首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concentration of gas-phase peroxides has been measured almost continuously at the Cape Grim baseline station (41° S) over a period of 393 days (7702 h of on-line measurements) between February 1991 and March 1992. In unpolluted marine air a distinct seasonal cycle in concentration was evident, from a monthly mean value of>1.4 ppbv in summer (December) to <0.2 ppbv in winter (July). In the summer months a distinct diurnal cycle in peroxides was also observed in clean marine air, with a daytime build-up in concentration and decay overnight. Both the seasonal and diurnal cycles of peroxides concentration were anticorrelated with ozone concentration, and were largely explicable using a simple photochemical box model of the marine boundary layer in which the central processes were daytime photolytic destruction of ozone, transfer of reactive oxygen into the peroxides under the low-NOx ambient conditions that favour self-reaction between peroxy radicals, and continuous heterogeneous removal of peroxides at the ocean surface. Additional factors affecting peroxides concentrations at intermediate timescales (days to a week) were a dependence on air mass origin, with air masses arriving at Cape Grim from higher latitudes having lower peroxides concentrations, a dependence on local wind speed, with higher peroxides concentrations at lower wind speeds, and a systematic decrease in peroxides concentration during periods of rainfall. Possible physical mechanisms for these synoptic scale dependencies are discussed.  相似文献   

2.
利用北京地区稠密的地面观测网资料以及北京市观象台、海淀、上甸子3部风廓线仪的观测资料,通过分析2008年8月8日北京奥运会开幕式期间发生在北京地区的降水过程,讨论了此次过程中在环境风场、地形和城市热岛作用下,中尺度系统发展或减弱的可能机制及对城区降水的影响。结果表明:城市热岛和地形作用形成的次级环流圈对城区南北两侧的影响不同,在城区南侧,次级环流圈使南风减弱,同时受次级环流圈下沉气流影响,中尺度系统北上时会减弱;在城区北侧,次级环流圈使南风加强,中尺度系统南下时会使气流辐合增强,有利于中尺度系统发展。当环境风场是较弱的偏南风时,城市热岛-地形次级环流圈在城区1500 m以下形成辐合,以上辐散,在3000 m左右辐散最强,不利于北上的中尺度系统向城区发展形成降水。  相似文献   

3.
Using the 5-day averaged data from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis, and precipitation from rain gauge stations in China for the period 1981–2000, we investigated seasonal variations and associated atmospheric circulation and precipitation of the southwesterly wind over eastern China. The southwesterly wind over eastern China begins earliest over southeastern China and strengthens gradually from spring to the early summer, as it extends northward. The strengthening of the spring southwesterly wind, the tropospheric upward motion, and the convergence of low-level water vapor over southeastern China results in the beginning of the local rainy season. The beginning of the Mei-yu (Plum rainfall) is connected with the northward march of the southwesterly wind. The southwesterly wind reaches the valley of the Yangtze River in the early summer and northern China in the middle summer. This signifies an onset of the large-scale southwesterly wind over eastern China. Accordingly, the rain belt over southeastern China moves to the valley of the Yangtze River in the early summer and to northern China in the middle summer. Moreover, the southerly wind extends southward to the South China Sea from the spring to summer, though it does not stretch from the South China Sea to southeastern China at those times. The strengthening of the southerly wind over southeastern China is associated with a weakening/strengthening of the eastward/westward subtropical tropospheric temperature gradient between southwestern China and the western North Pacific. The developments of a low-pressure system over southwestern China and the subtropical high-pressure system over the western North Pacific may contribute to the strengthening of the southwesterly wind. A northward advance of the high-pressure system favors the southwesterly wind stretching from southeastern China to northern China. The onset of the Indian summer monsoon also strengthens the summer southwesterly wind over eastern China.  相似文献   

4.
The characteristics of dynamics and thermodynamics of the atmospheric boundary layer in a part of the Colorado River Valley, centered around Lake Mohave, have been investigated by analysis of measurements conducted during a field program in late spring and early summer of 1986 and a series of numerical simulations by a three-dimensional second-moment turbulence-closure model. The model was validated against measurements described in a companion article (Engeret al., 1993). According to airsonde measurements performed on eight nights, the depth of the surface inversion was around 200 m with an average temperature gradient of about 30 K km–1. Analysis of acoustic sounder data collected during one month revealed significant diurnal variations ofU andV wind-speed components related to slope and valley flows, respectively. Some of the dynamics properties have been explained by the simulation results. It has been shown that the appearance of supergeostrophic southerly valley flow is associated with the westerly component of the geostrophic flow. Since a westerly component of the geostrophic wind is quite common for this area in summer, this effect also explains the frequently observed southerly valley flow in summer. Elevated minima of the measured wind speed around valley ridges appear to be related to the interaction of conservation of momentum in theX andY directions. The critical direction of the geostrophic wind relevant for reversal of up-valley flow to down-valley flow has also been studied. The critical direction is about 300° for one of the measurement sites and, depending on the angle between valley axis and south-north direction, the critical direction is expected to vary by about 15–20°. The scale analysis of the simulated equations of motion and turbulence kinetic energy emphasizes the strong impact of meandering of the flow due to actual topographic complexity.  相似文献   

5.
北京地区日最大边界层高度的气候统计特征   总被引:1,自引:0,他引:1  
使用北京气象站探空观测数据和地面气温观测数据,以干绝热曲线法估算1984~2013年逐日最大边界层高度,同时计算对应的边界层平均风速和通风量。统计分析这3个边界层参量的平均特征,并利用2001~2012年的空气污染指数(API),探讨大气污染与边界层参量的关系。结果表明:(1)日最大边界层高度的30年月均值以春季和夏初(3~6月)最高,约1600 m;夏季和秋初(7~10月)次之,约1300 m;冬季(11月、12月和1月)最低,约1000~1200 m。(2)夏季,日最大边界层高度不同数值的频率大致为对称分布,峰值处于1000~1600 m范围;秋、冬季,频率分布系统性地向低值一方偏斜,600~800 m的出现频率大大增加;春季边界层高度的变化极大。(3)各季边界层平均风速以夏季为最小。(4)一年中春季通风量最大,秋季次之,冬季较低,夏季最小。(5)秋、冬季,北京中度和重污染个例(API200)集中分布于弱风、低边界层和小通风量条件,反映污染物局地累积的作用;春季污染个例半数以上以高风速、高通风量为特征,反映沙尘类外部输入性污染的作用。  相似文献   

6.
Over warm, shallow coral reefs the surface radiation and energy fluxes differ from those of the open ocean and result in modification to the marine atmospheric boundary layer via the development of convective internal boundary layers. The complex interrelationships between the surface energy balance and boundary-layer characteristics influence local weather (wind, temperature, humidity) and hydrodynamics (water temperature and currents), as well as larger scale processes, including cloud field properties and precipitation. The nature of these inter-relationships has not been accurately described for coral reef environments. This study presents the first measurements of the surface energy balance, radiation budget and boundary layer thermodynamics made over a coral reef using an eddy-covariance system and radiosonde aerological profiling of the lower atmosphere. Results show that changes in surface properties and the associated energetics across the ocean-reef boundary resulted in modification to the marine atmospheric boundary layer during the Austral winter and summer. Internal convective boundary layers developed within the marine atmospheric boundary layer over the reef and were found to be deeper in the summer, yet more unstable during the winter when cold and drier flow from the mainland enhances heat and moisture fluxes to the atmosphere. A mixed layer was identified in the marine atmospheric boundary layer varying from 375 to 1,200 m above the surface, and was deeper during the summer, particularly under stable anticyclonic conditions. Significant cloud cover and at times rain resulted in the development of a stable stratified atmosphere over the reef. Our findings show that, for Heron Reef, a lagoonal platform reef, there was a horizontal discontinuity in surface energy fluxes across the ocean-reef boundary, which modified the marine atmospheric boundary layer.  相似文献   

7.
利用乌鲁木齐市2011~2012年08时、20时L波段(1型)雷达探测的高空资料建立了乌鲁木齐大气边界层气象要素数据库,分析了乌鲁木齐边界层内气温、风向、风速和相对湿度的垂直分布及其时间变化特征。结果表明:边界层内温度廓线的日变化和季节变化比较显著,各月均有逆温出现,且08时较20时更易出现逆温,冬季08时逆温层厚度较厚且强度最大。边界层内夏、冬两季风速随高度变化波动较大,春、秋两季变化较小。近地层春、夏、秋三季08时盛行西南偏南风,冬季盛行偏东风和西南风;20时春季盛行东北风,夏秋盛行偏北风和西北风,冬季则盛行东风和东北偏东风。08时、20时风向均随高度的增加呈明显的向右偏转趋势,且日风向的变化具有明显的“山谷风”特点。08、20时的相对湿度冬季最大,夏季最小,且随高度增加,春、夏两季08、20时相对湿度的变化较大。  相似文献   

8.
Summary The movement of cold fronts along the eastern side of the Southern Alps has been studied in detail during the Southerly Change Experiment (SOUCHEX). An enhanced network of surface wind monitoring stations was established in the Canterbury region of the South Island to allow detailed study of meso-scale wind fields during the passage of fronts. Fivesoutherly changes occurred during the experiment, one of which failed to produce a clear wind change over much of the area. The often erratic movement of these fronts along the eastern side of the mountains is illustrated by isochrone maps of the onset of the wind change. Other general characteristics of these events include their shallowness (1000–1500 m deep) and in most cases their abrupt onset. Detailed analysis of anemograph data collected during SOUCHEX indicates great variability in the surface wind field associated with passage of the fronts. Maps of the meso-scale wind field plotted for the first southerly change of the 14 January 1988 illustrate the complexity of the wind changes experienced over the eastern South Island in particular. The arrival of the cold fronts at individual sites provided features of air mass interaction which appear to relate to time of day, and regional and local site factors. Variations, in wind, temperature and relative humidity provide clear examples of both single and double air mass changes. However, nocturnal changes seem to be less distinct due to lower ambient temperatures and increased boundary layer stability.With 9 Figures  相似文献   

9.
马艳  郭丽娜  黄容 《干旱气象》2014,(5):773-780
2008年5月28日至6月1日青岛市区出现了持续5 d的大气污染,其中29-30日为重度污染,其余3日为轻度污染。本文基于青岛常规地面和高空观测资料以及环境监测站SO2、NO2、PM10监测资料,利用资料分析和中尺度数值模拟的方法,分析造成青岛此次持续多日的大气污染的污染源、大气环流和气象要素特征。分析结果表明:此次污染过程主要是外来沙尘引起的PM10污染;持续较强的逆温层结以及近地面层弱南北风频繁交替出现造成沙尘在近地层往复、积聚,最终导致连续多日的空气污染。  相似文献   

10.
Using the sounding data of wind, temperature, and humidity in the boundary layer and micrometeorological data on the earth's surface observed in the same period in Dunhuang arid region of Northwest China,this paper researches characteristics of potential temperature, wind, and humidity profiles, confirms the structure and depth of thermodynamic boundary layer in Dunhuang region, and analyzses the relationship of depth of thermodynamic boundary layer with surface radiation, buoyancy flux as well as wind speed and wind direction shear in the boundary layer. The results show that the maximum depth of diurnal convective boundary layer is basically above 2000 m during the observational period, many times even in excess of 3000 m and sometimes up to 4000 m; the depth of nocturnal stable boundary layer basically maintains within a range of 1000-1500 m. As a whole, the depth of atmospheric boundary layer is obviously bigger than those results observed in other regions before. By analyzing, a preliminary judgement is that the depth of atmospheric thermodynamic boundary layer in Dunhuang region may relate to local especial radiation characteristics, surface properties (soil moisture content and heat capacity) as well as wind velocity shear of boundary layer, and these properties have formed strong buoyancy flux and dynamic forcing in a local region which are fundamental causes for producing a super deep atmospheric boundary layer.  相似文献   

11.
Aircraft measurements are presented of the Lagrangian evolution of a marine boundary layer over a 30‐h period during the ACE‐2 field campaign. At the start of the observational period, a 500‐m deep polluted marine internal boundary layer (MIBL) was overlain by the remnants of a polluted continental boundary layer extending to around 2 km below a clean, dry free troposphere. The MIBL grew rapidly to a thickness of 900–1000 m in response to increasing sea surface temperatures. No significant aerosol spectral evolution was observed in the boundary layer. Low concentrations of SO2 were observed in the MIBL suggesting that the air mass contained relatively aged aerosol. Aerosol spectra show a broad mode with a modal diameter of around 0.1μm. The polluted layer between the MIBL and the unpolluted free troposphere was only weakly and intermittently turbulent which prevented significant entrainment of clean air into the polluted layer from aloft. The polluted layer depth was thus controlled mainly by subsidence which as a result becomes shallower, decreasing from over 2000 m to around 1200 m during the observational period. The aerosol characteristics of the polluted layer were similar to those in the MIBL and so although the MIBL entrained considerable amounts of air from above the MIBL the aerosol characteristics underwent no significant change. This has important implications for the rate at which a polluted continental air mass is converted to a clean marine one. The dataset should prove useful in the validation of the modelling of continental pollution outbreaks.  相似文献   

12.
基于1979—2020年逐日的NOAA向外长波辐射资料、NCEP/NCAR再分析风场资料,以及全球CMAP再分析降水资料,探讨了气候态亚洲热带夏季风涌的传播过程及与我国夏季相应的降水联系。分析结果表明,主汛期亚洲热带气候态夏季风季节内振荡(CISO)活动是亚洲夏季风活动的主要特征,随时间北传的亚洲热带夏季风CISO称为亚洲热带夏季风涌,主要有南亚夏季风涌和南海夏季风涌。亚洲热带夏季风涌的传播可分为四个阶段。在亚洲热带夏季风涌的发展阶段,印度洋区域低频气旋与对流活跃,孟加拉湾和南海热带区域被低频东风控制,我国大部分地区无降水发生,降水中心位于两广地区。当进入亚洲热带夏季风涌活跃阶段,孟加拉湾和南海热带地区低频气旋和对流活跃,东亚低频“PJ”波列显著,我国降水中心北移到长江以南的附近区域。亚洲热带夏季风涌减弱阶段,孟加拉湾与南海低频气旋消亡,对流减弱,低频西风加强,日本南部附近为低频反气旋控制,我国长江中下游低频南风活跃,降水中心也北移到长江中下游地区,而华南地区已基本无降水,此阶段的大气低频环流场与亚洲热带夏季风涌发展阶段基本相反。进入亚洲热带夏季风涌间歇阶段时,孟加拉湾和南海热带地区低...  相似文献   

13.
分析了飞船主着陆场区1981—1999年1—4月和9—12月因冷空气而产生的偏北大风的过程中气候概况及其天气特征。通过分析发现:主着陆场区因冷空气引起的偏北大风以春季最频繁,秋、冬季最稀少;一天当中偏北大风以午后出现频率最大,午夜出现频率最少;对于不同季节的气压和温度,春、秋两季变化剧烈,冬季相对较小;在大风出现前24小时,主着陆场区的欧亚中高纬度大气环流以两槽一脊型、一槽一脊型、贝湖低压型为主;冷空气入侵前24小时,欧亚天气图上主着陆场区上游低层850hPa中高纬度有明显的冷中心,地面图场区上游冷高压中心的分布主要有3个区域:贝加尔湖西南至新疆、贝加尔湖到内蒙中北部、贝加尔湖西北部。大风前24小时在35~45°N、100~115°E等压线密集,等压线一般都在4根以上。  相似文献   

14.
An observational analysis of the structures and characteristics of a windy atmospheric boundary layer during a cold air outbreak in the South China Sea region is reported in this paper. It is found that the main structures and characteristics are the same as during strong wind episodes with cold air outbreaks on land. The high frequency turbulent fluctuations(period<1 min) are nearly random and isotropic with weak coherency, but the gusty wind disturbances(1 min相似文献   

15.
The shallow meridional overturning circulation (upper 1000 m) in the northern Indian Ocean and its interannual variability are studied, based on a global ocean circulation model (MOM2) with an integration of 10 years (1987-1996). It is shown that the shallow meridional overturning circulation has a prominent seasonal reversal characteristic. In winter, the flow is northward in the upper layer and returns southward at great depth. In summer, the deep northward inflow upwells north of the equator and returns southward in the Ekman layer. In the annual mean, the northward inflow returns through two branches: one is a southward flow in the Ekman layer, the other is a flow that sinks near 10°N and returns southward between 500 m and 1000 m. There is significant interannual variability in the shallow meridional overturning circulation, with a stronger (weaker) one in 1989 (1991) and with a period of about four years. The interannual variability of the shallow meridional overturning circulation is intimately r  相似文献   

16.
利用辽东湾温坨子地区冬夏两季大气扩散试验资料,采用风场诊断模式,对拟建核电站厂区水平风场的分布特征进行了研究, 以为评估该地区拟建核电站的大气污染扩散状况提供基本参数与依据。结果表明:冬季该地区水平风场分布主要有3种形式:1) 呈偏南风型的风场;2) 偏北风型的风场;3) 厂址附近位于高低压中心之间,或整个区域是一均压场, 这时系统风弱,局地风 (包括山谷风及海陆风) 明显,整个区域地面风场比较混乱。夏季该地区水平风场分布主要有4种形式:1) 受季风控制,呈偏南风型的风场;2) 系统风较弱,呈海陆风型的风场;3) 锋前低压控制,产生切变型的风场;4) 受季风控制,呈偏北风型的风场。  相似文献   

17.
Northward propagation in summer and eastward propagation in winter are two distinguished features of tropical intraseasonal oscillation(TISO) over the equatorial Indian Ocean.According to numerical modeling results,under a global warming scenario,both propagations were intensified.The enhanced northward propagation in summer can be attributed to the enhanced atmosphere-ocean interaction and the strengthened mean southerly wind;and the intensified eastward propagation in winter is associated with the enhanced convection-wind coupling process and the strengthened equatorial Kevin wave.Future changes of TISO propagations need to be explored in more climate models.  相似文献   

18.
 The mechanisms responsible for the mean state and the seasonal and interannual variations of the coupled tropical Pacific-global atmosphere system are investigated by analyzing a thirty year simulation, where the LMD global atmospheric model and the LODYC tropical Pacific model are coupled using the delocalized physics method. No flux correction is needed over the tropical region. The coupled model reaches its regime state roughly after one year of integration in spite of the fact that the ocean is initialized from rest. Departures from the mean state are characterized by oscillations with dominant periodicites at annual, biennial and quadriennial time scales. In our model, equatorial sea surface temperature and wind stress fluctuations evolved in phase. In the Central Pacific during boreal autumn, the sea surface temperature is cold, the wind stress is strong, and the Inter Tropical Convergence Zone (ITCZ) is shifted northwards. The northward shift of the ITCZ enhances atmospheric and oceanic subsidence between the equator and the latitude of organized convention. In turn, the stronger oceanic subsidence reinforces equatorward convergence of water masses at the thermocline depth which, being not balanced by equatorial upwelling, deepens the equatorial thermocline. An equivalent view is that the deepening of the thermocline proceeds from the weakening of the meridional draining of near-surface equatorial waters. The inverse picture prevails during spring, when the equatorial sea surface temperatures are warm. Thus temperature anomalies tend to appear at the thermocline level, in phase opposition to the surface conditions. These subsurface temperature fluctuations propagate from the Central Pacific eastwards along the thermocline; when reaching the surface in the Eastern Pacific, they trigger the reversal of sea surface temperature anomalies. The whole oscillation is synchronized by the apparent meridional motion of the sun, through the seasonal oscillation of the ITCZ. This possible mechanism is partly supported by the observed seasonal reversal of vorticity between the equator and the ITCZ, and by observational evidence of eastward propagating subsurface temperature anomalies at the thermocline level. Received: 7 April 1997 / Accepted: 15 July 1998  相似文献   

19.
采用区域自动站逐小时降水观测数据、GPS/MET大气可降水量观测数据和NCEP/NCAR提供的FNL0.25°×0.25°分析数据,通过对比塔克拉玛干沙漠南缘和田地区2次落区接近、强度不同暴雨过程的环流和水汽特征,分析了影响极端暴雨产生的急流和水汽因子特征,结果表明:沙漠南缘暴雨时环流配置符合“三支气流”模型,高空急流、中层偏南风、低层辐合切变的强度与降水量正相关,当高层有极涡直接南伸至中亚发展而成的副热带大槽、中层有气旋前部的强偏南或西南气流、低层有偏东风急流明显西伸与西风急流形成强辐合时有利于出现极端暴雨。沙漠南缘暴雨的水汽源地、输送路径、水汽含量、饱和层厚度与降水量相关,暴雨的水汽源地一般为欧洲和北冰洋,降水区水汽输入以中低层为主,低层比湿大于6 g?kg-1,饱和层位于700 hPa以上;当中高层有来自阿拉伯海、孟加拉湾的由偏南风输送水汽的加入,低层比湿达8 g?kg-1以上、饱和层扩展至750 hPa以下时,可出现极端暴雨。  相似文献   

20.
The orbital configuration at the end of the last interglacial, 115,000 years BP (115 ky BP), was such that the Northern Hemisphere seasonal contrast was decreased when compared to the last interglacial maximum, 126 ky BP. Climatic reconstructions argue for increased latitudinal surface temperature and salinity gradients in the North Atlantic at 115 ky BP compared to 126 ky BP. According to proxy measurements the high-latitude ocean freshening may be explained by enhanced northward atmospheric moisture advection which would have then led to decreased deep convection activity in the northern seas. To evaluate such re-adjustments of the atmospheric circulation to the insolation forcing changes, we have explored the changes in atmospheric energy balance and transport with two AGCM experiments, one for each climate. We show that the northward increase in static heat transport at 115 ky BP to 126 ky BP constitutes a first order response to the changing insolation. It tends to equalise the heat balance of the atmosphere. Despite sea surface temperatures fixed (SSTs) to present-day this feature is strongly amplified by the air–sea heat flux exchanges. By comparing with OAGCM experiments for the same periods, we find that the simulated surface ocean heat flux responses to insolation forcing are similar whether the ocean is allowed to vary or not. The latent heat transport does not undergo the same changes as the dry static one. On an annual basis, it decreases over the high northern latitudes. This is the result of summer modification of moisture sources and transient activity. The latter appears to affect latent heat transport much more than the dry static one. The winter response, however, differs from the summer response which dominates the annual mean. There is an enhanced northward atmospheric moisture advection during winter at 115 ky BP, which is responsible for the freshening of high-latitude ocean during this season. This result seems to confirm the hypothesis inferred from marine data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号