首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Channel bars and banks strongly affect the morphology of both braided and meandering rivers. Accordingly, bar formation and bank erosion processes have been greatly explored. There is, however, a lack of investigations addressing the interactions between bed and bank morphodynamics, especially over short timescales. One major implication of this gap is that the processes leading to the repeated accretion of mid‐channel bars and associated widenings remain unsolved. In a restored section of the Drau River, a gravel‐bed river in Austria, mid‐channel bars have developed in a widening channel. During mean flow conditions, the bars divert the flow towards the banks. One channel section exhibited both an actively retreating bank and an expanding mid‐channel bar, and was selected to investigate the morphodynamic processes involved in bar accretion and channel widening at the intra‐event timescale. We repeatedly surveyed riverbed and riverbank topography, monitored riverbank hydrology and mounted a time‐lapse camera for continuous observation of riverbank erosion processes during four flow events. The mid‐channel bar was shown to accrete when it was submerged during flood events, which at the subsequent flow diversion during lower discharges narrowed the branch along the bank and increased the water surface elevation upstream from the riffle, which constituted the inlet into the branch. These changes of bed topography accelerated the flow along the bank and triggered bank failures up to 20 days after the flood events. Four analysed flow events exhibited a total bar expansion from initially 126 m2 to 295 m2, while bank retreat was 6 m at the apex of the branch. The results revealed the forcing role of bar accretion in channel widening and highlighted the importance of intra‐event scale bed morphodynamics for bank erosion, which were summarized in a conceptual model of the observed bar–bank interactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Riverbank erosion, associated sedimentation and land loss hazards are a land management problem of global significance and many attempts to predict the onset of riverbank instability have been made. Recently, Osman and Thorne (1988) have presented a Culmann-type analysis of the stability of steep, cohesive riverbanks; this has the potential to be a considerable improvement over previous bank stability theories, which do not account for bank geometry changes due to toe scour and lateral erosion. However, in this paper it is shown that the existing Osman-Thorne model does not properly incorporate the influence of tension cracking on bank stability since the location of the tension crack on the floodplain is indirectly determined via calculation or arbitrary specification of the tension crack depth. Furthermore, accurate determination of tension crack location is essential to the calculation of the geometry of riverbank failure blocks and hence prediction of land loss and bank sediment yield associated with riverbank instability and channel widening. In this paper, a rational, physically based method to predict the location of tension cracks on the floodplain behind the eroding bank face is presented and tested. A case study is used to illustrate the computational procedure required to apply the model. Improved estimates of failure block geometry using the new method may potentially be applied to improve predictions of bank retreat and floodplain land loss along river channels destabilized as a result of environmental change.  相似文献   

3.
Predicting spatial and temporal variations in bank erosion due to extreme floods presents a long‐standing challenge in geomorphology. We develop two methodologies for rapid, regional‐scale assessments of stream reaches susceptible to channel widening. The first proposes that channel widening occurs when unit stream power exceeds a critical threshold (300 W/m2). The second is motivated by the observation that widening often occurs at channel bends. We introduce a new metric, the bend stress parameter, which is proportional to the centripetal force exerted on a concave bank. We propose that high centripetal forces generate locally high bank shear forces and enhance channel bank erosion. We test both metrics using the geomorphic signature of Tropical Storm Irene (2011) on the White and the Saxtons Rivers, Vermont. Specifically, we test if reaches where significant channel widening occurred during Irene required one or both metrics to exceed threshold values. We observe two distinct styles of channel widening. Where unit stream power and bend stress parameter are high, widening is usually due to bank retreat. Elsewhere widening is usually due to the stripping of the upstream end of mid‐channel islands. Excluding widening associated with the stripping of the heads of mid‐channel islands, almost all the widening (> 98%) occurred along reaches identified as susceptible to widening. The combined metrics identify up to one‐quarter of the reaches lacking susceptibility to channel widening. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
A model of channel response in disturbed alluvial channels   总被引:2,自引:0,他引:2  
Dredging and straightening of alluvial channels between 1959 and 1978 in West Tennessee caused a series of morphologic changes along modified reaches and tributary streams. Degradation occurred for 10 to 15 years at sites upstream of the area of maximum disturbance and lowered bed-levels by as much as 6·1 m. Following degradation, reaches upstream of the area of maximum disturbance experienced a secondary aggradation phase in response to excessive incision and gradient reduction. Aggradation downstream of the area of maximum disturbance reached 0·12 m per year with the greatest rates occurring near the stream mouths. The adjustment of channel geometry and phases of channel evolution are characterized by six process-oriented stages of morphologic development—premodified, constructed, degradation, threshold, aggradation, and restabilization. Down-cutting and toe removal during the degradation stage causes bank failure by mass wasting when the critical height and angle of the bank material is exceeded (threshold stage). Channel widening continues through the aggradation stage as the ‘slough line’ develops as an initial site of lower-bank stability. The bank profile develops three dynamic elements (1) vertical face (70° to 90°), (2) upper bank (25° to 50°), and (3) slough line (20° to 25°). Alternate channel bars form during the restabilization stage and represent incipient meandering of the channel.  相似文献   

5.
Within the scope of the interdisciplinary Natural and Artificial Systems for Recharge and Infiltration research project dealing with riverbank filtration processes at the Berlin water works, a semi‐technical column experiment has been ongoing since January 2003. Here, a 30 m long soil column is infiltrated with surface water sampled from Lake Tegel (Berlin, Germany) under saturated flow conditions. Changes in pore water hydrochemistry sampled on 21 non‐equidistant distributed points are verified by coupled transport and reaction modelling. The objective of reactive transport modelling was to identify the main biogeochemical processes within the soil column during the flushing experiment as a conceptual model for riverbank filtration. Modelling was done with a combination of MATLAB and PHREEQC. The main processes identified are: (1) biogeochemical degradation due to interaction of natural surface water with the soil matrix; (2) continuous dissolution of refractory air bubbles from the soil column matrix. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
A model for describing river channel pro?le adjustments through time is developed and applied to a river responding to base‐level lowering in order to examine the effect of channel widening and downstream aggradation on equilibrium timescales. Across a range of boundary conditions, downstream aggradation controlled how quickly a channel reached equilibrium. Channel widening either increased or decreased the equilibrium timescale, depending on whether or not sediment derived from widening was deposited downstream. Results suggest that pro?le adjustments are more important than channel width adjustments in controlling equilibrium timescales for a channel responding to base‐level lowering. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Previous studies have demonstrated that riparian vegetation leads to channel transformation from a multi-bar to a single-thread channel planform. However, it still remains unclear how the presence of pioneer and mature vegetation affects the morphodynamics of single-thread meandering rivers. In this study, we therefore investigated the effects of vegetation strength on the morphodynamic evolution of an experimental meandering channel. Three physical laboratory experiments were conducted using alfalfa sprouts in different life stages – no vegetation, immature vegetation, and mature vegetation – to simulate different floodplain vegetation strengths. Our results demonstrate that vegetation plays a key role in mediating bank erosion and point-bar accretion, and that this is reflected in both the evolution of the channel bed as well as the sediment flux. The presence of mature vegetation maintained a deep, single-thread channel by reducing bank erosion, thereby limiting both channel widening and sediment storage capacity. Conversely, an unvegetated floodplain led to channel widening and high sediment storage capacity. Channel evolution in the unvegetated scenario showed that the active sediment supply from outer bank erosion led to slightly delayed point-bar accretion on the inner banks due to helical flow, deflecting the surface flow toward the outer banks and causing further erosion. In contrast, in the immature vegetation scenario, the outer banks were also initially eroded, but point-bar accretion did not clearly progress. This led to a greater width-to-depth ratio, resulting in a transition from a single- to a multi-thread channel with minor flow paths on the floodplain. The experimental results suggest that the eco-morphodynamic effects of young (low-strength) and mature (high-strength) vegetation are different. Notably, low-strength, early-stage vegetation increases channel complexity by accelerating both channel widening and branching, and therefore might promote the coexistence of multi-bars and pioneer vegetation.  相似文献   

8.
Riverbank erosion is a major contributor to catchment sediment budgets. At large spatial scales data is often restricted to planform channel change, with little information on process distributions and their sediment contribution. This study demonstrates how multi‐temporal LiDAR and high resolution aerial imagery can be used to determine processes and volumes of riverbank erosion at a catchment scale. Remotely sensed data captured before and after an extreme flood event, enabled a digital elevation model of difference (DoD) to be constructed for the channel and floodplain. This meant that: the spatial area that could be assessed was extensive; three‐dimensional forms of bank failures could be mapped at a resolution that enabled process inference; and the volume and rates of different bank erosion processes over time could be assessed. A classification of riverbank mass failures, integrating form and process, identified a total of 437 mass failure polygons throughout the study area. These were interpreted as wet flow mass failures based on the presence of a well defined scarp wall and the absence of failed blocks on the failure floor. The failures appeared to be the result of: bank exfiltration, antecedent moisture conditions preceding the event, and the historic development of the channel. Using one‐dimensional hydraulic modelling to delineate geomorphic features within the main boundary of the macrochannel, an estimated 1 466 322 m2 of erosion was interpreted as fluvial entrainment, occurring across catchment areas from 30 to 1668 km2. Only 8% of the whole riverbank planform area was occupied by mass failures, whilst fluvial entrainment covered 33%. A third of the volume of material eroded came from mass failures, even though they occupied 19% of the eroded bank area. The availability of repeat LiDAR surveys, combined with high‐resolution aerial photography, was very effective in erosion process determination and quantification at a large spatial scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
EFFECTOFRIVERBEDWIDTHONSEDIMENTTRANSPORT1SilkeWIEPRECHT2ABSTRACTRiverbeddepresionofaprealpineriverbyseveralmetresduringthelas...  相似文献   

10.
l INTRODUCTIONT'he landscaPe is mainly shaPed by surface runoff of water through erosion and sedimentahon. mverflows cut the bed, scour the banks and silt the seas. All these are realized by moving sediment frOm oneplace to other places. The caPacity of the flow to remove sediment frOm one place to other places within ariver chanel is called sediment-removing caPacity. It differs frOm the well-defined sediment-capingcapacity For instance, steady flow carries sediment through the river …  相似文献   

11.
《国际泥沙研究》2016,(4):291-298
As a result of the interaction between hydrodynamics and the effects of gravity, riverbank collapse is a common occurrence in the desert reach of the upper Yellow River (also called as Ningxia-Mongolia Inner reach), of which the riverbank may be divided into three types such as sandy riverbank in the wide-valley desert reach, silt-deposition riverbank on the fluvial plain and silt–sandy riverbank. The char-acteristics of both typical riverbank collapse and the particle size distributions (PSDs) for collapsed riverbanks of sandy, silt-deposition, and silt–sandy types were determined from analysis of data obtained from the field observations. It was found that particles from the silt-deposition riverbank had the smallest median size and those from the sandy riverbank the largest, with those from the silt–sandy riverbank being intermediate in size. The PSDs of the sandy and silt-deposition riverbanks exhibited double-peaked and single-peaked structures, respectively, while those of the silt–sandy riverbank exhibited multiple peaks. Furthermore, the corresponding to three kinds of riverbank collapse mechanisms were revealed. These results are significant with regard both to the understanding of river dynamics and to the planning of river harnessing projects.  相似文献   

12.
This paper presents a three-dimensional (3-D) numerical model to simulate morphological changes in alluvial channels due to bank erosion. A method for the simulation of bank erosion is established. This is incorporated into a 3-D mathematical model for turbulent flow and non-uniform, non-equilibrium sediment transport. This model is applied to simulate morphological changes in the Shishou bend of the middle Yangtze River in China, where serious bank erosions occurred during the last two decades. The double-layer sediment structure of the riverbank on the middle Yangtze River is taken into account in the bank erosion module. Both cohesive and non-cohesive bank material in the different layers are considered. The bank erosion module also includes other factors affecting the rate of bank erosion, such as the longitudinal length of failed bank, the thickness of each layer in the double-layer structure, and the erosion-resisting effect of cohesive material from the top layer of failed bank. A locally-adaptive grid system is proposed to efficiently simulate the lateral migration of alluvial channel due to bank erosion. The predictive capability of the 3-D model is examined by laboratory data. Simulated processes of bank erosion agree with field observations in the Shishou bend during the period of October 1996–October 1998, and the bank erosion module plays a significant role in simulating morphological changes of the study reach. In addition, the equivalent channel-forming discharge, which is defined as a constant discharge that can create the same amount of bank erosion in an alluvial channel as that created by natural runoff processes during the same period of time, is proposed to improve calculation efficiency for feasibility studies.  相似文献   

13.
Analytical studies for well design adjacent to river banks are the most significant practical task in cases involving the efficiency of riverbank filtration systems. In times when high pollution of river water is joined with increasing water demand, it is necessary to design pumping wells near the river that provide acceptable amounts of river water with minimum contaminant concentrations. This will guarantee the quality and safety of drinking water supplies. This article develops an analytical solution based on the Green's function approach to solve an inverse problem: based on the required level of contaminant concentration and planned pumping time period, the shortest distance to the riverbank that has the maximum percentage of river water is determined. This model is developed in a confined and homogenous aquifer that is partially penetrated by the stream due to the existence of clogging layers. Initially, the analytical results obtained at different pumping times, rates and with different values of initial concentration are checked numerically using the MODFLOW software. Generally, the distance results obtained from the proposed model are acceptable. Then, the model is validated by data related to two pumping wells located at the first riverbank filtration pilot project conducted in Malaysia.  相似文献   

14.
Abstract

Stream channel development in response to the eruption of Mount St. Helens on 18 May 1980, resulted in some of the largest sediment yields documented anywhere on earth. Development of new channels on the 2.7 km3 debris-avalanche deposit in the North Fork Toutle River caused net erosion of as much as 1.3 x 105 t km?2 annually. Development of these channels followed a four-stage sequence of channel initiation, channel incision with relatively constant width-to-depth ratio, channel widening accompanied by aggradation, and channel widening accompanied by scour-and-fill with little change in average channel elevation. These channels remain unstable both in width and elevation. Lahars affected channel and valley morphology on all flanks of the volcano. Steep, upstream reaches generally incised and widened during the first year following the eruption and aggraded during the following three years. Gently sloping downstream reaches aggraded and widened during the first year and incised during the following three years. The most rapid adjustments occurred during the first two winters following the eruption. The principal effect of the blast on channels throughout the 550 km2 devastated area was the subsequent rapid delivery of sand- and silt-size sediment eroded from hillslopes. Channels aggraded during early storms of the 1980–1981 winter but incised during later storms the same winter. Subsequent channel enlargement was constrained by logs deposited in channels by the blast and by post-1980 shallow debris slides. Since 1984, instability and sedimentation in laharand blast-affected channels have been within the range of pre-1980 levels.  相似文献   

15.
This study focused on a spatial and temporal analysis of the active channel and associated floodplain lakes using aerial photographs spanning five decades (1942, 1962, 1985, 1999) over a 140 km long reach of the Sacramento. Planimetric changes were analysed longitudinally and temporally to highlight the spatial structures and their evolution through time. The results underline complex changes and space–time pattern in bank erosion, channel length and active channel width. The bank erosion and also channel lengthening were higher between 1962 and 1985 than in the two periods studied before and after. Active channel width significantly decreased from 1942 to 1999; partly progressively from upstream to downstream with local widening whatever the studied periods. Similarly the floodplain lakes observed before 1942–1962 were significantly different in size and geometry from those which appeared during the most recent period. The creation of lakes is less frequent after the 1940s, with a secondary peak of occurrence during the 1962–1985 period. The interpretation of these changes is complex because of various human pressures acting over different time scales (bank protection, flow diversion, sediment starvation, land‐use changes) and various natural influences (flood sequences through out the period, geological setting). The findings are discussed by comparison with previous work, and highlight the important effect of dam impact on peak flow and sediment starvation modifying longitudinally hydraulic conditions within the channel, but also the increase in riprap protection which induced change in bank erosion, channel planimetry and floodplain lake characters (geometry, frequency of renewal). Variation in flood intensities is also observed as having positive effects on the bank erosion pattern. Secondarily, land‐use changes also controlled bank erosion intensity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The dynamics of sediment transport capacity in gravel‐bed rivers is critical to understanding the formation and preservation of fluvial landforms and formulating sediment‐routing models in drainage systems. We examine transport‐storage relations during cycles of aggradation and degradation by augmenting observations of three events of channel aggradation and degradation in Cuneo Creek, a steep (3%) gravel‐bed channel in northern California, with measurements from a series of flume runs modeling those events. An armored, single‐thread channel was formed before feed rates were increased in each aggradation run. Output rates increased as the channel became finer and later widened, steepened, and braided. After feed rates were cut, output rates remained high or increased in early stages of degradation as the incising channel remained fine‐grained, and later decreased as armoring intensified. If equilibrium was not reached before sediment feed rate was cut, then a rapid transition from a braided channel to a single‐thread channel caused output rates for a given storage volume to be higher during degradation than during aggradation. Variations in channel morphology, and surface bed texture during runs that modeled the three cycles of aggradation and degradation were similar to those observed in Cuneo Creek and provide confidence in interpretations of the history of change: Cuneo Creek aggraded rapidly as it widened, shallowed, and braided, then degraded rapidly before armoring stabilized the channel. Such morphology‐driven changes in transport capacity may explain the formation of flood terraces in proximal channels. Transport‐storage relations can be expected to vary between aggradation and degradation and be influenced by channel conditions at the onset of changes in sediment supply. Published in 2011. This article is a US Government work and is in the public domain in the USA.  相似文献   

17.
The upper reach of the Amazon River has a very dynamic morphology, with the highest rates of migration observed in the entire Amazon River. It has an anabranching channel pattern which alternates between a condition of single channel and anabranching structures; in particular, the anabranching structure near Iquitos City shows an interesting channel behavior. Its channels migrate at different rates, where there are processes of narrowing and widening, and also collision and development of new channels. The temporal evolution of the Iquitos anabranching structure is described during the period from 1985 to 2014. The study is carried out by using satellite images to track the migration patterns, which are contrasted to the underlying geological units in the valley. Bathymetry of the structure and several velocity transects were obtained during a field campaign prior to the 2012 historic flood event. This information allowed for numerical modeling in order to compute the hydrodynamic flow field that complements the temporal analysis, aiming to understand the planform migration patterns after the 2012 flood event. It is observed that the geological units play an important role in modulating the migration rates and planform development of the channels. The channels in the structure are in contention to be the main channel, which become the secondary channel after migration. This causes the channels to experience a rise in bed elevation and narrowing of the channel itself; if this trend continues for several more years, these channels will detach from the Iquitos anabranching structure, thus forming paleo‐channels. This geomorphic process is important for horizontal and vertical soil heterogeneity along the floodplain. In general, the analysis shows a complex interaction between the underlying geological units, flow structure, morphology of the bed and planform migration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This study investigates the influence of ground water injection on the initial movement of non-cohesive sediment particles on a riverbank slope analytically and experimentally.By including the hydrauli...  相似文献   

19.
We evaluated controls on locations of channel incision, variation in channel evolution pathways and the time required to reconnect incised channels to their historical floodplains in the Walla Walla and Tucannon River basins, northwestern USA. Controls on incision locations are hierarchically nested. A first‐order geological control defines locations of channels prone to incision, and a second‐order control determines which of these channels are incised. Channels prone to incision are reaches with silt‐dominated valley fills, which have sediment source areas dominated by loess deposits and channel slopes less than 0·1(area)?0·45. Among channels prone to incision, channels below a second slope–area threshold (slope = 0·15(area)?0·8) did not incise. Once incised, channels follow two different evolution models. Small, deeply incised channels follow Model I, which is characterized by the absence of a significant widening phase following incision. Widening is limited by accumulation of bank failure deposits at the base of banks, which reduces lateral channel migration. Larger channels follow Model II, in which widening is followed by development of an inset floodplain and aggradation. In contrast to patterns observed elsewhere, we found the widest incised channels upstream of narrower reaches, which reflects a downstream decrease in bed load supply. Based on literature values of floodplain aggradation rates, we estimate recovery times for incised channels (the time required to reconnect to the historical floodplain) between 60 and 275 years. Restoration actions such as allowing modest beaver recolonization can decrease recovery time by 17–33 per cent. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

20.
The three-dimensional groundwater flow patterns in a gravel bar at the Danube east of Vienna were investigated and are discussed in this paper. The observed groundwater level gradients are highly dynamic and respond very quickly to changes in the river water levels. A variably saturated groundwater model was calibrated to the data to describe the complex dynamics of flow in the gravel bar. The model results suggest that short-term (6–48 h) fluctuations of river water levels cause variations in the exchange flow rates from − 35 l/s to 82 l/s. The highest rates occur during brief infiltration after rapidly rising river water levels. Simulations of different scenarios indicate that riverbank clogging will decrease the exchange fluxes by up to 80%, while clogging of both riverbank and riverbed essentially stops the flow exchange. The groundwater model is also used to simulate the transport of a conservative tracer. The variation of river water levels over time is shown to increase the extent of the active river–aquifer mixing zone in the gravel bar. These dynamic factors significantly enhance the dilution of conservative tracer concentrations in this zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号