首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two distinct age estimates for eclogite-facies metamorphism in the Sanbagawa belt have been proposed: (i) c.  120–110 Ma based on a zircon SHRIMP age for the Western Iratsu unit and (ii) c.  88–89 Ma based on a garnet–omphacite Lu–Hf isochron age from the Seba and Kotsu eclogite units. Despite the contrasting estimates of formation ages, petrological studies suggest the formation conditions of the Western Iratsu unit are indistinguishable from those of the other two units—all ∼20 kbar and 600–650 °C. Studies of the associated geological structures suggest the Seba and Western Iratsu units are parts of a larger semi-continuous eclogite unit. A combination of geochronological and petrological studies for the Western Iratsu eclogite offers a resolution to this discrepancy in age estimates. New Lu–Hf dating for the Western Iratsu eclogite yields an age of 115.9 ± 0.5 Ma that is compatible with the zircon SHRIMP age. However, petrological studies show that there was significant garnet growth in the Western Iratsu eclogite before eclogite facies metamorphism, and the early core growth is associated with a strong concentration of Lu. Pre-eclogite facies garnet (Grt1) includes epidote–amphibolite facies parageneses equilibrated at 550–650 °C and ∼10 kbar, and this is overgrown by prograde eclogite facies garnet (Grt2). The Lu–Hf age of c.  116 Ma is strongly skewed to the isotopic composition of Grt1 and is interpreted to reflect the age of the pre-eclogite phase. The considerable time gap ( c.  27 Myr) between the two Lu–Hf ages suggests they may be related to separate tectonic events or distinct phases in the evolution of the Sanbagawa subduction zone.  相似文献   

2.
A largely undocumented region of eclogite associated with a thick blueschist unit occurs in the Kotsu area of the Sanbagawa belt. The composition of coexisting garnet and omphacite suggests that the Kotsu eclogite formed at peak temperatures of around 600 °C synchronous with a penetrative deformation (D1). There are local significant differences in oxygen fugacity of the eclogite reflected in mineral chemistries. The peak pressure is constrained to lie between 14 and 25 kbar by microstructural evidence for the stability of paragonite throughout the history recorded by the eclogite, and the composition of omphacite in associated eclogite facies pelitic schist. Application of garnet‐phengite‐omphacite geobarometry gives metamorphic pressures around 20 kbar. Retrograde metamorphism associated with penetrative deformation (D2) is in the greenschist facies. The composition of syn‐D2 amphibole in hematite‐bearing basic schist and the nature of the calcium carbonate phase suggest that the retrograde P–T path was not associated with a significant increase or decrease in the ratio of P–T conditions following the peak of metamorphism. This P–T path contrasts with the open clockwise path derived from eclogite of the Besshi area. The development of distinct P–T paths in different parts of the Sanbagawa belt shows the shape of the P–T path is not primarily controlled by tectonic setting, but by internal factors such as geometry of metamorphic units and exhumation rates.  相似文献   

3.
Zaw Win Ko  M. Enami  M. Aoya   《Lithos》2005,81(1-4):79-100
The Sanbagawa metamorphic rocks in the Besshi district, central Shikoku, are grouped into eclogite and noneclogite units. Chloritoid and barroisite-bearing pelitic schists occur as interlayers within basic schist in an eclogite unit of the Seba area in the Sanbagawa metamorphic belt, central Shikoku, Japan. Major matrix phases of the schists are garnet, chlorite, barroisite, paragonite, phengite, and quartz. Eclogite facies phases including chloritoid and talc are preserved only as inclusions in garnet. PT conditions for the eclogite facies stage estimated using equilibria among chloritoid, barroisite, chlorite, interlayered chlorite–talc, paragonite, and garnet are 1.8 GPa/520–550 °C. Zonal structures of garnet and matrix amphibole show discontinuous growth of minerals between their core and mantle parts, implying the following metamorphic stages: prograde eclogite facies stage→hydration reaction stage→prograde epidote–amphibolite stage. This metamorphic history suggests that the Seba eclogite lithologies were (1) juxtaposed with subducting noneclogite lithologies during exhumation and then (2) progressively recrystallized under the epidote–amphibolite facies together with the surrounding noneclogite lithologies.

The pelitic schists in the Seba eclogite unit contain paragonite of two generations: prograde phase of the eclogite facies included in garnet and matrix phase produced by local reequilibration of sodic pyroxene-bearing eclogite facies assemblages during exhumation. Paragonite is absent in the common Sanbagawa basic and pelitic schists, and is, however, reported from restricted schists from several localities near the proposed eclogite unit in the Besshi district. These paragonite-bearing schists could be lower-pressure equivalents of the former eclogite facies rocks and are also members of the eclogite unit. This idea implies that the eclogite unit is more widely distributed in the Besshi district than previously thought.  相似文献   


4.
大别山产出的榴辉岩相岩石包括石榴橄榄岩、榴辉岩、榴云片岩、榴辉片麻岩、榴玉英岩和榴辉大理岩等不同系列,它们均分布于花岗质片麻岩中。矿物共生序列研究表明,榴辉岩相岩石经历了从绿帘角闪岩相、柯石英榴辉岩相、角闪榴辉岩相、绿帘角闪岩相到绿片岩相的演化过程。花岗质片麻岩及变质火山—沉积岩系并未经历超高压变质作用,但却与榴辉岩相岩石经历了同一期绿帘角闪岩相变质事件,证明二者在地壳范围内发生了构造合并  相似文献   

5.
AOYA  MUTSUKI 《Journal of Petrology》2001,42(7):1225-1248
Both structural and petrological data can be used to constrainthe P–T path of an eclogitic schist unit (the Seba basicschist) in the Sambagawa belt of SW Japan. The relationshipsbetween these two sets of data are well defined by porphyroblasticand other microstructures. The derived P–T path for theSeba basic schist has an overall clockwise trajectory with thedecompression, or exhumation-related, path taking place undera lower P/T gradient than the burial, or subduction-related,path. The clockwise nature of the P–T path is qualitativelysupported by chemical zoning of amphibole coexisting with eclogiticminerals. The significant feature of the P–T path is thepresence of two temperature maxima, the first in the eclogitefacies and the second in the epidote-amphibolite facies. Theexistence of two temperature maxima gives a simple explanationfor the observation that metamorphic zonal boundaries postdatingthe eclogite facies metamorphism cross-cut the distributionof the main eclogite bodies in the Sambagawa belt. Estimatesof metamorphic pressure using the jadeite content of clinopyroxenein the Seba area demonstrate the existence of a tectonic discontinuitybetween the eclogitic schist and surrounding non-eclogitic schist.Structural studies show that although these two units have experiencedvery different peak metamorphic conditions, they became juxtaposedduring a single ductile deformation affecting both units. Thisdeformation is related to exhumation of the eclogitic schistand subduction of the non-eclogitic schist, indicating thatboth were formed during the same subduction event. The presenceof a major tectonic boundary between two units with a similarorigin as subducted and accreted material, but contrasting metamorphichistories, can be interpreted in terms of nappe tectonics, andthe existence of an ‘eclogite nappe’, the thirdnappe of the Sambagawa belt, is proposed. KEY WORDS: deformation stage; dual thermal maxima; eclogite; P–T–D path; Sambagawa belt  相似文献   

6.
The Sanbagawa metamorphic belt of southwest Japan is one of the type localities of subduction‐related high‐P metamorphism. However, variable pressure–temperature (PT) paths and metabasic assemblages have been reported for eclogite units in the region, leading to uncertainty about the subduction zone paleo‐thermal structure and associated tectonometamorphic conditions. To analyse this variation, phase equilibria modelling was applied to the three main high‐P metabasic rock types documented in the region – glaucophane eclogite, barroisite eclogite and garnet blueschist – with modelling performed over a range of P, T, bulk rock H2O and bulk rock ferric iron conditions using thermocalc . All samples are calculated to share a common steep prograde PT path to similar peak conditions of ~16–20 kbar and 560–610 °C. The results establish that regional assemblage variation is systematic, with the alternation in peak amphibole phase due to peak conditions overlapping the glaucophane–barroisite solvus, and bulk composition effects stabilizing blueschist v. eclogite facies assemblages at similar PT conditions. Furthermore, the results reveal that a steep prograde PT path is common to all eclogite units in the Sanbagawa belt, indicating that metamorphic conditions were consistent along strike. All localities are compatible with predictions made by a ridge approach model, which attributes eclogite facies metamorphism and exhumation of the Sanbagawa belt to the approach of a spreading ridge.  相似文献   

7.
Eclogite facies metamorphic rocks have been discovered from the Bizan area of eastern Shikoku, Sambagawa metamorphic belt. The eclogitic jadeite–garnet glaucophane schists occur as lenticular or sheet‐like bodies in the pelitic schist matrix, with the peak mineral assemblage of garnet + glaucophane + jadeite + phengite + quartz. The jadeitic clinopyroxene (XJd 0.46–0.75) is found exclusively as inclusions in porphyroblastic garnet. The eclogite metamorphism is characterized by prograde development from epidote–blueschist to eclogite facies. Metamorphic P–T conditions estimated using pseudosection modelling are 580–600 °C and 18–20 kbar for eclogite facies. Compared with common mafic eclogites, the jadeite–garnet glaucophane schists have low CaO (4.4–4.5 wt%) and MgO (2.1–2.3 wt%) bulk‐rock compositions. The P–T– pseudosections show that low XCa bulk‐rock compositions favour the appearance of jadeite instead of omphacite under eclogite facies conditions. This is a unique example of low XCa bulk‐rock composition triggered to form jadeite at eclogite facies conditions. Two significant types of eclogitic metamorphism have been distinguished in the Sambagawa metamorphic belt, that is, a low‐T type and subsequent high‐T type eclogitic metamorphic events. The jadeite–garnet glaucophane schists experienced low‐T type eclogite facies metamorphism, and the P–T path is similar to lawsonite‐bearing eclogites recently reported from the Kotsu area in eastern Shikoku. During subduction of the oceanic plate (Izanagi plate), the hangingwall cooled gradually, and the geothermal gradient along the subduction zone progressively decreased and formed low‐T type eclogitic metamorphic rocks. A subsequent warm subduction event associated with an approaching spreading ridge caused the high‐T type eclogitic metamorphism within a single subduction zone.  相似文献   

8.
The D'Entrecasteaux Islands of south‐eastern Papua New Guinea are active metamorphic core complexes that formed within a region where the plate tectonic regime has transitioned from subduction to rifting. While rapid, post 4 Myr exhumation and cooling of amphibolite and greenschist facies rocks that constitute the footwall of the crustal scale detachment fault system have been previously documented on Fergusson and Goodenough Islands of the D'Entrecasteaux chain, the timing of eclogite facies metamorphism in rocks of the footwall was unknown. Recent work revealed that at least one of the eclogite bodies formed during the Pliocene. We present combined in situ ion microprobe U–Pb age analyses of zircon from five variably retrogressed eclogite samples from Fergusson and Goodenough Islands that document Late Miocene–Pliocene (8–2 Ma) eclogite formation on these islands. Textural relationships and zircon–garnet rare earth element partition coefficients indicate that U–Pb ages constrain zircon crystallization under eclogite facies conditions in all samples. Results suggest westward younging of eclogite facies metamorphism from Fergusson to Goodenough Island. Present‐day exposure of Late Miocene–Pliocene eclogites requires exhumation rates > 2.5 cm yr?1.  相似文献   

9.
大别—苏鲁超高压变质带内的块状榴辉岩及其构造意义   总被引:13,自引:1,他引:12  
大别—苏鲁超高压(> 27× 108Pa) 变质带内的榴辉岩, 在大陆深俯冲、碰撞和折返剥露过程中, 大都遭受了强烈的变形和变质作用的重置与再造.但是, 大型榴辉岩体核部以及包裹于大理岩和石榴橄榄岩体内部的块状榴辉岩, 往往保留其初始简单的矿物组合、中-细粒状变晶结构和块状构造.详细地分析了块状榴辉岩的几何学、岩相学及变质作用特征, 指出它们是超高压榴辉岩递进及多期变质变形分解作用的残留体, 位于尺度不同的弱应变域内, 是大陆深俯冲及碰撞作用的真正记录.   相似文献   

10.
Detailed three-dimensional structural studies indicate that the Bixiling area,Dabie massif,central Chian shows the deepest exposed levels of the orogenic wedge formed during the Triassic Yangtze0Sino-Korean continental collision.New1:10000 scale structural mapping,combined with detailed petrological analysis in this area,has enabled us to accurately distinguish structures related to the Trias-sic continental collision from those related to post-collisional deformation in the ultrahigh pressure (UHP) metamorphic unit.The collisional or compressional structures include the massive eclogite with a weak foliation,foliated eclogite or UHP ductile shear zones,as well as upper amphibolite facies shear zones,whereas the post-collisional deformation is characterized by a regionally,flat-lying foliation con-taining stretching lineations and common reclined folds .The former is present exclusively in the eclogite lenses and their margins,representing orogenic thickening or syn-collisional events,while the latter was best occurred on variable scales under amphibolite facies conditions,showing sub-vertical,extreme short-ening and ductile thinning of the metamorphic rock stack.The eclogite facies tectonites that have a marked fabric discordance to the penetrative amphibolite facies extension flow fabric are common.It is emphasized that an extensional tectonic setting following the collision-orogenic thickening stage was,at least partly,responsible for exhumation of the UHP metamorphic rocks in the Dabie massif.A new tec-tionic evolution model is proposed for the UHP metamorphic belt on the scale of the Dabie massif.The Bixiling area thus provides a window,from which the dynamic processes concerning the formation and exhumation of the UHP rocks can be observed.Regional studies in the Dabie Mountains have confirmed this interpretation.  相似文献   

11.
Abstract The Qinling–Dabie accretionary fold belt in east-central China represents the E–W trending suture zone between the Sino-Korean and Yangtze cratons. A portion of the accretionary complex exposed in northern Hubei Province contains a high-pressure/low-temperature metamorphic sequence progressively metamorphosed from the blueschist through greenschist to epidote–amphibolite/eclogite facies. The 'Hongan metamorphic belt'can be divided into three metamorphic zones, based on progressive changes in mineral assemblages: Zone I, in the south, is characterized by transitional blueschist–greenschist facies; Zone II is characterized by greenschist facies; Zone III, in the northernmost portion of the belt, is characterized by eclogite and epidote–amphibolite facies sequences. Changes in amphibole compositions from south to north as well as the appearance of increasingly higher pressure mineral assemblages toward the north document differences in metamorphic P–T conditions during formation of this belt. Preliminary P–T estimates for Zone I metamorphism are 5–7 kbar, 350–450°C; estimates for Zone III eclogites are 10–22 kbar, 500 ± 50°C.
The petrographic, chemical and structural characteristics of this metamorphic belt indicate its evolution in a northward-dipping subduction zone and subsequent uplift prior to and during the final collision between the Sino-Korean and Yangtze cratons.  相似文献   

12.
In order to decipher the origin of eclogite in the high‐P/T Sanbagawa metamorphic belt, SHRIMP U–Pb ages of zircons from quartz‐bearing eclogite and associated quartz‐rich rock (metasandstone) were determined. One zircon core of the quartz‐rich rock yields an extremely old provenance age of 1899 ± 79 Ma, suggesting that the core is of detrital origin. Eight other core ages are in the 148–134 Ma range, and are older than the estimated age for trench sedimentation as indicated by the youngest radiolarian fossil age of 139–135 Ma from the Sanbagawa schists. Ages of metamorphic zircon rims (132–112 Ma) from the quartz‐rich rock are consistent with metamorphic zircon ages from the quartz‐bearing eclogite, indicating that eclogite facies metamorphism peaked at 120–110 Ma. These new data are consistent with both the Iratsu eclogite body and surrounding highest‐grade Sanbagawa schists undergoing coeval subduction‐zone metamorphism, and subsequent re‐equilibration under epidote amphibolite facies conditions during exhumation.  相似文献   

13.
《International Geology Review》2012,54(18):2211-2226
ABSTRACT

To constrain the timing from the accretion to the subduction-related metamorphism of the protolith in the Sanbagawa eclogites, we performed zircon U–Pb datings and REE composition analyses on pelitic schist of the Seba eclogite-facies region in the Besshi area in central Shikoku, Japan. The detrital igneous cores of the zircons show ages from ca. 2000 to 100 Ma, and the metamorphic rims show ca. 90 Ma. These results show that the protolith was accreted at ca. 100–90 Ma, which is significantly younger than the previously reported accretion age of ca. 130 Ma of other eclogite-facies regions in this area. And, the metamorphic rim domains show HREE decrease without Eu anomalies, suggesting that they were formed at ca. 90 Ma eclogite-facies metamorphism. Our results combined with previous reports for the tectonics of the Sanbagawa metamorphic rocks suggest that there are at least two eclogite-facies units with different accretion ages in the Besshi area; ca. 130 Ma unit (Besshi unit) and ca. 100–90 Ma unit (Asemi-gawa unit), which structurally contact with each other. It is likely that the older unit was subducted into a depth of over 50 km and stagnated until the younger unit was subducted to the same depth. Probably, both units were juxtaposed at a mantle depth and began to exhume to the surface at the same timing after ca. 90 Ma. The juxtaposition and exhumation process might have relation to multi-factors such as tectonic erosion along the subduction zone, shallowing subduction angle of the hotter slab, backflow in the mantle and fluid infiltration along exhumation route.  相似文献   

14.
西藏松多榴辉岩变质作用研究   总被引:5,自引:0,他引:5       下载免费PDF全文
西藏拉萨地块松多附近新发现一条榴辉岩带,长约100 km,宽约2~3 km。松多榴辉岩主要经历了进变质的绿帘石榴辉岩相-峰期的榴辉岩相-退变质的角闪岩相3个阶段。岩石学研究表明,峰期的特征矿物组合是石榴子石绿辉石多硅白云母金红石,峰期温压条件是760~800 ℃,33~39 GPa。这表明松多地区可能曾经历超高压变质作用,之后快速返回,p T轨迹呈“发卡”状,后期退变质经历了角闪石榴辉岩相阶段。研究松多榴辉岩表明,拉萨地块内部有一条新的缝合带,这对于了解拉萨地块和古特提斯洋的演化有重要意义。  相似文献   

15.
以超高压矿物组合的各种后成合晶及冠状体等卸载不平衡结构为参考标志,将含柯石英的超高压榴辉岩的交形序列分成两个部分。后成合晶及冠状体发育之前的变形为早期变形,是在大陆深俯冲和碰撞条件下发育的超高压变质变形组构。后成合晶及冠状体发育之后的变形为晚期变形,是在超高压岩石折返剥露过程中,主要是在角闪岩相甚至绿片岩相条件下发育的。构造上江苏省北部东海县碱场合柯石英榴辉岩体,分为块状榴辉岩和面理化榴辉岩两种类型,分别代表超高压变质岩早期变形的两个构造阶段或世代(D1、D2)。详细描述了它们的矿物组合、中小尺度及显微尺度下的组构特征,讨论了两者的几何关系和区域构造意义,强调指出,只有含柯石英榴辉岩的早期变形组构,才能记录和反映斜向大陆深俯冲及碰撞的动力学过程。  相似文献   

16.
苏北东海地区超高压变质带内的斜卧褶皱   总被引:1,自引:1,他引:1  
详细的野外观察和制图证实,在苏北东海地区的驼峰、房山及虎山等超高压(UHP)变质带岩石出露地段,都有不同尺度的斜卧褶皱发育。在详细地描述了典型的斜卧褶皱组成、几何形态、位态及其形成的物理环境之后,指出斜卧褶皱及分隔它们的韧性剪切带,在构造上,是组成超高压变质带构造柱的两个基本要素,是在超高压变作用期后伸展体制及角闪岩相条件下形成的。同超高压变质作用的残余构造,只保留于大的榴辉岩和超镁铁质结构透镜体核部。无疑,在超高压变质岩石露头区地表构造研究所得的结果,对在东海地区第四纪沉积物所掩盖区实施的大陆科学钻探工程中揭露的地质现象解释,有重要参考意义。强调指出,大陆科学钻探工程所揭示的地壳构造,可能主要代表角闪岩相及伸展体制下的变形特征。  相似文献   

17.
Eclogite fades rocks in this area are diverse in rock type. The field occurrence and rock-chemistry reflect theirin-situ origin. Based on their regional geology and field occurrence, two groups of eclogites are divided in terms of their peak temperature of metamorphism. Medium-temperature eclogites (MT), as Group B, occur in the Dabie Group. They were formed from epidote-amphibolite facies. The metamorphism of eclogite facies has two stages: the coesite eclogite facies stage (the peak condition:T = 600 -700°C,P = 2.7-3.0 GPa) and the glaucophane eclogite facies stage (the pressure decreases, may be lower than 2.5 GPa while the temperature has little change). Low temperature eclogites (LT), as Group C, occur in the Qijiaoshan Formation. They were formed from blue schist facies (the peak condition:T = 490–560°C,P< 1.5 GPa). The appearance of hydrous minerals in the eclogites indicates the important role of water in metamorphism. Medium-temperature eclogites are different from low-temperature ones in metamorphism. At last, the evolution of the high-pressure metamorphic belt is discussed as well. This research project was financially supported by the National Natural Science Foundation of China (No. 49372100).  相似文献   

18.
The Sanbagawa belt is one of the famous subduction‐related high‐pressure (HP) metamorphic belts in the world. However, spatial distributions of eclogite units in the belt have not yet satisfactorily established, except within the Besshi region, central Shikoku, southwest Japan because most eclogitic rocks were affected by lower pressure overprinting during exhumation. In order to better determine the areal distribution of the eclogite units and their metamorphic features, inclusion petrography of garnet porphyroblasts using a combination of electron probe microanalyser and Raman spectroscopy was applied to pelitic and mafic schists from the Asemi‐gawa region, central Shikoku. All pelitic schist samples are highly retrogressed, and include no index HP minerals such as jadeite, omphacite, paragonite, or glaucophane in the matrix. Garnet porphyroblasts in pelitic schists occur as subhedral or anhedral crystals, and show compositional zoning with irregular‐shaped inner segments and overgrown outer segments, the boundary of which is marked by discontinuous changes in spessartine. This feature suggests that a resorption process of the inner segment occurred prior to the formation of the outer segment, indicating discontinuous crystallization between the two segments. The inner segment of some composite‐zoned garnet grains displays Mn oscillations, implying infiltration of metamorphic fluid during the initial exhumation stage. Evidence for an early eclogite facies event was determined from mineral inclusions (e.g., jadeite, paragonite, glaucophane) in the garnet inner segments. Mafic schists include no index HP minerals in the matrix as with pelitic schists. Garnet grains in mafic schists show simple normal zoning, recording no discontinuous growth during crystal formation. There are no index HP mineral inclusions in the garnet, and thus no evidence suggesting eclogite facies conditions. Quartz inclusions in garnet of the pelitic and mafic schists show residual pressure values (?ω1) of >8.5 cm?1 and <8.5 cm?1 respectively. The combination of Raman geobarometry and conventional thermodynamic calculations gives peak PT conditions of 1.6–2.1 GPa at 460–520°C for the pelitic schists. The ?ω1 values of quartz inclusions in mafic schists are converted to a metamorphic pressure of 1.2–1.4 GPa at 466–549°C based on Raman geothermometry results. These results indicate that a pressure gap definitely exists between the mafic schists and the almost adjacent pelitic schists, which have experienced a different metamorphic history. Furthermore, the peak P–T values of the Asemi‐gawa eclogite unit are compatible with those of Sanbagawa eclogite unit in the Besshi region of central Shikoku, suggesting that these eclogite units share a similar P–T trajectory. The Asemi‐gawa eclogite unit exists in a limited area and is composed of mostly pelitic schists. We infer that these abundant pelitic schists played a key role in buoyancy‐driven exhumation by reducing bulk rock density and strength.  相似文献   

19.
A layer of relict, high-temperature, prograde eclogite has been discovered within felsic granulite of the Gföhl Nappe, which is the uppermost tectonic unit in the Moldanubian Zone of the Bohemian Massif, the easternmost of the European Variscan massifs. Pressure-temperature conditions for eclogite (≥890  °C, 18.0  kbar) and felsic granulite ( c . 1000  °C, 16  kbar) place early metamorphism of the polymetamorphic Gföhl crustal rocks within the eclogite facies, and preservation of prograde compositional zoning in small garnet grains in high-temperature eclogite requires very rapid heating, as well as cooling. Mantle-derived garnet and spinel–garnet peridotites are associated with the high temperature-high pressure crustal rocks in the Gföhl Nappe, and this distinctive lithological suite appears to be unique among European Phanerozoic orogenic belts, implying that tectonic processes during the late stages in evolution of the Variscan belt were different from those in the Caledonian and Alpine belts. The unusually high temperatures and pressures in Gföhl crustal rocks, mineralogical evidence for rapid heating and cooling, juxtaposition of lithospheric and asthenospheric mantle with crustal rocks, and widespread production of late-stage granites indicate that culmination of the Variscan Orogeny may have been driven by lithospheric delamination and asthenospheric upwelling.  相似文献   

20.
Petrogenesis of Eclogites in the Light of PunctuatedMetamorphic Evolution in Dabie Terrane,China¥YouZhendong;HanYujing;ZhongZ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号