首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
2.
Samples of sediment collected from the Severn floodplain between Worcester and Gloucester following the severe flooding in January and February 1990, were analysed for their grain size distribution. The results show that most sand was deposited within 20 m of the channel bank, but that fine sand may contribute to flood sediment across the width of the floodplain. James' (1985) numerical model of overbank sedimentation attempts to predict the transfer of sediment to the floodplain during flooding. Geometrical and hydraulic data relating to the Severn flood are used as input for a computer program of James' (1985) model. The pattern of sediment concentrations predicted by the model was compared with that obtained from statistical analysis of the flood sediment. The patterns were found to be similar, so James' (1985) model was considered to predict in a relative sense the distribution of flood sediment.  相似文献   

3.
《Advances in water resources》2007,30(6-7):1432-1454
This paper examines the non-perturbed deposition and re-entrainment dynamics of biological and non-biological colloids in porous media in the presence of an energy barrier to deposition at the grain surface. Deposition and re-entrainment rate coefficients were determined from numerical simulation of breakthrough–elution behavior and the profiles of retained colloids. We present composite trends from original and previously published data for biological and non-biological colloids which demonstrate that hydrodynamic drag mitigates deposition and drives re-entrainment of both biological and non-biological colloids in the presence of an energy barrier under non-perturbed conditions. Original data is presented for two sizes of colloids (1.1 and 5.7 μm microspheres) under a variety of ionic strength and fluid velocity conditions to examine the torque balance governing re-entrainment of colloids attached to the grain surfaces. The analysis indicates that in the presence of an energy barrier to deposition, hydrodynamic drag may influence deposition and re-entrainment of colloids associated directly with the grain surface via primary energy minima. However, the hydrodynamic field would also be expected to influence deposition and re-entrainment of colloids associated with the surface via secondary energy minima. Hence, the observed influences of fluid velocity are consistent with colloid association via either mechanism. These results call for the development of colloid transport theories that explicitly account for the influence of the hydrodynamic field at the grain surface.  相似文献   

4.
Sediments are an essential habitat compartment in rivers, which is a subject to dynamic transport processes. In many rivers, the fine deposited sediments are contaminated with heavy metals and organic compounds. Contaminated deposits are considered as potential hot spots because of the risk of the mobilization under erosive hydraulic conditions. Numerical models for particulate contaminant transport are then necessary and can be applied to estimate and predict the potential impact of mobilized contaminants as an important contribution to sediment management. This paper focuses on the quantification of the amount of contaminated sediments resuspended during the extreme flood event in 1999 and the prediction of deposition one year after the flood event. To assess such erosive flood event, a 2D numerical transport model was developed to analyse the dynamics of erosion and sedimentation processes in the headwater of a cross dam at the Upper Rhine River. The dam consists of a weir, a hydropower plant, and a navigation lock. As the weir is operating only for flood management, a huge amount of sediment highly contaminated with the hexachlorobenzene (HCB) was deposited in the weir zone. Therefore, numerical simulations were performed to determine the spatial and temporal distribution of deposited contaminated sediments as depending on the river discharge and its distribution to the hydraulic structures. The numerical investigation presented here is taken as a retrospective analysis of the contaminated sediment dynamics in the headwater to improve future sediment management.  相似文献   

5.
This paper describes delta development processes with particular reference to Cimanuk Delta in Indonesia. Cimanuk river delta, the most rapidly growing river delta in Indonesia, is located on the northern coast of Java Island. The delta is subject to ocean waves of less than 1 m height due to its position in the semi‐enclosed Java Sea in the Indonesian archipelago. The study has been carried out using a hydrodynamic model that accounts for sediment movement through the rivers and estuaries. As an advanced approach to management of river deltas, a numerical model, namely MIKE‐21, is used as a tool in the management of Cimanuk river delta. From calibration and verification of hydrodynamic model, it was found that the best value of bed roughness was 0·1 m. For the sediment‐transport model, the calibration parameters were adjusted to obtain the most satisfactory results of suspended sediment concentration and volume of deposition. By comparing the computed and observed data in the calibration, the best values of critical bed shear stress for deposition, critical bed shear stress for erosion and erosion coefficient were 0·05 N m?2, 0·15 N m?2, and 0·00001 kg m?2 s?1, respectively. The calibrated model was then used to analyse sensitivity of model parameters and to simulate delta development during the periods 1945–1963 and 1981–1997. It was found that the sensitive model parameters were bed shear stresses for deposition and erosion, while the important model inputs were river suspended sediment concentration, sediment characteristics and hydrodynamic. The model result showed reasonable agreement with the observed data. As evidenced by field data, the mathematical model proves that the Cimanuk river delta is a river‐dominated delta because of its protrusion pattern and very high sediment loads from the Cimanuk river. It was concluded that 86% of sediment load from the Cimanuk river was deposited in the Cimanuk delta. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
A turbidity current is a turbulent, particle-laden gravity current that is driven by density differences resulting from the presence of suspended sediment particles. The current travels downslope, bearing a large amount of sediment over a great distance, and forms fluvial and submarine bedforms. Knowledge of the spatio-temporal deposition profile of turbidity-deposited sediment is important for a better understanding of sediment transport by turbidity currents. In the current study, the depositi...  相似文献   

7.
A new method is presented for predicting sediment sorting associated with soil erosion by raindrop impact for non-equilibrium conditions. The form of soil erosion considered is that which results from raindrop impact in the presence of shallow overland flow itself where the flow is not capable of eroding sediment. The method specifically considers early time runoff and erosion when sediment leaving an eroding area is generally finer and thus may have a higher potential for transport of sorbed pollutants. The new mechanism described is the formation of a deposited layer on the soil surface, which is shown to lead to sediment sorting during an erosion event. The deposited layer is taken to have two roles in this process: to temporarily store sediment on the surface between successive trajectories, and to shield the underlying soil from erosive stresses. Equations describing the dynamics of the suspended sediment mixture and the deposited layer are developed. By integrating these equations over the length of eroding land element and over the duration of the erosion event, an event-based solution is proposed which predicts total sediment sorting over the event. This solution is shown to be consistent with experimentally observed trends in enrichment of fine sediment. Predictions using this approach are found to only partly explain measured enrichment for sets of experimental data for two quite different soils, but to be in poor agreement for an aridsol of dispersive character. It is concluded that the formation of the deposited layer is a significant mechanism in the enrichment of fine sediment and associated sorbed pollutants, but that processes in the dispersive soil are not as well described by the theory presented.  相似文献   

8.
The lower Yellow River channel was maintained by artificial levees between 1580 and 1849. During this period, 280 levee breaches occurred. To estimate sediment storage on the floodplains outside the levees, a regression model with a decadal time step was developed to calculate the outflow ratio for the years when levee breaching occurred. Uncertainty analysis was used to identify the likely outflow ratio. Key variables of the model include annual water discharge, a proxy for levee conditions, and potential bankfull discharge of the channel before flood season. Uncertainty analysis reveals an outflow ratio of 0.35–0.56. We estimate that during this period, 18.8–30.1% of the total ~312 Gt of sediment load was deposited on the floodplains outside the levees. Human-accelerated erosion in the Loess Plateau caused a 4-fold increase in sediment delivery to the lower Yellow River, which could not be accommodated by channel morphodynamic changes. As a result, 21.2–27.5% of the total sediment load was deposited within the levees, creating a super-elevated channel bed that facilitated an uncommonly high breach outflow ratio. Hence, the factor of a large super-elevation relative to the mean main channel depth should be considered when designing diversions to restore floodplains. © 2018 John Wiley & Sons, Ltd.  相似文献   

9.
Fine sediment in suspended form, recently deposited overbank and in temporary storage on or in channel beds, was collected in the Nene basin during a period of drought through to a period of four high flows. The sediment was analysed for arsenic, copper, lead, phosphorus and zinc concentrations with the aim of investigating their sources, movement, temporary storage and potential for environmental harm. Copper, lead and zinc probably originated from urban street dusts, phosphorus (originally in dissolved form) from sewage effluent and arsenic from natural soils developed over ironstone. There was little difference in the metal or arsenic concentrations in the sediment under different flow conditions; instead, proximity to pollutant sources appeared to control their concentrations. Phosphorus in tributary sub‐catchments probably adsorbed to sediment during periods of low flow but these sediments were flushed away during high flows and replaced by sediment with lower concentrations. However, concentrations of all pollutants in overbank sediments along the Nene's main channel were not reduced in successive flood events, suggesting no first flush effect. Only phosphorus accumulated on sediment at concentrations exceeding those of its catchment‐based sources (e.g. street dusts, channel banks and catchment soils). This scavenging of aqueous phosphate by sediment explained the difference in behaviour between phosphorus, arsenic and heavy metals. The surface area and organic matter content were shown to have a small effect on contaminant concentrations. Street dust contaminants only exceeded predicted effect levels in close proximity to urban areas, suggesting a small potential for harm to the aquatic environment. Arsenic concentrations exceeded predicted effect levels in most sediment samples. However, it has been shown to be largely non‐bioavailable in previously published research on the Nene, limiting its potential for significant environmental harm. Phosphorus concentrations in river sediments are high in comparison to the soils in the catchment and in comparison with sediment–P concentrations in other published lowland catchment studies, indicating a large potential for eutrophication should the Phosphorus be, or become, bioavailable. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The modeling of thick vadose zones is particularly challenging because of difficulties in collecting a variety of measured sediment properties, which are required for parameterizing the model. Some models rely on synthetic data, whereas others are simplified by running as homogeneous sediment domains and relying on a single set of sediment properties. Few studies have simulated flow processes through a thick vadose zone using real and comprehensive data sets comprising multiple measurements. Here, we develop a flow model for a 7-m-thick vadose zone. This model, combining the numerical codes CTRAN/W with SEEP/W, includes the measured sediment hydraulic properties of the investigated vadose zone and incorporates the actual climate and subsurface conditions of the study site (precipitations, water-table elevations, and stable isotope data). The model is calibrated by fitting the simulated and measured vertical profiles of water content. Our flow model calculates a transit time of 1 year for the travel of water through the 7-m vadose zone; this estimate matches stable isotope-based results obtained previously for this site. A homogeneous sediment domain flow model, which considers only a single set of sediment properties, produces a transit time that is approximately half the duration of that of the heterogeneous flow model. This difference highlights the importance of assuming heterogeneous material within models of thick vadose zones and testifies to the advantage gained when using real sediment hydraulic properties to parametrize a flow model.  相似文献   

11.
Primary treated sewage effluent from the city of Vancouver, Canada was deposited directly onto the intertidal ecosystem of Sturgeon bank, Fraser river estuary between 1962 and 1988. In response to the degraded sediment conditions an azoic zone developed near the discharge outfall. Effluent discharges into the intertidal zone were almost completely stopped in 1988 with the construction of a submerged outfall. Our studies, conducted between 1994 and 1996, showed considerable improvement in the environment of the mudflat ecosystem, including increased dissolved oxygen, decreased sediment chlorophyll, decreased organic material in the sediment, reduced heavy metals in surficial sediment and increased grain size. The amphipod Corophium salmonis, important in the food web for juvenile salmon and other fish species, recolonized the previously azoic location. At reference stations, C. salmonis density was similar to that observed in previous surveys two decades earlier. Our data strongly suggest that improvement or sediment conditions near the former sewage outfall was a major factor enabling colonization by C. salmonis.  相似文献   

12.
《国际泥沙研究》2016,(4):368-375
A wide range of methods are commonly used to measure deposited fine sediment and quantify substrate quality in rivers as part of bioassessment or monitoring programmes. In this laboratory-based experi-ment known amounts of three sediment types (sand, topsoil, peat) were added to mesocosms and four methods of measuring deposited fine sediment;turbidity, estimation of released sediment, Turner–Hillis deposited sediment sampler (DSS) and visual estimation of%surface cover were evaluated. The objective of the study was to evaluate which of these methods for estimating deposited sediment best dis-criminates between levels of deposited fine sediment added and assesses the effects of inter-observer variability between % surface cover estimations. While turbidity measurement and the resuspension method were strongly related to levels of added sediment, it proved difficult using the two methods to resolve differences between adjacent levels of added sediment e.g. 50 g and 100 g. Surface cover esti-mations were also strongly related to added sediment levels and were better able to distinguish between adjacent levels of added sediment. Furthermore, we found no significant differences between the %surface cover estimations between observers. Results from this laboratory experiment strongly endorse the use of visual estimation of surface cover in field studies. Further work evaluating the turbidity and re-suspension methods under field conditions would also be beneficial.  相似文献   

13.
Experimentally determined spatial patterns of soil redistribution across a break in slope derived using 10 rare earth element (REE) oxides as sediment tracers are presented. An erosion experiment was conducted using simulated rainfall within a laboratory slope model measuring 2·5 m wide by 6 m long with a gradient of 15° declining to 2°. Soil was tagged with multiple REE and placed in different locations over the slope and at the end of the experiment REE concentrations were measured in samples collected spatially. A new method was developed to quantify the erosion and deposition depths spatially, the relative source contributions to deposited sediment and the sediment transport distances. Particle‐size selectivity over an area of net deposition was also investigated, by combining downslope changes in particle‐size distributions with changes in sediment REE composition within a flow pathway. During the experiment, the surface morphology evolved through upslope propagation of rill headcuts, which gradually incised the different REE‐tagged zones and led to sediment deposition at the break in slope and the development of a fan extending over the shallow slope segment. The spatial patterns in REE concentrations, the derived erosion and deposition depths, the relative source contributions to deposition zones and the sediment transport distances, corroborate the morphological observations and demonstrate the potential of using REE for quantifying sediment transport processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Particle selectivity plays an important role in clarifying sediment transport processes in vegetative filter strips (VFS). 10-m long grass strips at slopes of 5° and 15° were subjected to a series of sediment-laden inflows experiments with different particle sizes to investigate the sediment transport and its response to overland flow hydraulics. The inflow sediments came from local soil, river-bed sand, and mixed, with median particle size d50 of 39.9, 207.9 and 77.4 μm, respectively. Three independent repeated experiments were carried for each treatment. The results show that when the sediment trapping lasted for a certain length of time, the re-entrainment of some small-sized particles was greater than the deposition; that is, net loss occurred, which was not erosion of the original soil. Net loss of particles is mainly determined by the particle diameter. The coarser the inflow sediment particles and/or the steeper the slope, the coarser the particles can be net lost. Deposited sediment causes the VFS bed surface to become smooth and hydraulic resistance decrease exponentially. Unit stream power P is more suitable than shear stress τ of overland flow to be used to describe the process of sediment particle transport in VFS. The relationship between P and d50 of outflow sediment is very consistent with the form of power function with a constant term. These results are helpful to understand the physical process of sediment transport on vegetation hillslopes.  相似文献   

15.
Field data from the Rio Paraná, Argentina, are used to examine patterns of suspended sediment transport over a sand dune. Measurements of three‐dimensional velocity are made with an acoustic Doppler current profiler whilst suspended sediment concentration and particle size have been quantified using a laser in situ sediment scattering transmissometer. Suspended sediment concentration and streamwise and vertical sediment flux are highest close to the bed, with an upward vertical flux over the stoss side of the dune and downward flux over the lee side. Suspended sediment concentrations are higher over the crest compared with the trough and suspended sediment is coarsest near the bed. About 17% of the suspended‐load transported over the crest is deposited in the lee side before it reaches the trough. Most of this deposited sand is coarser sediment that originates close to the bed over the crest, a result consistent with simulations based on the model of Mohrig and Smith (Water Resources Research 1996; 32: 3207–3217) for the excursion lengths of sediment dispersed in the lee side of a dune. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Non-uniform sediment deposited in a confined, steep mountain channel can alter the bed surface composition. This study evaluates the contribution of geometric and resistance parameters to bed sta-bilization and the reduction in sediment transport. Flume experiments were done under various hydraulic conditions with non-uniform bed material and no sediment supply from upstream. Results indicate that flume channels respond in a sequence of coarsening and with the formation of bedform-roughness features such as rapids, cascades, and steps. A bedform development coefficient is introduced and is shown to increase (i.e. vertical sinuosity develops) in response to increasing shear stress during the organization process. The bedform development coefficient also is positively correlated with the critical Shields number and Manning's roughness coefficient, suggesting the evolution of flow resistance with increasing bedform development. The sediment transport rate decreases with increasing bed shear stress and bedform development, further illustrating the effect of bed stabilization. An empirical sedi-ment transport model for an equilibrium condition is proposed that uses the bedform development coefficient, relative particle submergence (i.e. the ratio of mean water depth and maximum sediment diameter), modified bed slope, and discharge. The model suggests bedform development can play a primary role in reducing sediment transport (increasing bed stabilization). The model is an extension of Lane's (1955) relation specifically adapted for mountain streams. These results explain the significance of bedform development in heightening flow resistance, stabilizing the bed, and reducing sediment transport in coarse, steep channels.  相似文献   

17.
We measured the thickness and the dry weight of recently deposited sediment along several transects across Lake Arendsee in order to quantify the sedimentation rate and its local variability. As a time marker, we used an artificial marl layer that was deposited by a remediation program in the year 1995. A portion of the sediment deposited during the year was transported from the littoral and the top of the submerged hills to the foot of the slope, where we found the greatest deposition. Within the same lake, the deposited sediment layer varied by a factor of 4 between minimal and maximal values over the same time periods. Lake Arendsee is a holomictic and eutrophic lake with depletion of oxygen in summer time.  相似文献   

18.
The slope effects on sediment trapping process in vegetative filter strips (VFS) are usually neglected in current modelling practices for VFS operation, which hamper the VFS design and performance evaluation, especially on steep slopes. To fill the knowledge gap, 12 laboratory experiments of sediment trapping in VFS were conducted with three different inflow discharge (80, 100, and 120 ml s−1) and four slope angles (5,10, 15, and 20°). The experimental results show that, on steep slopes (10, 15, and 20°), a part of trapped sediment particles in VFS can be eroded again and then dragged to the downstream as bed load, whilst they do not move on gentle slope (5°). To describe the complex processes, a simple and effective modelling framework was developed for sloped VFS by coupling the slope infiltration, runoff, and modified sediment transport model. The model was tested against the experimental results and good agreements between the modelled and observed results were found in both runoff and sediment transport processes for all cases. On steep slopes, the sediment trapping performance of VFS decreases significantly because the erosion of deposited sediment particles can account for more than 60% of the sediment load in the outflow. The slope effect on sediment trapping efficiency of VFS varies greatly with soil, VFS, and slope properties. The model was compared with previous sediment transport equation and found that both methods can satisfactorily predict the sediment trapping of VFS on gentle slopes, but previous sediment transport equation is likely to overestimate the sediment trapping efficiency in VFS on steep slopes. This model is expected to provide a more realistic and accurate method for predicting runoff and sediment reduction in VFS on sloping surfaces.  相似文献   

19.
A knowledge of the quantity of the sand fraction in the sediments deposited in reservoirs makes it easier to determine the bedload transport, which is a rarely measured parameter. The current study discusses the results of investigations into the siltation and physical properties of sediment in two small reservoirs located in the southeastern part of Poland. Also, the quantity of the bedload sand fraction was estimated.The estimation of the reservoir capacity loss after t years of operation was based on hydroacoustic measurements. The sediment density, organic matter content, and granulometric composition were evaluated by means of investigations and analyses of bottom sediment core samples. The interpolation of the parameters describing the sediment properties was done using the Kriging method. The analyses indicate that 10.80 thousand m~3 of sediment were deposited into the Zalew Kielecki Reservoir in the years 2004-2015. Their overall mass was 7320 t, of which sand fraction sediments constituted 39.7%.Between the years 2004 and 2014, the Umer Reservoir retained 11.79 thousand m~3 of sediment having a mass of 7200 t, of which sand fraction constituted 34.6%.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号