerical model combines the traditional one-dimensional (1D) sediment transport model in simulating the channel erosion and the linear model for channel meandering. A non-equilibrium sediment transport model is used to update the channel bed elevation and gradations. A linear meandering model was used to calculate the channel alignment and bank erosion/accretion, which in turn was used by the 1D sediment transport model. In the 1D sediment transport model, the channel bed elevation and gradations are represented in each channel cross section. In the meandering model, the bed elevation and gradations are stored in two dimensional (2D) cells to represent the channel and terrain properties (elevation and gradation). A new method is proposed to exchange information regarding bed elevations and bed material fractions between 1D river geometry and 2D channel and terrain. The ability of the model is demonstrated using the simulation of the laboratory channel migration of Friedkin in which channel incision occurs at the upstream end.  相似文献   

4.
1 INTRODUCTIONThe fluvial processes such as transihon of river pattrms, bank chat and advance, sedimentation anderosion of flood plains and channel beds can be Observed in alluvial rivers. These fluvial PrOcesses are allattributed to variations of the sediment caping caPacity of the flow and the erodibillty of bank matrialor soil. A river sechon may be widened by bank erosion and failure.For examPle, a river channel downstream of a reservoir is scoured because the flow released frOm the…  相似文献   

5.
A mathematical model has been developed to assess the role of the shape of channel cross-section, the position of pollutant source on the bank slope, and the sedimentation rate of pollutant particles in the process of pollutant transport in water flow. The procedure of numerical experiments and the obtained results and conclusions can be of use in the simulations and studies of pollution propagation from sources on riverbanks in permafrost zone, which are subject to thermal erosion.  相似文献   

6.
Understanding bedload transport fluctuations in rivers is crucial for complementing the existing knowledge on sediment transport theory. In this contribution, we use a natural-scale laboratory flume to analyse bedload transport fluctuations in non-uniform sand under normal flow conditions. Based on the significance of downward seepage, we incorporate the seepage effect on bedload transport over a non-uniform sand bed channel. The weight of the dry material was measured, and the volumetric transport rate per unit width (bedload transport rate) was estimated. An important observation is that the bedload transport rate initially rapidly increases with time and reaches a maximum value. Based on experimental data, we propose an empirical expression to estimate temporal bedload transport. In addition, an empirical model for bedload transport is proposed by incorporating downward seepage among other variables. The performance of several existing bedload transport formulae was also taken into account by the experimental datasets.  相似文献   

7.
A mathematical model is presented, allowing the calculation of channel deformations of permafrost zone rivers caused by thermo-erosional niching under the effect of waves of different origin under the conditions of growing ambient temperature. The model is based on equations of transient fluid motion in two-dimensional formulation, Stefan equation for determining the displacement of water-ice phase transition interface, and mass conservation equations for transported sediments (deformation equations). The model was tested against a particular case of steady flow based on data of a laboratory experiment. Numerical experiments revealed the key factors of the process and allowed the impact of waves with different duration and intensity (spring floods and releases from engineering structures) on river channel to be analyzed.  相似文献   

8.
Sediment transport in rill flows exhibits the characteristics of non‐equilibrium transport, and the sediment transport rate of rill flow gradually recovers along the flow direction by erosion. By employing the concept of partial equilibrium sediment transport from open channel hydraulics, a dynamic model of rill erosion on hillslopes was developed. In the model, a parameter, called the restoration coefficient of sediment transport capacity, was used to express the recovery process of sediment transport rate, which was analysed by dimensional analysis and determined from laboratory experimental data. The values of soil loss simulated by the model were in agreement with observed values. The model results showed that the length and gradient of the hillslope and rainfall intensity had different influences on rill erosion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
This paper is devoted to a mathematical analysis of some general models of mass transport and other coupled physical processes developed in simultaneous flows of surface, soil and ground waters. Such models are widely used for forecasting (numerical simulation) of a hydrological cycle for concrete territories. The mathematical models that proved a more realistic approach are obtained by combining several mathematical models for local processes. The water-exchange models take into account the following factors: Water flows in confined and unconfined aquifers, vertical moisture migration allowing earth surface evaporation, open-channel flow simulated by one-dimensional hydraulic equations, transport of contamination, etc. These models may have different levels of sophistication. We illustrate the type of mathematical singularities which may appear by considering a simple model on the coupling of a surface flow of surface and ground waters with the flow of a line channel or river.  相似文献   

10.
A mathematical model and approximate analysis using finite elements are developed to simulate the transport of moisture from a soil medium through a small seedling or plant to the atmosphere. An intrinsic part of the mathematical model is analysis of the characteristic diffusion rates of different components in the soil-plant system. This leads to consideration of the non-linear coupling of the component soil and plant regimes and effective numerical solution of the problem using a Galerkin semi-discrete finite element method: Details concerning the mathematical model and approximate analysis are described. Numerical experiments are conducted to examine the performance of the model. Relaxation and iterative acceleration techniques and an adaptive timestepping strategy are devised to improve the solution algorithms. Comparisons of model predictions with results of laboratory and field experiments indicate that the model provides useful information on plant-water relations.  相似文献   

11.
A simple analytic model is presented relating local sediment transport capacity to variance in the transverse shear stress distribution in a stream channel. The model is used to develop a physically based conceptual model for the initiation of meandering in straight, bedload‐dominated streams as a result of a feedback mechanism. The feedback maximizes the cross‐sectional shear stress variance and – in order to achieve stability – ultimately minimizes the energy slope at repeated locations along the channel, subject to steady‐state mass flux and the stability of the channel boundary. These locations develop into pools in a fully developed meandering channel; they represent attractor states wherein sediment continuity is satisfied using the least possible energy expenditure per unit length of channel. However, since the cross‐sectional geometry of a pool (and the adjacent bar) is asymmetric, these attractor states are only conditionally stable, requiring strong, curvature‐induced secondary circulation to maintain their asymmetry. Between two successive pools, a stream occupies a metastable, higher energy state (corresponding to a riffle) that requires greater energy expenditure per unit length of channel to transport the same volume of sediment. The model we present links processes at the scale of a channel width to adjustments of the channel sinuosity and slope at the scale of a channel reach. We argue that the reach‐scale extremal hypotheses employed by rational regime models are mathematical formalisms that permit a one‐dimensional theory to describe the three‐dimensional dynamics producing stream morphology. Our model is consistent with the results from stream table experiments, with respect to both the rate of development of meandering and the characteristics of the equilibrium channel morphology. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
《国际泥沙研究》2023,38(5):769-779
It is important to understand the effects of ice cover on sediment transport in cold climates, where sub-freezing temperatures affect water bodies for a significant part of the year. The literature contains many studies on sediment transport in open channel flow, and several studies on sediment transport in completely ice-covered flow. There has been little or no research on sediment transport in partially ice-covered channels. In the current study, laboratory experiments were done in a rectangular flume to quantify the impact of border ice presence on the sediment transport rate. The effects of ice cover extent and changing flow strengths on sediment transport distribution also were investigated, and the results were compared to those for fully ice-covered and open channel flow. The ice coverage ratios considered were 0 (representing the open water condition), 0.25, 0.50, 0.67, and 1 (representing fully ice-covered flow). The partial ice cover was found to impact the sediment transport distribution within the channel. The effect of ice coverage extent on sediment transport distribution was more significant at lower flow strengths and became negligible at higher flow strengths. The conventional equations for sediment transport in open channel flow and fully ice-covered flow that relate the dimensionless bedload transport rate to the flow strength were found to be applicable to estimate the total cross-section-averaged bedload transport for partially ice-covered flow when modified appropriately. Empirical coefficients for these equations were determined using the experimental data.  相似文献   

13.
This paper presents a three-dimensional (3-D) numerical model to simulate morphological changes in alluvial channels due to bank erosion. A method for the simulation of bank erosion is established. This is incorporated into a 3-D mathematical model for turbulent flow and non-uniform, non-equilibrium sediment transport. This model is applied to simulate morphological changes in the Shishou bend of the middle Yangtze River in China, where serious bank erosions occurred during the last two decades. The double-layer sediment structure of the riverbank on the middle Yangtze River is taken into account in the bank erosion module. Both cohesive and non-cohesive bank material in the different layers are considered. The bank erosion module also includes other factors affecting the rate of bank erosion, such as the longitudinal length of failed bank, the thickness of each layer in the double-layer structure, and the erosion-resisting effect of cohesive material from the top layer of failed bank. A locally-adaptive grid system is proposed to efficiently simulate the lateral migration of alluvial channel due to bank erosion. The predictive capability of the 3-D model is examined by laboratory data. Simulated processes of bank erosion agree with field observations in the Shishou bend during the period of October 1996–October 1998, and the bank erosion module plays a significant role in simulating morphological changes of the study reach. In addition, the equivalent channel-forming discharge, which is defined as a constant discharge that can create the same amount of bank erosion in an alluvial channel as that created by natural runoff processes during the same period of time, is proposed to improve calculation efficiency for feasibility studies.  相似文献   

14.
This paper presents a computational fluid dynamics model for simulation of twodimensional (2-D) water flow, sediment transport, bank failure processes, and the subsequent channel pattern changes. Effects of secondary currents at channel bends are included in the modified momentum conservation equation of water flow. An improved bank failure model is applied to calculate bank failure due to riverbed erosion, and to simulate lateral migration and planform changes of alluvial channels. The water flow model has been validated using laboratory measurements of flow in consecutive bends designed by the authors, in addition to flume test data from the literature.  相似文献   

15.
1 INTRODUCTION River erosion is a complex phenomenon. The rate of bank retreat is determined by flow, bed topography, sediment transport, bank properties, and water quality. Prediction of future river planform changes and the knowledge of river erosion and river meandering are required for land use planning in alluvial river valleys and determining locations for bridges and hydraulic structures. The control of riverbank erosion requires prediction of flow and bed features in a meanderin…  相似文献   

16.
The paper presents the development of a morphological model and its application to experimental model rivers.The model takes into account the key processes of channel migration,including bed deformation,bank failure and wetting and drying.Secondary flows in bends play an important role in lateral sediment transport,which further affects channel migration.A new formula has been derived to predict the near-bed secondary flow speed,in which the magnitude of the speed is linked to the lateral water level gradient.Since only non-cohesive sediment is considered in the current study,the bank failure is modelled based on the concept of submerged angle of repose.The wetting and drying process is modelled using an existing method.Comparisons between the numerical model predictions and experimental observations for various discharges have been made.It is found that the model predicted channel planform and cross-sectional shapes agree generally well with the laboratory observations.A scenario analysis is also carried out to investigate the impact of secondary flow on the channel migration process.It shows that if the effect of secondary flow is ignored,the channel size in the lateral direction will be seriously underestimated.  相似文献   

17.
A two-dimensional mathematical model for acid leaching of copper from mine tailings using injection and pumping wells is presented. The model considers the transport mechanisms of convection and dispersion with reactions that govern the fates of copper and acid. Reactions considered are acid neutralization, copper solubilization, and copper adsorption. The results of acid leaching experiments in laboratory columns (one- dimensional) and in the field at a tailings impoundment are presented. The proposed model was validated for a one-dimensional experiment, and the model parameter fitting was found to be adequate in terms of the field experiment.  相似文献   

18.
Numerical simulation of channel pattern changes Part I: Mathematical model   总被引:1,自引:0,他引:1  
This paper presents a computational fluid dynamics model for simulation of two- dimensional (2-D) water flow, sediment transport, bank failure processes, and the subsequent channel pattern changes. Effects of secondary currents at channel bends are included in the modified momentum conservation equation of water flow. An improved bank failure model is applied to calculate bank failure due to riverbed erosion, and to simulate lateral migration and planform changes of alluvial channels. The water flow model has been validated using laboratory measurements of flow in consecutive bends designed by the authors, in addition to flume test data from the literature.  相似文献   

19.
A 2D depth‐averaged model has been developed for simulating water flow, sediment transport and morphological changes in gravel‐bed rivers. The model was validated with a series of laboratory experiments and then applied to the Nove reach of the Brenta River (Northern Italy) to assess its bed material transport, interpret channel response to a series of intensive flood events (R.I. ≈ 10 years) and provide a possible evolutionary scenario for the medium term. The study reach is 1400 m long with a mean slope of 0.0039 m m?1. High‐resolution digital terrain models were produced combining LiDAR data with colour bathymetry techniques. Extensive field sedimentological surveys were also conducted for surface and subsurface material. Data were uploaded in the model and the passage of two consecutive high intensity floods was simulated. The model was run under several hypotheses of sediment supply: one considering substantial equilibrium between sediment input and transport capacity, and the others reducing the sediment supply. The sediment supply was then calibrated comparing channel morphological changes as observed in the field and calculated by the model. Annual bed material transport was assessed and compared with other techniques. Low‐frequency floods (R.I. ≈ 1.5 years) are expected to produce negligible changes in the channel while high floods may erode banks rather than further incising the channel bed. Location and distribution of erosion and deposition areas within the Nove reach were predicted with acceptable biases stemming from imperfections of the model and the specified initial, boundary and forcing conditions. A medium‐term evolutionary scenario simulation underlined the different response to and impact of a consecutive sequence of floods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
RATIONAL BASIS FOR SUSPENDED SEDIMENT MODELING   总被引:1,自引:0,他引:1  
This paper presents a rational basis to model the transport of suspended sediment. The loose-boundary condition for 3D models and the adjustment coefficients for both the depth-integrated 2D and laterally integrated 1D models are treated comprehensively. A combination of Dirichlet and Neumann conditions is proposed as the loose-boundary condition. The adjustment coefficient for 2D models is obtained on the basis of the proposed boundary condition and analytical solutions developed for some simple cases of non-equilibrium transport of sediment in uniform flows. The adjustment coefficient for 1D models for natural rivers is further obtained from lateral integration. Comparisons with analytical solutions and a considerable amount of laboratory and prototype data show that mathematical models developed along the proposed line of attack would well simulate the transport of suspended sediment in practical problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号