首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was carried out to analyze groundwater quality in selected villages of Nalbari district, Assam, India, where groundwater is the main source of drinking water. 40 groundwater samples collected from hand pumps and analyzed for pH, EC, TDS, Ca2+, Mg2+, Na+, K+, HCO3 , SO4 2−, Cl and F. Chemical analysis of the groundwater showed that mean concentration of cations in (mg/L) is in the order Ca2+ > Mg2+ > Na+ > K+ while for anions it is HCO3  > Cl > SO4 2− > F. Fluoride concentration was recorded in the range of 0.02–1.56 mg/L. As per the desirable and maximum permissible limits for fluoride in drinking water recommended by WHO and by Bureau of Indian Standards (BIS), which is 1.5 mg/L, the groundwater of about 97% of the samples were found to be suitable for drinking purpose. The suitability of the groundwater for irrigation purpose was investigated by some determining factors such as sodium adsorption ratio, soluble sodium percentage, Kelly’s ratio and electrical conductivity. The value of the sodium absorption ratio and electrical conductivity of the groundwater samples were plotted in the US Salinity laboratory diagram for irrigation water. Most of the groundwater samples fall in the field of C2S1 and C3S1 indicating medium to high salinity and low sodium water, which can be used for irrigation on almost all types of soil with little doubt of exchangeable sodium. The hydrochemical facies shows that the groundwater is Ca-HCO3 type.  相似文献   

2.
The area in Guntur district, Andhra Pradesh, India, is selected to discuss the impact of seasonal variation of groundwater quality on irrigation and human health, where the agriculture is the main livelihood of rural people and the groundwater is the main source for irrigation and drinking. Granite gneisses associated with schists and charnockites of the Precambrian Eastern Ghats underlie the area. Groundwater samples collected seasonally, pre- and post-monsoons, during three years from forty wells in the area were analyzed for pH, EC, TDS, TA, TH, Ca2+, Mg2+, Na+, K+, CO32−, HCO3, Cl, SO42−, NO3and F. The chemical relationships in Piper’s diagram, Chebotarev’s genetic classification and Gibbs’s diagram suggest that the groundwaters mainly belong to non-carbonate alkali type and Cl group, and are controlled by evaporation-dominance, respectively, due to the influence of semi-arid climate, gentle slope, sluggish drainage conditions, greater water–rock interaction, and anthropogenic activities. A comparison of the groundwater quality in relation to drinking water quality standards proves that most of the water samples are not suitable for drinking, especially in post-monsoon period. US Salinity Laboratory’s and Wilcox’s diagrams, and %Na+ used for evaluating the water quality for irrigation suggest that the majority of the groundwater samples are not good for irrigation in post-monsoon compared to that in pre-monsoon. These conditions are caused due to leaching of salts from the overlying materials by infiltrating recharge waters. A management plan is suggested for sustainable development of the area.  相似文献   

3.
Hydrogeochemical investigations are carried out in and around Perumal Lake, Cuddalore district, South India in order to assess its suitability in relation to domestic and agricultural uses. The water samples (surface water = 16; groundwater = 12) were analyzed for various physicochemical attributes like pH, electrical conductivity (EC), sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), chloride (Cl), bicarbonate (HCO3 ), sulfate (SO4 2−), phosphate (PO4), silica (H4SiO4) and total dissolved solids (TDS). Major hydrochemical facies were identified using Piper trilinear diagram. Hydrogeochemical processes controlling the water chemistry are water–rock interaction rather than evaporation and precipitation. Interpretation of isotopic signatures reveals that groundwater samples recharged by meteoric water with few water–rock interactions. A comparison of water quality in relation to drinking water quality standard proves that the surface water samples are suitable for drinking purpose, whereas groundwater in some areas exceeds the permissible limit. Various determinants such as sodium absorption ratio (SAR), percent sodium (Na%), residual sodium carbonate (RSC) and permeability index (PI) revealed that most of the samples are suitable for irrigation.  相似文献   

4.
A water quality investigation was carried out in the Deoria district, Ganga plain, to assess the suitability of surface and groundwaters for domestic, agricultural, and industrial purposes. As much as 50 representative samples from river and groundwater were collected from various stations to monitor the water chemistry of various ions, comprising Ca2+, Mg2+, Na+, K+, HCO3 , SO4 2−, NO3 , Cl, F, and trace metals, such as Fe, Cu, Mn, Zn, Cd, and Pb. The results showed that electrical conductance (EC), total dissolved solids (TDS), HCO3 , Mg2+, Na+, and total hardness (TH) are above the maximum desirable limit, and apart from Fe and Mn all other trace metals are within the maximum permissible limit for drinking water. The calculated values for sodium absorption ratio (SAR), salinity, residual sodium carbonate (RSC), and permeability index (PI) indicate well to permissible use of water for irrigation. High values of Na%, RSC, and Mg-hazard (MH) at some stations restrict its use for agricultural purpose. Anthropogenic activities affect the spatial variation of water quality. Economic and social developments of the study area is closely associated with the characteristics of the hydrological network.  相似文献   

5.
The Markandeya River Basin stretches geographically from 15o56′ to 16o08′ N latitude and 74o37′ to 74o58′ E longitude, positioned in the midst of Belgaum district, in the northern part of Karnataka. The groundwater quality of 54 pre-monsoon samples in the Markandeya River Basin was evaluated for its suitability for drinking and irrigation purposes by estimating pH, EC, TDS, hardness and alkalinity besides major cations (Na+, K+, Ca2+, Mg2+) and anions (HCO3–, Cl–, SO42–, PO43-, F-, NO3–), boron, SAR, % Na, RSC, RSBC, chlorinity index, SSP, non-carbonate hardness, Potential Salinity, Permeability Index, Kelley’s ratio, Magnesium hazard and Index of Base Exchange. Negative Index of Base Exchange indicates the chloro-alkaline disequilibrium in the study area and the majority of water samples fall in the rock dominance field based on Gibbs’ ratio. Permeability indices of classes I and II suggest suitability of groundwater for irrigation. Based on Cl, SO4, HCO3 concentrations, water samples can be classified as normal chloride (96.3%) and normal sulfate (94.4%) and normal bicarbonate (44.4%) water types.  相似文献   

6.
The hydrogeochemical study of surface and subsurface water of Mahi River basin was undertaken to assess the major ion chemistry, solute acquisition processes and water quality in relation to domestic and irrigation uses. The analytical results show the mildly acidic to alkaline nature of water and dominance of Na+ and Ca2+ in cationic and HCO3 and Cl in anionic composition. In general, alkaline-earth elements (Ca2+ + Mg2+) exceed alkalis (Na+ + K+) and weak acids (HCO3 ) dominate over strong acids (SO4 2+ + Cl) in majority of the surface and groundwater samples. Ca2+–Mg2+–HCO3 is the dominant hydrochemical facies both in surface and groundwater of the area. The weathering of rock-forming minerals mainly controlled the solute acquisition process with secondary contribution from marine and anthropogenic sources. The higher concentration of sodium and dissolved silica, high equivalent ratios of (Na+ + K+/TZ+), (Na+ + K+/Cl) and low ratio of (Ca2+ + Mg2+)/(Na+ + K+) suggest that the chemical composition of the water is largely controlled by silicate weathering with limited contribution from carbonate weathering and marine and anthropogenic sources. Kaolinite is the possible mineral that is in equilibrium with the water, implying that the chemistry of river water favors kaolinite formation. Assessment of water samples for drinking purposes suggests that the majority of the water samples are suitable for drinking. At some sites concentrations of TDS, TH, F, NO3 and Fe are exceeding the desirable limit of drinking. However, these parameters are well within the maximum permissible limit except for some cases. To assess the suitability for irrigation, parameters like SAR, RSC and %Na were calculated. In general, both surface and groundwater is of good to suitable category for irrigation uses except at some sites where high values of salinity, %Na and RSC restrict its uses.  相似文献   

7.
In India, the quantity and quality of water available for irrigation is variable from place to place. Assessment of water quality has been carried out to determine the sources of dissolved ions in groundwater. Quality of groundwater in a 398 km2 Peddavanka watershed of a semi-arid region of south India is evaluated for its suitability for drinking and irrigation purposes. The middle Proterozoic Cuddapah Supergroup and Kurnool Group of rocks underlie most of the watershed. The main lithologic units consist chiefly of quartzite, limestone, and shale. Seventy-six water samples were collected from open-wells and bore-holes. Water samples were collected representative of the post-monsoon (winter) and pre-monsoon (summer). The quality assessment is made through the estimation of Ca2+, Mg2+, Na+, K+, Cl, SO42−, CO32−, HCO3, total hardness as CaCO3, TDS, EC, and pH. Based on these analyses, parameters like sodium adsorption ratio, % sodium, residual sodium carbonate, non-carbonate hardness, potential salinity, Kelley’s ratio, magnesium ratio, index of base exchange and permeability index were calculated. According to Gibbs‘ ratio samples in both seasons fall in the rock dominance field. The overall quality of waters in the study area in post-monsoon season is high for all constituents ruling out pollution from extraneous sources.  相似文献   

8.
Groundwater in Palnad sub-basin is alkaline in nature and Na+-Cl-HCO3 type around Macherla-Karempudi area in Guntur district, Andhra Pradesh. Total dissolved solids (TDS) show strong positive correlation with Cl, Na+, Ca2+ and Mg2+, and positive correlation with SO42−, K+ and HCO3. Calcareous Narji Formation is the dominant aquifer lithology, and water-rock interaction controls the groundwater chemistry of the area. Chloro-alkaline indices (CAI) are positive at Miriyala, Adigopula, Mutukuru, Macherla and Durgi suggesting replacement of Na+ and K+ ions from water by Mg++ and Ca++ ions from country rock through base exchange reactions. Negative CAI values are recorded at Terala, Rayavaram and Nehrunagar, which indicate exchange of Na+ and K+ from the rock as cation-anion exchange reaction (chloro-alkaline disequilibrium). TDS range from 91 to 7100 ppm (Avg. 835 ppm) and exceed the prescribed limit of drinking water around Mutukuru, Durgi, Rayavaram, Khambampadu and Ammanizamalmadaka areas. Scanty rainfall and insufficient groundwater recharge are the prime factors responsible for high salinity in the area. Fluoride content ranges from <1 to 3.8 ppm and contaminated areas were identified around Macherla (1 sq km; 3.8ppm), Mandadi (1 sq km, 2.1ppm) and Adigopula (2 sq km, <1 to 3.7 ppm). The % Na+ content varies from 17 to 85 with the mean value of 57, and eighty (80) samples showed higher %Na+ in comparison to the prescribed limit of 60 for irrigation water. Sodium Adsorption Ratio (SAR) and % Na+ in relation to total salt concentration indicate that groundwater (51%) mostly falls under doubtful to poor quality for irrigation purpose. Groundwater of Adigopula village is fluoride contaminated and remedial measures are suggested to improve the water quality.  相似文献   

9.
The Heihe River Basin is a typical arid inland river basin for examining stress on groundwater resources in northwest China. The basin is composed of large volumes of unconsolidated Quaternary sediments of widely differing grain size, and during the past half century, rapid socio-economic development has created an increased demand for groundwater resources. Understanding the hydrogeochemical processes of groundwater and water quality is important for sustainable development and effective management of groundwater resources in the Heihe River basin. To this end, a total of 30 representative groundwater samples were collected from different wells to monitor the water chemistry of various ions and its quality for irrigation. Chemical analysis shows that water presents a large spatial variability of chemical facies (SO4 2−–HCO3, SO4 2−–Cl, and Cl–SO4 2−) as groundwater flow from recharge area to discharge area. The ionic ratio indicates positive correlation between the flowing pairs of parameters: Cl and Na+(r = 0.95), SO4 2− and Na+ (r = 0.84), HCO3 and Mg2+(r = 0.86), and SO4 2− and Ca2+ (r = 0.91). Dissolution of minerals, such as halite, gypsum, dolomite, silicate, and Mirabilite (Na2SO4·10H2O) in the sediments results in the Cl, SO4 2−, HCO3 , Na+, Ca2+ and Mg2+ content in the groundwater. Other reactions, such as evaporation, ion exchange, and deposition also influence the water composition. The suitability of the groundwater for irrigation was assessed based on the US Salinity Laboratory salinity classification and the Wilcox diagram. The results show that most of the groundwater samples are suitable for irrigation uses barring a few locations in the dessert region in the northern sub-basin.  相似文献   

10.
Hydogrochemical investigation of groundwater resources of Paragraph district has been carried out to assess the solute acquisition processes and water quality for domestic and irrigation uses. Fifty-five groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids, hardness, major anions (F?, Cl?, NO3, HCO3 ?, SO4 2?) and cations (Ca2+, Mg2+, Na+, K+). Study results reveal that groundwater of the area is alkaline in nature and HCO3 ?, Cl?, Mg2+, Na+ and Ca2+ are the major contributing ions to the dissolved solids. The hydrogeochemical data suggest that weathering of rock forming minerals along with secondary contributions from agricultural and anthropogenic sources are mainly controlling the groundwater composition of Pratapgarh district. Alkaline earth metals (Ca2++Mg2+) exceed alkalis (Na++K+) and weak acid (HCO3 ?) dominate over strong acids (Cl?+SO4 2?) in majority of the groundwater samples. Ca-Mg-HCO3 and Ca-Mg-Cl-HCO3 are the dominant hydrogeochemical facies in the groundwater of the area. The computed saturation indices demonstrate oversaturated condition with respect to dolomite and calcite and undersaturated with gypsum and fluorite. A comparison of groundwater quality parameters in relation to specified limits for drinking water shows that concentrations of TDS, F?, NO3 ? and total hardness exceed the desirable limits in many water samples. Quality assessment for irrigation uses reveal that the groundwater is good for irrigation. However, values of salinity, sodium adsorption ratio (SAR), residual sodium carbonate (RSC), %Na and Kelley index are exceeding the prescribed limit at some sites, demanding adequate drainage and water management plan for the area.  相似文献   

11.
A long mining history and unscientific exploitation of Jharia coalfield caused many environmental problems including water resource depletion and contamination. A geochemical study of mine water in the Jharia coalfield has been undertaken to assess its quality and suitability for domestic, industrial and irrigation uses. For this purpose, 92 mine water samples collected from different mining areas of Jharia coalfield were analysed for pH, electrical conductivity (EC), major cations (Ca2+, Mg2+, Na+, K+), anions (F, Cl, HCO3 , SO4 2−, NO3 ), dissolved silica (H4SiO4) and trace metals. The pH of the analysed mine water samples varied from 6.2 to 8.6, indicating mildly acidic to alkaline nature. Concentration of TDS varied from 437 to 1,593 mg L−1 and spatial differences in TDS values reflect the variation in lithology, surface activities and hydrological regime prevailing in the region. SO4 2− and HCO3 are dominant in the anion and Mg2+ and Ca2+ in the cation chemistry of mine water. High concentrations of SO4 2− in the mine water of the area are attributed to the oxidative weathering of pyrites. Ca–Mg–SO4 and Ca–Mg–HCO3 are the dominant hydrochemical facies. The drinking water quality assessment indicates that number of mine water samples have high TDS, total hardness and SO4 2− concentrations and needs treatment before its utilization. Concentrations of some trace metals (Fe, Mn, Ni, Pb) were also found to be above the desirable levels recommended for drinking water. The mine water is good to permissible quality and suitable for irrigation in most cases. However, higher salinity, residual sodium carbonate and Mg-ratio restrict its suitability for irrigation at some sites.  相似文献   

12.
Dissolved major ions and important heavy metals including total arsenic and iron were measured in groundwater from shallow (25–33 m) and deep (191–318 m) tube-wells in southeastern Bangladesh. These analyses are intended to help describe geochemical processes active in the aquifers and the source and release mechanism of arsenic in sediments for the Meghna Floodplain aquifer. The elevated Cl and higher proportions of Na+ relative to Ca2+, Mg2+, and K+ in groundwater suggest the influence by a source of Na+ and Cl. Use of chemical fertilizers may cause higher concentrations of NH4+ and PO43− in shallow well samples. In general, most ions are positively correlated with Cl, with Na+ showing an especially strong correlation with Cl, indicating that these ions are derived from the same source of saline waters. The relationship between Cl/HCO3 ratios and Cl also shows mixing of fresh groundwater and seawater. Concentrations of dissolved HCO3 reflect the degree of water–rock interaction in groundwater systems and integrated microbial degradation of organic matter. Mn and Fe-oxyhydroxides are prominent in the clayey subsurface sediment and well known to be strong adsorbents of heavy metals including arsenic. All five shallow well samples had high arsenic concentration that exceeded WHO recommended limit for drinking water. Very low concentrations of SO42− and NO3 and high concentrations of dissolved Fe and PO43− and NH4+ ions support the reducing condition of subsurface aquifer. Arsenic concentrations demonstrate negative co-relation with the concentrations of SO42− and NO3 but correlate weakly with Mo, Fe concentrations and positively with those of P, PO43− and NH4+ ions.  相似文献   

13.
In this study, 92 groundwater samples were collected from the Attica region (Greece). Moreover, geographical information system database, geochemistry of groundwater samples and statistics were applied. These were used for studying the chemical parameters (NO3 , Mg2+, Ca2+, Cl, and Na+) and conductivity spatial distribution and for assessing their environmental impact. The ranges of chemical parameters of the water samples (in mg L−1) are: NO3 1–306, Mg2+ 2–293, Ca2+ 3–453, Cl 5–1,988, and Na+ 4–475. The elevated concentrations of sodium, Mg2+, Clare attributed to natural contamination (seawater intrusion). On the other hand, NO3 elevated concentrations are attributed to anthropogenic contamination (nitrate fertilizers). The results of the GIS analysis showed that elevated values of Na+, Mg2+, Clare related to shrubby and sparsely vegetated areas, while elevated values of NO3 are connected with urban and agricultural areas.  相似文献   

14.
Hydrogeochemical investigations are carried out in the northeastern part of Nagpur urban to assess the quality of groundwater for its suitability for drinking and irrigation purposes. Groundwater samples are collected from both shallow and deep aquifers to monitor the hydrochemistry of various ions. The groundwater quality of the area is adversely affected by urbanization as indicated by distribution of EC and nitrate. In the groundwater of study area, Ca2+ is the most dominant cation and Cl and HCO3 are the dominant anions. Majority of the samples have total dissolved solids values above desirable limit and most of them belong to very hard type. As compared to deep aquifers, shallow aquifer groundwaters are more polluted and have high concentration of NO3 . The analytical results reveal that most of the samples containing high nitrate also have high chloride. Major hydrochemical facies were identified using Piper trilinear diagram. Alkaline earth exceeds alkalis and weak acids exceed strong acids. Shoeller index values reveal that base-exchange reaction exists all over the area. Based on US salinity diagram most of samples belong to high salinity-low sodium type. A comparison of groundwater quality in relation to drinking water standards showed that most of the water samples are not suitable for drinking purpose.  相似文献   

15.
Geochemical processes that take place in the aquifer have played a major role in spatial and temporal variations of groundwater quality. This study was carried out with an objective of identifying the hydrogeochemical processes that controls the groundwater quality in a weathered hard rock aquifer in a part of Nalgonda district, Andhra Pradesh, India. Groundwater samples were collected from 45 wells once every 2 months from March 2008 to September 2009. Chemical parameters of groundwater such as groundwater level, EC and pH were measured insitu. The major ion concentrations such as Ca2+, Mg2+, Na+, K+, Cl, and SO4 2− were analyzed using ion chromatograph. CO3 and HCO3 concentration was determined by acid–base titration. The abundance of major cation concentration in groundwater is as Na+ > Ca2+ > Mg2+ > K+ while that of anions is HCO3  > SO4 2− > Cl > CO3 . Ca–HCO3, Na–Cl, Ca–Na–HCO3 and Ca–Mg–Cl are the dominant groundwater types in this area. Relation between temporal variation in groundwater level and saturation index of minerals reveals the evaporation process. The ion-exchange process controls the concentration of ions such as calcium, magnesium and sodium. The ionic ratio of Ca/Mg explains the contribution of calcite and dolomite to groundwater. In general, the geochemical processes and temporal variation of groundwater in this area are influenced by evaporation processes, ion exchange and dissolution of minerals.  相似文献   

16.
The Markanda river basin occupying an area of about 1547 km2 is a part of the alluvial deposits of the Indo- Gangetic plain near the Himalayan foothills in the northwest India. The region is associated with active agricultural activities and makes significant contribution to the country’s agricultural products. Assessment of groundwater quality for irrigation use and hydrochemical evolution of groundwater has been studied. Hydrochemical analysis has been carried out based on concentrations of Ca2+, Mg2+, Na+, K+, Cl, SO4 2−, CO3 2− and HCO3 . Sodium adsorption ratio (SAR), percent sodium (%Na), permeability index (PI) and Trilinear diagram have been studied to evaluate suitability of irrigation use. Hydrochemical evolution has been analyzed based on the Chebotarev sequence and expanded Durov diagram. SAR, %Na and PI results indicate that the groundwater in the basin is suitable for irrigation use. Analysis on Trilinear diagram reveals that hydrochemical facies are dominated by HCO3 - Ca2+- Mg2+ facies indicating that the groundwater is associated with recharge waters percolating through sandstone and limestone rocks which are exposed in the northern part of the basin. Studies based on Chebotarev anion sequence and expanded Durov diagram indicate that the evolution of groundwater belongs to initial to intermediate stage indicating fresh water quality. Thus, the present work reveals that groundwater in the Markanda basin is of good quality and is suitable for all uses including interbasin water transfer in the region.  相似文献   

17.
An integrated study has been carried out to elucidate the distribution and occurrence of arsenic in selected groundwater samples in the area of Sherajdikhan, Bangladesh. Arsenic and other parameters (T, pH, EC, Na+, K+, Ca2+, Mg2+, Cl, NO3 , SO4 2−, HCO3 , PO4 3−, Fe, Mn and DOC) have been measured in groundwater samples collected from shallow/deep tube wells at different depths. Hydrogeochemical data suggest that the groundwaters are generally Ca–Mg–HCO3 and Mg–Ca–HCO3 types with bicarbonate (HCO3 ) as the dominant anion, though the other type of water has also been observed. Dissolved arsenic in groundwater ranged from 0.006 to 0.461 mg/l, with 69% groundwater samples exceeded the Bangladesh limit for safe drinking water (0.05 mg/l). Correlation and principal component analysis have been performed to find out possible relationships among the examined parameters in groundwater. Low concentrations of NO3 and SO4 2−, and high concentrations of DOC, HCO3 and PO4 3− indicate the reducing condition of subsurface aquifer where sediments are deposited with abundant organic matter. Distinct relationship of As with Fe and Mn, and strong correlation with DOC suggests that the biodegradation of organic matter along with reductive dissolution of Fe–Mn oxyhydroxides has being considered the dominant process to release As in the aquifers studied herein.  相似文献   

18.
The present work was carried out in Nalbari district of Assam (India) with an objective to assess the quality of groundwater and to check its suitability for drinking and irrigation purposes. Groundwater samples were collected from 50 different locations during pre- and post-monsoon seasons of 2016. Results of chemical analysis revealed that mean concentration of cations varied in the order Ca2+?>?Na+?>?Mg2+?>?K+, while for anions the order was HCO3 ??>?Cl??>?SO42??>?NO32??>?F? during both pre- and post-monsoon seasons. The suitability of groundwater samples for drinking purpose was assessed by comparing the results of physico-chemical analysis of groundwater with Indian Standards. Further, its suitability for irrigation purpose was assessed by evaluating several parameters like sodium adsorption ratio (SAR), sodium percentage (Na%), magnesium ratio, Kelly’s ratio and residual sodium carbonate (RSC). The SAR values obtained for all the samples were plotted against EC values in the US Salinity Laboratory diagram, and it was revealed that the most of the samples fall under water type C2-S1 indicating medium salinity and low SAR. Further, it was found that the majority of the samples belong to Ca–Mg–HCO3 hydrochemical facies followed by Ca–Mg–Cl–SO4, whereas only a few samples belong to Na–K–HCO3 hydrochemical facies.  相似文献   

19.
This study was conducted to evaluate factors regulating groundwater quality in an area with agriculture as main use. Thirty groundwater samples have been collected from Razan area (Hamadan, Iran) for hydrochemical investigations to understand the sources of dissolved ions and assess the chemical quality of the groundwater. The chemical compositions of the groundwater are dominated by Na+, Ca2+, HCO3 , Cl and SO4 2−, which have been derived largely from natural chemical weathering of carbonate, gypsum and anthropogenic activities of fertilizer’s source. The production of SO4 2− has multiple origins, mainly from dissolution of sulphate minerals, oxidation of sulphide minerals and anthropogenic sources. The major anthropogenic components in the groundwater include Na+, Cl, SO4 2− and NO3 , with Cl and NO3 being the main contributors to groundwater pollution in Razan area.  相似文献   

20.
Hydrochemical investigations were carried out in Damagh area, Hamadan, western Iran, to assess chemical composition of groundwater. Forty representative groundwater samples were collected from different wells to monitor the water chemistry of various ions. Chemical analysis of the groundwater showed that the mean concentration of the cations is in the order Na+ > Ca2+ > Mg2+ > K+, while that for anions was HCO3 > Cl > SO42 − > NO3. All of the investigated groundwaters present two different chemical facies (Ca–HCO3 and Na–HCO3) which is in relation with their interaction with the geological formations of the basin, cation exchange between groundwater and clay minerals and anthropogenic activities. The principal component analysis (PCA) performed on groundwater identified three principal components controlling their variability in groundwater. Electrical conductivity, Mg2+, Na+, SO42−, and Cl content were associated in the same component (PC1) (salinity), determined principally by anthropogenic activities. The pH, CO32 −, HCO3, and Ca2+ (PC2) content were related to the geogenic factor. Finally, the NO3, Cl and K+ (PC3) were controlled by anthropogenic activity as a consequence of inorganic fertilizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号