首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two new Boolean parameters are defined: the sunshine number (related to the state of the sky) and the sunshine stability number (which is as a measure of the fluctuation of the radiative regime). Elementary statistical and sequential properties of both parameters are presented in this paper. Actinometric and meteorological data measured at 15?s lag during 2009 in Timisoara (Romania, southeastern Europe) are used. The yearly series of daily averaged sunshine number has negative skewness and kurtosis. The series of daily averaged sunshine stability number has positive skewness and kurtosis. The series of daily averaged values of sunshine number are best described by an ARIMA(0,1,2) model. ARIMA(0,1,0) and ARIMA(0,2,0) models (associated with an appropriately defined white noise) may be used for synthesis of the sunshine number time series. The first model is to be preferred for practical reasons. The series of daily averaged values of sunshine stability number are best described by an ARIMA(2,2,1) model. The ARIMA(0,0,0) model is recommended to be used for generating time series of sunshine stability number. This model may be used for any particular day during the year and the only parameter depending on the day is the white noise standard deviation. A relationship between the white noise standard deviation and the daily averaged sunshine stability number is proposed.  相似文献   

2.
Most dynamical models of the natural system contain a number of empirical parameters which reflect our limited understanding of the simulated system or describe unresolved subgrid-scale processes. While the parameterizations basically introduce some uncertainty to the model results, they also hold the prospect of tuning the model. In general, a deterministic tuning is related to an inversion of the model which is often impossible or requires considerable computing effort for most climate models. Another way to adjust the model parameters to a specific observed process is stochastic fitting where a set of parameters and model output are taken as random variables. Here, we present a dynamical?Cstatistical approach with a simplified model of the El Ni?o?CSouthern Oscillation (ENSO) cycle whose parameters are adjusted to simulated and observed data by means of Bayesian statistics. As ENSO model, we employ the Schop?CSuarez delay oscillator model. Monte Carlo experiments highlight the large sensitivity of the model results to varied model parameters and initial values. The statistical adjustment is done by Bayesian model averaging of the Monte Carlo experiments. Applying the method to simulated data, the posterior ensemble mean is much closer to the reference data than the prior ensemble mean. The learning effect of the model is evident in the leading empirical orthogonal functions and statistically significant in the mean state. When the method is applied to the observed ENSO time series, the ENSO model in its classical setup is not able to account for the temporally varying periodicity of the observed ENSO phenomenon. An improved setup with continuous adjustment periods and extended parameter range is developed in order to allow the model to learn from the data gradually. The improved setup leads to promising results during the twentieth century and even a weak forecast skill over 6?months. Thus, the described method offers a promising tool for data assimilation in dynamical weather and climate models. However, the simplified ENSO model is barely appropriate for operational ENSO forecasts owing to its limited physical complexity.  相似文献   

3.
Solar radiation is an essential and important variable to many models. However, it is measured at a very limited number of meteorological stations in the world. Developing method for accurate estimation of solar radiation from measured meteorological variables has been a focus and challenging task. This paper presents the method of solar radiation estimation using support vector machine (SVM). The main objective of this work is to examine the feasibility of SVM and explore its potential in solar radiation estimation. A total of 20 SVM models using different combinations of sunshine ratio, maximum and minimum air temperature, relative humidity, and atmospheric water vapor pressure as input attributes are explored using meteorological data at 15 stations in China. These models significantly outperform the empirical models with an average 14 % higher accuracy. When sunshine duration data are available, model SVM2 using sunshine ratio and air temperature range is proposed. It significantly outperforms the empirical models with an average 26 % higher accuracy. When sunshine duration data are not available, model SVM19 using maximum temperature, minimum temperature and atmospheric water vapor pressure is proposed. It significantly outperforms the temperature-based empirical models with an average of 18 % higher accuracy. The remarkable improvement indicates that the SVM method would be a promising alternative over traditional approaches for estimation of solar radiation at any locations.  相似文献   

4.
Solar radiation is an important variable for studies related to solar energy applications, meteorology, climatology, hydrology, and agricultural meteorology. However, solar radiation is not routinely measured at meteorological stations; therefore, it is often required to estimate it using other techniques such as retrieving from satellite data or estimating using other geophysical variables. Over the years, many models have been developed to estimate solar radiation from other geophysical variables such as temperature, rainfall, and sunshine duration. The aim of this study was to evaluate six of these models using data measured at four independent worldwide networks. The dataset included 13 stations from Australia, 25 stations from Germany, 12 stations from Saudi Arabia, and 48 stations from the USA. The models require either sunshine duration hours (Ångstrom) or daily range of air temperature (Bristow and Campbell, Donatelli and Bellocchi, Donatelli and Campbell, Hargreaves, and Hargreaves and Samani) as input. According to the statistical parameters, Ångstrom and Bristow and Campbell indicated a better performance than the other models. The bias and root mean square error for the Ångstrom model were less than 0.25 MJ m2 day?1 and 2.25 MJ m2 day?1, respectively, and the correlation coefficient was always greater than 95 %. Statistical analysis using Student’s t test indicated that the residuals for Ångstrom, Bristow and Campbell, Hargreaves, and Hargreaves and Samani are not statistically significant at the 5 % level. In other words, the estimated values by these models are statistically consistent with the measured data. Overall, given the simplicity and performance, the Ångstrom model is the best choice for estimating solar radiation when sunshine duration measurements are available; otherwise, Bristow and Campbell can be used to estimate solar radiation using daily range of air temperature.  相似文献   

5.
几种水平面太阳总辐射量计算模型的对比分析   总被引:2,自引:1,他引:1  
利用中国区域1961-1999年39 a间98个常规气象观测数据,建立6个模型分别以天文辐射、干洁大气总辐射和湿洁大气总辐射为起始数据,进行太阳辐射日总量的模拟,对比分析了6个水平面太阳总辐射量计算模型的性能.结果表明:在三种起始数据中,干洁大气总辐射和湿洁大气总辐射均能较好地体现宏观地势对太阳辐射空间分布的影响,以湿洁大气总辐射为起始数据的计算模型拟合精度相对较高.对6个水平面太阳总辐射量计算模型的对比分析发现:2个以日照百分率为主导因子,气温日较差为修正项的综合模型拟合误差最小,精度最高;经典的日照百分率模型次之,但其模型系数最稳定可靠;3个气温日较差模型拟合效果最差.最终选用经验系数稳定、拟合精度较高的日照百分率模型,制作了2001年中国水平面太阳辐射日总量空间分布图.  相似文献   

6.
Despite decades of research, large multi-model uncertainty remains about the Earth’s equilibrium climate sensitivity to carbon dioxide forcing as inferred from state-of-the-art Earth system models (ESMs). Statistical treatments of multi-model uncertainties are often limited to simple ESM averaging approaches. Sometimes models are weighted by how well they reproduce historical climate observations. Here, we propose a novel approach to multi-model combination and uncertainty quantification. Rather than averaging a discrete set of models, our approach samples from a continuous distribution over a reduced space of simple model parameters. We fit the free parameters of a reduced-order climate model to the output of each member of the multi-model ensemble. The reduced-order parameter estimates are then combined using a hierarchical Bayesian statistical model. The result is a multi-model distribution of reduced-model parameters, including climate sensitivity. In effect, the multi-model uncertainty problem within an ensemble of ESMs is converted to a parametric uncertainty problem within a reduced model. The multi-model distribution can then be updated with observational data, combining two independent lines of evidence. We apply this approach to 24 model simulations of global surface temperature and net top-of-atmosphere radiation response to abrupt quadrupling of carbon dioxide, and four historical temperature data sets. Our reduced order model is a 2-layer energy balance model. We present probability distributions of climate sensitivity based on (1) the multi-model ensemble alone and (2) the multi-model ensemble and observations.  相似文献   

7.
Summary A number of well known diagnostic equations for the determination of the height,h, of the nocturnal boundary layer. with minimum data requirements of at most surface wind speed, air temperature and total cloud cover, have been tested as to their effectiveness. The computed values have been compared with direct estimation ofh, from temperature or wind profiles of rawinsonde ascents available at 00Z (02h LST). The comparison between computed and observed values shows that best agreement is found when the nocturnal boundary layer height is determined through wind profiles. The ratio of the computed to the observed values reveals a strong dependence on stability, resulting in overestimation by the models for very low stability and underestimation for strong stability. The simple expressions involving the wind speed rather than other stability parameters resulted in a better overall fit to the observed values. A simple prognostic model is shown to provide the best estimates of the NBL height compared to both wind and temperature profile definition.With 5 Figures  相似文献   

8.
The study presents a critical assessment of the possibility of global solar irradiation computation by using air temperature instead of sunshine duration with the classical Ångström equations. The reason for this approach comes from the fact that, although the air temperature is a worldwide measured meteorological parameter, this is rarely used in solar radiation estimation techniques. More than that, the literature is very silent concerning the testing of such models in Eastern Europe. Two new global solar irradiation models (to be called AEAT) related to solar irradiation under clear sky conditions and having the minimum and maximum daily air temperature as input parameters were tested and compared with others from the literature against data measured at five stations in Romania in the year 2000. The accuracy of AEAT is acceptable and comparable to that of the models which use sunshine duration or cloud amount as input parameters. Since temperature-based Ångström correlations are strongly sensitive to origin, the approach for AEAT as a tool for potential users is presented in detail. Additionally reported is a new method to increase the generality of AEAT concerning the extension of the geographical application area. Based on overall results it was concluded that air temperature successfully substitutes sunshine duration in the estimation of the available solar energy.  相似文献   

9.
We investigate how well the variability of extreme daily precipitation events across the United Kingdom is represented in a set of regional climate models and the E-OBS gridded data set. Instead of simply evaluating the climatologies of extreme precipitation measures, we develop an approach to validate the representation of physical mechanisms controlling extreme precipitation variability. In part I of this study we applied a statistical model to investigate the influence of the synoptic scale atmospheric circulation on extreme precipitation using observational rain gauge data. More specifically, airflow strength, direction and vorticity are used as predictors for the parameters of the generalised extreme value (GEV) distribution of local precipitation extremes. Here we employ this statistical model for our validation study. In a first step, the statistical model is calibrated against a gridded precipitation data set provided by the UK Met Office. In a second step, the same statistical model is calibrated against 14 ERA40 driven 25?km resolution RCMs from the ENSEMBLES project and the E-OBS gridded data set. Validation indices describing relevant physical mechanisms are derived from the statistical models for observations and RCMs and are compared using pattern standard deviation, pattern correlation and centered pattern root mean squared error as validation measures. The results for the different RCMs and E-OBS are visualised using Taylor diagrams. We show that the RCMs adequately simulate moderately extreme precipitation and the influence of airflow strength and vorticity on precipitation extremes, but show deficits in representing the influence of airflow direction. Also very rare extremes are misrepresented, but this result is afflicted with a high uncertainty. E-OBS shows considerable biases, in particular in regions of sparse data. The proposed approach might be used to validate other physical relationships in regional as well as global climate models.  相似文献   

10.
Daily global solar irradiation (R s) is one of the main inputs in environmental modeling. Because of the lack of its measuring facilities, high-quality and long-term data are limited. In this research, R s values were estimated based on measured sunshine duration and cloud cover of our synoptic meteorological stations in central and southern Iran during 2008, 2009, and 2011. Clear sky solar irradiation was estimated from linear regression using extraterrestrial solar irradiation as the independent variable with normalized root mean square error (NRMSE) of 4.69 %. Daily R s was calibrated using measured sunshine duration and cloud cover data under different sky conditions during 2008 and 2009. The 2011 data were used for model validation. According to the results, in the presence of clouds, the R s model using sunshine duration data was more accurate when compared with the model using cloud cover data (NRMSE = 11. 69 %). In both models, with increasing sky cloudiness, the accuracy decreased. In the study region, more than 92 % of sunshine durations were clear or partly cloudy, which received close to 95 % of total solar irradiation. Hence, it was possible to estimate solar irradiation with a good accuracy in most days with the measurements of sunshine duration.  相似文献   

11.
Convective deposition of submicron-size aerosol to porous surface vegetation was studied by electrochemical simulation, under Reynolds and Schmidt similarity, to a rectangular array of closely-packed lichen and artificial wire roughness layers. Results, showing an approximate tenfold increase in deposition velocity over that of a flat plate placed at the same position, were compared with predictions made on the basis of various rough-surface transfer models, including those based on statistical eddy renewal, as well as with numerical solutions of the diffusion equation in statistically-renewed surface cavities. Most analytical models could be made to fit the observed data, at least for a limited range of flow velocities, but poorly known and poorly defined parameters limit their usefulness for predictive purposes; and their validity across a large variation in molecular diffusivity (or Schmidt number Sc) is generally not assured. Numerical models also depend on poorly substantiated physical assumptions but the effect of such assumptions on transfer can be calculated for a wider range of conditions than those permitting an analytical solution. This allows more direct feedback between model assumptions and calculated or observed transfer. Numerically calculated values for deposition velocity in air for Sc from 0.7 to 7000 and flow velocities from 0.2 to 5 m s-1 are presented for different model assumptions, with values ranging from < 0.01 to > 1 cms-1.  相似文献   

12.
This paper focuses on different ways of characterizing the solar radiative regime of a day and the stability of this regime. The days may be stratified in classes of cloud shade, observed total cloud cover amount, daily averaged clearness index, and fractal dimension of the solar global irradiance signal. A new Boolean parameter related to solar irradiance fluctuation is defined, namely the sunshine stability number. The time averaged value of the sunshine stability number is used for the characterization of the radiative regime stability during a given time interval. Ranking the days from the view-point of the stability of their radiative regime is performed by using the daily average value of the sunshine stability number and appropriately defined values of disorder and complexity, respectively. Measurements performed in the Romanian town of Timisoara (latitude 45°46?? N, longitude 21°25?? E and 85?m altitude above mean sea level) are used here. They refer to time series of global and diffuse solar irradiance recorded at 15-s time interval between sunrise and sunset during all the days in 2009.  相似文献   

13.
We have developed a method for estimating hourly global solar radiation (GSR) from hourly sunshine duration data. This procedure requires only hourly sunshine duration as the input data and utilizes hourly precipitation and daily snow cover as auxiliary data to classify time intervals into six cases according to weather conditions. To obtain hourly GSR using a simple algebraic form, a quadratic function of the solar elevation angle and the sunshine duration ratio is used. Daily GSR is given by a sum of hourly GSRs. We evaluated the performance of the newly developed method using data obtained at 67 meteorological stations and found that the estimated GSR is highly consistent with that observed. Hourly and daily root-mean-square misfits are approximately 0.2 MJ/m2/h (~55 W/m2) and 1.4 to 1.5 MJ/m2/day (~16 to 17 W/m2), respectively. Our classification of weather conditions is effective for reducing estimation errors, especially under cloudy skies. Since the sunshine duration is observed at more meteorological stations than GSR, the proposed new method is a powerful tool for obtaining solar radiation with hourly resolution and a dense geographical distribution. One of the proposed methods, GSRgrn, can be applicable to hourly GSR estimations at different observation sites by setting local parameters (the precipitable water, surface albedo, and atmospheric turbidity) suitable to the sites. The hourly GSR can be applied for various micrometeorological studies, such as the heat budget of crop fields.  相似文献   

14.
 Until now, most paleoclimate model-data comparisons have been limited to simple statistical evaluation and simple map comparisons. We have applied a new method, based on fuzzy logic, to the comparison of 17 model simulations of the mid-Holocene (6 ka BP) climate with reconstruction of three bioclimatic parameters (mean temperature of the coldest month, MTCO, growing degree-days above 5 °C, GDD5, precipitation minus evapotranspiration, PE) from pollen and lake-status data over Europe. With this method, no assumption is made about the distribution of the signal and on its error, and both the error bars related to data and to model simulations are taken into account. Data are taken at the drilling sites (not using a gridded interpolation of proxy data) and a varying domain size of comparison enables us to make the best common resolution between observed and simulated maps. For each parameter and each model, we compute a Hagaman distance which gives an objective measure of the goodness of fit between model and data. The results show that there is no systematic order for the three climatic parameters between models. None of the models is able to satisfactorily reproduce the three pollen-derived data. There is larger dispersion in the results for MTCO and PE than for GDD5. There is also no systematic relationship between model resolution and the Hagaman distance, except for PE. The more local character of PE has little chance to be reproduced by a low resolution model, which can explain the inverse relationship between model resolution and Hagaman distance. The results also reveal that most of the models are better at predicting 6 ka climate than the modern climate. Received: 27 May 1998 / Accepted: 8 January 1999  相似文献   

15.
Summary A model that uses two parameters to describe the state of the sky is presented. The parameters are the total cloud amount and a new two-value parameter – the sunshine number – stating whether the sun is covered or uncovered by clouds. Regression formulae to compute instantaneous cloudy sky global and diffuse irradiance on a horizontal surface are proposed. Fitting these relationships to Romanian data shows low bias errors for global radiation but larger errors for diffuse radiation. The model’s accuracy is significantly higher than one based on total cloud amount alone. The model is used to generate time-series of solar radiation data. A first approximate relationship, neglecting auto-correlation of the sunshine number, is used in the computations. Received July 17, 2001 Revised November 7, 2001  相似文献   

16.
A stochastic rainfall model is presented for the generation of hourly rainfall data in an urban area in Malaysia. In view of the high temporal and spatial variability of rainfall within the tropical rain belt, the Spatial–Temporal Neyman–Scott Rectangular Pulse model was used. The model, which is governed by the Neyman–Scott process, employs a reasonable number of parameters to represent the physical attributes of rainfall. A common approach is to attach each attribute to a mathematical distribution. With respect to rain cell intensity, this study proposes the use of a mixed exponential distribution. The performance of the proposed model was compared to a model that employs the Weibull distribution. Hourly and daily rainfall data from four stations in the Damansara River basin in Malaysia were used as input to the models, and simulations of hourly series were performed for an independent site within the basin. The performance of the models was assessed based on how closely the statistical characteristics of the simulated series resembled the statistics of the observed series. The findings obtained based on graphical representation revealed that the statistical characteristics of the simulated series for both models compared reasonably well with the observed series. However, a further assessment using the AIC, BIC and RMSE showed that the proposed model yields better results. The results of this study indicate that for tropical climates, the proposed model, using a mixed exponential distribution, is the best choice for generation of synthetic data for ungauged sites or for sites with insufficient data within the limit of the fitted region.  相似文献   

17.
A statistical downscaling procedure based on an analogue technique is used to determine projections for future climate change in western France. Three ocean and atmosphere coupled models are used as the starting point of the regionalization technique. Models' climatology and day to day variability are found to reproduce the broad main characteristics seen in the reanalyses. The response of the coupled models to a similar CO2 increase scenario exhibit marked differences for mean sea-level pressure; precipitable water and temperature show arguably less spread. Using the reanalysis fields as predictors, the statistical model parameters are set for daily extreme temperatures and rain occurrences for seventeen stations in western France. The technique shows some amount of skill for all three predictands and across all seasons but failed to give reliable estimates of rainfall amounts. The quality of both local observations and large-scale predictors has an impact on the statistical model skill. The technique is partially able to reproduce the observed climatic trends and inter annual variability, showing the sensitivity of the analogue approach to changed climatic conditions albeit an incomplete explained variance by the statistical technique. The model is applied to the coupled model control simulations and the gain compared with direct model grid-average outputs is shown to be substantial at station level. The method is then applied to altered climate conditions; the impact of large-scale model uncertain responses and model sensitivities are quantified using the three coupled models. The warming in the downscaled projections are reduced compared with their global model counterparts.  相似文献   

18.
Solar Radiation Climatology of Alaska   总被引:1,自引:1,他引:0  
Summary There are only six locations in Alaska for which global radiation data of more than a year in duration are available. This is an extremely sparse coverage for a state which covers 1.5×10&6 km2 and stretches over at least three climatic zones. Cloud observations are, however, available from 18 stations. We used fractional cloud cover and cloud type data to model the global radiation and thus obtain a more complete radiation coverage for Alaska. This extended data set allowed an analysis of geographic and seasonal trends. A simple 1-layer model based on Haurwitz’s semi-empirical approach, allowing for changes in cloud type and fractional coverage, was developed. The model predicts the annual global radiation fluxes to within 2–11% of the observed values. Estimated monthly mean values gave an average accuracy within about 6% of the measurements. The estimates agree well with the observations during the first four months of the year but less so for the last four. Changing surface albedo might explain this deviation. Previously, the 1993 National Solar Radiation Data Base (NSRDB) from the National Renewable Energy Laboratory (NREL) modeled global radiation data for 16 Alaskan stations. Although more complete and complex, the NREL model requires a larger number of input parameters, which are not available for Alaska. Hence, we believe that our model, which is based on cloud-radiation relationship and is specifically tuned to Alaskan conditions, produces better results for this region. Annual global solar radiation flux measurements are compared with results from global coverage models based on the International Satellite Cloud Climatology Project (ISCCP) data. Contour plots of seasonal and mean annual spatial distribution of global radiation for Alaska are presented and discussed in the context of their climatic and geographic settings. Received July 16, 1997 Revised May 18,1998  相似文献   

19.
Both statistical and dynamical downscaling methods are well established techniques to bridge the gap between the coarse information produced by global circulation models and the regional-to-local scales required by the climate change Impacts, Adaptation, and Vulnerability (IAV) communities. A number of studies have analyzed the relative merits of each technique by inter-comparing their performance in reproducing the observed climate, as given by a number of climatic indices (e.g. mean values, percentiles, spells). However, in this paper we stress that fair comparisons should be based on indices that are not affected by the calibration towards the observed climate used for some of the methods. We focus on precipitation (over continental Spain) and consider the output of eight Regional Climate Models (RCMs) from the EURO-CORDEX initiative at 0.44° resolution and five Statistical Downscaling Methods (SDMs) —analog resampling, weather typing and generalized linear models— trained using the Spain044 observational gridded dataset on exactly the same RCM grid. The performance of these models is inter-compared in terms of several standard indices —mean precipitation, 90th percentile on wet days, maximum precipitation amount and maximum number of consecutive dry days— taking into account the parameters involved in the SDM training phase. It is shown, that not only the directly affected indices should be carefully analyzed, but also those indirectly influenced (e.g. percentile-based indices for precipitation) which are more difficult to identify. We also analyze how simple transformations (e.g. linear scaling) could be applied to the outputs of the uncalibrated methods in order to put SDMs and RCMs on equal footing, and thus perform a fairer comparison.  相似文献   

20.
降水量概率分布的一种Γ型通用模式   总被引:9,自引:1,他引:9  
研究不同统计时段内降水量总体统计特征对于农业生产的合理布局、水资源的有效开发和利用以及大型水利工程的设计具有重要的指导意义,通过建立概率分布模式来研究一定时段内降水量总体统计分布特征不失为一条有效的途径。国外学者从50年代开始在此领域做了大量工作,提出了多种模型,得到了一些有意义的结论。与国外相比国内在这方面虽然做些工作,但还存在着一定的差距,所做的工作还不够深入全面,因此进一步开展降水量概率分布模式的理论和应用研究是十分必要的。为  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号