首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 281 毫秒
1.
台湾海峡小型浮游动物的摄食对夏季藻华演替的影响   总被引:3,自引:2,他引:3  
于2004年8月1~6日对台湾海峡南部近岸的藻华过程进行了定点连续跟踪观测,用稀释法研究了浮游植物的生长率和小型浮游动物对浮游植物的摄食死亡率,同时运用高效液相色谱(HPLC)技术,分析了浮游植物不同光合色素类群的生长率和摄食死亡率.结果表明,观测期间处于藻华的消退期.8月1日时,浮游植物生物量(叶绿素a)和丰度分别为2.04μg/dm3和2.99×105个/dm3,主要优势种为尖刺伪菱形藻(Pseudo-nitzschia pungens)、冰河拟星杆藻(Asterionellopsis glacialis)和中肋骨条藻(Skeletonema costatum),8月6日时,浮游植物生物量和丰度分别减为0.37μg/dm3和1.54×104个/dm3;而蓝藻和甲藻的丰度和比例则呈现出逐渐增加的趋势,所占的比重分别从1日的0.04%和0.85%增加到6日的9.59%和41.97%.小型浮游动物主要由无壳纤毛虫、砂壳纤毛虫、红色中缢虫(Mesodinium rubrum)和异养甲藻等类群组成,总丰度于8月2日达到最大值,为3640个/dm3,之后逐渐减少,6日时,仅为436个/dm3.观测期间,小型浮游动物在群落组成上虽一直以无壳纤毛虫和异养甲藻为主,但在具体的类群结构上却表现出了一定的差异,30μm以下的无壳纤毛虫和异养甲藻总体呈下降的趋势,而红色中缢虫、砂壳纤毛虫和大于50μm的无壳纤毛虫总体呈增加的趋势.观测期间,浮游植物的生长率为0.40~0.91d-1,小型浮游动物的摄食率为0.26~1.34d-1,摄食率和生长率总体呈逐渐下降的趋势.结果还表明,小型浮游动物的摄食率与叶绿素a具有很好的相关性(R2=0.89),对各光合色素类群的现存量和初级生产力均具有较高的摄食压力(分别为37.97%~82.24%和70.71%~281.33%),是藻华消亡的重要原因之一;此外,小型浮游动物对甲藻和蓝藻的避食行为,可能是观测期间由“硅藻”水华向“硅藻-甲藻”水华转变的重要原因之一.  相似文献   

2.
2005年11月16日和27日,运用稀释法和桡足类添加法,对厦门宝珠屿海域小型浮游动物及桡足类的摄食对浮游植物生长的影响进行了研究.结果表明,各粒级浮游植物的生长率均大于小型浮游动物的摄食率,小型浮游动物对总的Chla和nano-Chla具有一致的显著的摄食作用(0.51~0.78d-1),当存在螺旋环沟藻等大型的异养甲藻时,亦能摄食micro-级浮游植物.所添加的桡足类主要摄食micro-级的浮游植物,也显著摄食小型浮游动物,16日,所添加的桡足类促进nano-级浮游植物的每天生长效应达0.03ind/dm3.说明了厦门海域小型浮游动物及桡足类的摄食共同控制着浮游植物的生长,由于桡足类的杂食性,可产生一定的营养级联效应.  相似文献   

3.
2009年1月在南海北部海域的5个站位,采用稀释法和显微分析技术研究了浮游植物生长率及微型浮游动物对浮游植物的摄食压力,同时测定了微型浮游动物的丰度及类群组成.结果表明:南海北部微型浮游动物类群主要以无壳纤毛虫为主,南海北部微型浮游动物类群细胞丰度为33~529个/dm3.南海北部浮游植物生长率为0.45~1.83 d-1,微型浮游动物摄食率为0.44~1.76 d-1,摄食压力占浮游植物现存量的42.6%~82.8%,占初级生产力的97.3%~225.1%.近岸区摄食压力比陆架区高,表明冬季南海近岸区微型浮游动物摄食能够有效的控制浮游植物的生长,而陆架区浮游植物生长率大于摄食率,浮游植物存在着现存量的积累,微型浮游动物并不能完全控制浮游植物的生长.  相似文献   

4.
通过2011年春季对九龙江口的生态调查,对浮游植物、微型浮游动物以及小型水母的种类组成和数量变动特征并对分粒级叶绿素进行了研究,同时还分析了营养盐、温度和盐度等环境参数。调查共记录浮游植物种类45种,以硅藻门的中肋骨条藻(Skeletonema costatum)、颗粒直链藻(Melosira granulate)、针杆藻(Synedra spp.),以及绿藻门的斜生栅藻(Scenedesmus obliquus)、甲藻门的微小亚历山大藻(Alexandrium minutum),蓝藻门的优美平裂藻(Merismopedia elegans)具有较高的检出率;微型浮游动物分为4大类,红色中缢虫(Mesodinium rubrum)占有最大的比例为55.5%-79.8%,无壳纤毛虫次之,砂壳纤毛虫和无节幼体所占的比例均不足10%;小型水母种类组成中主要以弗洲指突水母(Blackfordia virginica)、球型侧腕水母(Pleurobrachia globosa)、厦门和平水母(Eirene xiamenensis)以及水螅水母幼体(Hydroidomedusae larvae)为主要优势类群,占小型水母总量的85%以上。小型水母数量在4月底和5月初达到丰度最高值(69.49±29.4)ind/L,此时微型浮游动物数量从小型水母出现初期的峰值(1085±574.66)ind/L下降为(526±152.93)ind/L,同时micro级叶绿素占总叶绿素比例达到最大值(42.26±12.94)%。小型水母数量下降后,微型浮游动物的数量回升。在小型水母数量消长过程中,浮游植物、微型浮游动物和小型水母数量间处于动态平衡。  相似文献   

5.
东海米氏凯伦藻水华中中华哲水蚤的选择性摄食   总被引:1,自引:0,他引:1  
提要为评估中型浮游动物选择性摄食对有害藻华发展进程的影响,应用一种新的结合Frost直接摄食法和Landry稀释法的现场培养方法,于2005年4月27日—6月5日在东海有害藻华高发区的6个典型站位进行了中华哲水蚤(Calanus sinicus)对浮游植物和微型浮游动物摄食速率的研究。比较了中华哲水蚤对米氏凯伦藻(Karenia mikimotoi)和具齿原甲藻(Prorocentrum dentatum)摄食习性的差异,并评估了其摄食在水华进程中的作用。研究结果表明,中华哲水蚤对有害藻华物种存在摄食选择性和摄食速率的阈值。当自然水体中米氏凯伦藻细胞丰度达到157cells/ml和具齿原甲藻细胞丰度达到981 cells/ml时是中华哲水蚤由偏好趋于排斥摄食的阈值。当自然水体中米氏凯伦藻细胞丰度达到176 cells/ml时,中华哲水蚤对其停止摄食。米氏凯伦藻有害藻华发生区中华哲水蚤对具齿原甲藻的无选择性滤食以及对米氏凯伦藻的排斥摄食行为,影响水华进程,最终导致水华物种向米氏凯伦藻方向演替。  相似文献   

6.
南海北部秋季微型浮游动物摄食和种类组成的初步研究   总被引:4,自引:0,他引:4  
2004年9月到10月间在南海北部海区对微型浮游动物的种类组成进行了调查,同期运用现场稀释法,以叶绿素a为监测对象,估计了该海区内微型浮游动物摄食率和摄食压力的水平。结果表明,南海北部海区纤毛虫群体中以多膜纲寡毛目为主,有16种,其中寡毛亚目纤毛虫4种,砂壳亚目纤毛虫11种。各站纤毛虫丰度比较低,在9~102ind/m3之间。浮游植物瞬时增长率(k)在0.03/d~2.13/d之间;微型浮游动物的摄食率(g)在0.01/d~1.06/d之间。微型浮游动物对浮游植物现存量的摄食压力(Pi)在0.089%~65.23%之间,对初级生产力的摄食压力(Pp)在33.63%~86.04%之间。微型浮游动物的摄食水平主要受其丰度的影响,同时微型浮游动物对浮游植物现存量和初级生产力的摄食压力显示,在南海北部海区微型浮游动物在初级生产力传递方面具有重要的科学意义和研究价值。  相似文献   

7.
2005年7月在台湾海峡南部4个站位应用“稀释法”结合高效液相色谱(HPLC)色素分析技术研究了不同色素类群浮游植物的生长率及微型浮游动物对其的摄食死亡率.结果表明,不同色素类群浮游植物的生长率(k)和摄食死亡率(g)分别为0.52~ 1.34 d-1和0.25 ~ 1.10 d-1,微型浮游动物对不同色素类群浮游植物的现存量和初级生产力的摄食压力分别为22%~ 66%和40%~ 151%.通过比较不同类群浮游植物的g/k值,发现颗粒较大的浮游植物(硅藻和甲藻)的净生长率要大于那些微型藻类(蓝细菌、隐藻和定鞭金藻等)的净生长率,说明本次研究中微型藻类更易受到微型浮游动物的摄食控制.  相似文献   

8.
报道了2012年6月份桑沟湾藻华期间的浮游植物和纤毛虫群落结构,并对环境因子进行了初步分析。研究发现,藻华原因种为一种直径为2μm左右的小球型藻类,细胞形态和粒径均与近年来在中国秦皇岛近岸海域频繁引发水华的超微型浮游植物相似。藻华发生期间,调查区海水中藻华原因物种细胞丰度高达109个/L,高于2011年同期调查区该物种藻华期间的细胞丰度(108个/L)。除藻华原因种外,其他浮游植物共鉴定38种,隶属3门23属,以硅藻和甲藻为主,优势种为:具槽帕拉藻(Paralia sulcata)、裸甲藻(Gymnodinium sp.)、圆筛藻(Coscinodiscus sp.)、长菱形藻(Nitzschia longissima)和太平洋海链藻(Thalassiosira pacifica)等。纤毛虫共鉴定3属5种,以砂壳纤毛虫为主,优势种为百乐拟铃虫(Tintinnopsis beroidea)。细胞丰度分布方面,藻华原因种从湾内向湾外逐渐降低;硅藻细胞丰度在位于湾口处的6号站位最高,并向湾内和湾外递减;甲藻和纤毛虫细胞丰度均从湾内向湾外降低,这分别由优势种裸甲藻和百乐拟铃虫的分布决定。分析发现,调查区藻华原因物种细胞丰度与海水温度和层化系数呈良好的正相关性,与盐度呈负相关性;与裸甲藻和百乐拟铃虫细胞丰度呈良好的正相关性,这两种异养微型浮游生物对藻华原因种的摄食能力值得探索。与历史资料的对比发现,调查区藻华期间浮游植物群落多样性下降,群落稳定性降低。  相似文献   

9.
2004年7~8月在台湾海峡南部的5个站位,用稀释法研究了浮游植物的生长率,微型浮游动物对浮游植物的摄食率及其生产力.微型浮游动物主要为无壳纤毛虫,尤其是急游虫类和侠盗虫类.浮游植物的生长率为0.52~0.72/d,浮游动物的摄食率为0.45~1.33/d,相当于每天摄食浮游植物现存量的36%~74%和初级生产力的88%~141%.微型浮游动物的次级生产力(MP02)为初级生产力的28.5%~58.4%.表明微型浮游动物在台湾海峡夏季海洋生态系统的能量流动中发挥着重要的作用.  相似文献   

10.
三亚湾珊瑚礁海区微型浮游动物种群组成和摄食研究   总被引:2,自引:0,他引:2  
采用现场稀释法,以叶绿素 a 为检测对象,利用 2006 年 4 月的调查资料对三亚湾珊瑚礁海区微型浮游动物的种群组成和摄食情况进行了研究.结果表明,区内微型浮游动物的组成以纤毛虫为主.微型浮游动物以 Tintinnopsis compressa, Tintinnopsis cylindrical, Tintinnidium semicilidium 三种纤毛虫为优势种,其中 Tintinnopsis 属纤毛虫是优势种群,有 38 种,占总纤毛虫种数的37.3 %.微型浮游动物的摄食率 ( g ) 在 1.28 ~ 2.37 d-1之间,平均值为 0.945 d-1;浮游植物瞬时增长率 ( k ) 为 0.26 ~ 1.44 d-1,平均值为 1.963 d-1;微型浮游动物对浮游植物现存量和初级生产力的摄食压力分别在 72.20 % ~90.65 % 和 113.31 % ~ 315.34 %,平均值分别为 84.56 % 和 177.05 %.三亚湾珊瑚礁海区内,微型浮游动物的摄食水平主要取决于水体中微型浮游动物和叶绿素a之间的相对数量关系.在控制浮游植物生长和转移浮游植物生产力方面微型浮游动物起着相当重要的作用,可以在一定程度上降低潜在的富营养化威胁.  相似文献   

11.
Dilution experiments were conducted to investigate microzooplankton grazing impact on phytoplankton of different taxonomic groups and size fractions (< 5, 5–20, 20–200 μm) during spring and summer bloom periods at two different sites (inner Tolo Harbour and Tolo Channel) in the Tolo Harbour area, the northeastern coastal area of Hong Kong. Experiments combined with HPLC pigment analysis in three phytoplankton size fractions measured pigment and size specific phytoplankton growth rates and microzooplankton grazing rates. Pigment-specific phytoplankton growth rates ranged between 0.08 and 3.53 d 1, while specific grazing rates of microzooplankton ranged between 0.07 and 2.82 d 1. Highest specific rates of phytoplankton growth and microzooplankton grazing were both measured in fucoxanthin in 5–20 μm size fraction in inner Tolo Harbour in summer, which coincided with the occurrence of diatom bloom. Results showed significant correlations between phytoplankton growth and microzooplankton grazing rates. Microzooplankton placed high grazing pressure on phytoplankton community. High microzooplankton grazing impact on alloxanthin (2.63–5.13) suggested strong selection toward cryptophytes. Our results provided no evidence for size selective grazing on phytoplankton by microzooplankton.  相似文献   

12.
During 24, three-day cruises to Dabob Bay, Washington State, USA, from February 4 to April 26, 2002, and February 4 to May 1 2003, we examined the relative growth and grazing rates of phytoplankton and microzooplankton using dilution experiments. Experiments were conducted over two time intervals: 8–10 h during the nighttime only, or 24 h from noon to noon. We used water from two depths during each cruise: from the surface mixed layer, and from a deep layer below the seasonal thermocline. During 2002, there was one mid-sized bloom consisting mainly of Thalassiosira spp. in early February, and a larger bloom in April comprised of two Chaetoceros spp. and Phaeocystis sp. During 2003, there were also two blooms, one in early February, which was again dominated by Thalassiosira spp., and a second larger bloom in mid-April, comprised mainly of Thalassiosira spp. and Chaetoceros spp. During all four of these blooms, and for both water source depths, specific grazing rates of microzooplankton were most often as high or higher than the calculated phytoplankton specific growth rates. The major microzooplankton categories that could have accounted for this were (1) a large Gyrodinium spp., (2) a group of fusiform-shaped mid-sized Protoperidinium species, and (3) three loosely defined taxonomic groups consisting of naked ciliates, tintinnids, and unidentified heterotrophic dinoflagellates. Based on our measurements, it appears that the microzooplankton community grazing pressure can often exert significant control on phytoplankton biomass, even during the extremely productive spring bloom periods and under several different diatom-dominated bloom types. These results suggest that even in highly productive estuarine ecosystems, which are often nurseries to economically important fisheries species, microzooplankton play a critical role and may significantly alter the availability and efficiency of transfer of energy to higher trophic levels.  相似文献   

13.
Using the seawater dilution technique, we measured phytoplankton growth and microzooplankton grazing rates within and outside of the 1999 Bering Sea coccolithophorid bloom. We found that reduced microzooplankton grazing mortality is a key component in the formation and temporal persistence of the Emiliania huxleyi bloom that continues to proliferate in the southeast Bering Sea. Total chlorophyll a (Chl a) at the study sites ranged from 0.40 to 4.45 μg C l−1. Highest phytoplankton biomass was found within the bloom, which was a mixed assemblage of diatoms and E. huxleyi. Here, 75% of the Chl a came from cells >10 μm and was attributed primarily to the high abundance of the diatom Nitzschia spp. Nutrient-enhanced total phytoplankton growth rates averaged 0.53 d−1 across all experimental stations. Average growth rates for >10 μm and <10 μm cells were nearly equal, while microzooplankton grazing varied among stations and size fractions. Grazing on phytoplankton cells >10 μm ranged from 0.19 to 1.14 d−1. Grazing on cells <10 μm ranged from 0.02 to 1.07 d−1, and was significantly higher at non-bloom (avg. 0.71 d−1) than at bloom (avg. 0.14 d−1) stations. Averaged across all stations, grazing by microzooplankton accounted for 110% and 81% of phytoplankton growth for >10 and <10 μm cells, respectively. These findings contradict the paradigm that microzooplankton are constrained to diets of nanophytoplankton and strongly suggests that their grazing capability extends beyond boundaries assumed by size-based models. Dinoflagellates and oligotrich ciliates dominated the microzooplankton community. Estimates of abundance and biomass for microzooplankton >10 μm were higher than previously reported for the region, ranging from 22,000 to 227,430 cells l−1 and 18 to 164 μg C l−1. Highest abundance and biomass occurred in the bloom and corresponded with increased abundance of the large ciliate Laboea, and the heterotrophic dinoflagellates Protoperidinium and Gyrodinium spp. Despite low grazing rates on phytoplankton <10 μm within the bloom, the abundance and biomass of small microzooplankton (<20 μm) capable of grazing E. huxleyi was relatively high at bloom stations. This body of evidence, coupled with observed high grazing rates on large phytoplankton cells, suggests the phytoplankton community composition was strongly regulated by herbivorous activity of microzooplankton. Because grazing behavior deviated from size-based model predictions and was not proportional to microzooplankton biomass, alternate mechanisms that dictate levels of grazing activity were in effect in the southeastern Bering Sea. We hypothesize that these mechanisms included morphological or chemical signaling between phytoplankton and micrograzers, which led to selective grazing pressure.  相似文献   

14.
Phytoplankton growth and microzooplankton grazing were studied during the 2007 spring bloom in Central Yellow Sea. The surveyed stations were divided to pre-bloom phase (Chl a concentration less than 2 μg L−1), and bloom phase (Chl a concentration greater than 2 μg L−1). Shipboard dilution incubation experiments were carried out at 19 stations to determine the phytoplankton specific growth rates and the specific grazing rates of microzooplankton on phytoplankton. Diatoms dominated in the phytoplankton community in surface waters at most stations. For microzooplankton, Myrionecta rubra and tintinnids were dominant, and heterotrophic dinoflagellate was also important in the community. Phytoplankton-specific growth rates, with an average of 0.60±0.19 d−1, were higher at pre-bloom stations (average 0.62±0.17 d−1), and lower at the bloom stations (average 0.59±0.21 d−1), but the difference of growth rates between bloom and pre-bloom stations was not statistically significant (t test, p=0.77). The phytoplankton mortality rate by microzooplankton grazing averaged 0.41±0.23 d−1 at pre-bloom stations, and 0.58±0.31 d−1 during the blooms. In contrast to the growth rates, the statistic difference of grazing rates between bloom and pre-bloom stations was significant (after removal of outliers, t test, p=0.04), indicating the importance of the top-down control in the phytoplankton bloom processes. Average potential grazing efficiency on primary productivity was 66% at pre-bloom stations and 98% at bloom stations, respectively. Based on our results, the biomass maximum phase (bloom phase) was not the maximum growth rate phase. Both phytoplankton specific growth rate and net growth rate were higher in the pre-bloom phase than during the bloom phase. Microzooplankton grazing mortality rate was positively correlated with phytoplankton growth rate during both phases, but growth and grazing were highly coupled during the booming phase. There was no correlation between phytoplankton growth rate and cell size during the blooms, but they were positive correlated during the pre-bloom phase. Our results indicate that microzooplankton grazing is an important process controlling the growth of phytoplankton in spring bloom period in the Central Yellow Sea, particularly in the “blooming” phase.  相似文献   

15.
The source and significance of two nutrients, nitrogen and phosphorous, were investigated by a modified dilution method performed on seawater samples from the Jiaozhou Bay, in autumn 2004. This modified dilution method accounted for the phytoplankton growth rate, microzooplankton grazing mortality rate, the internal and external nutrient pools, as well as nutrient supplied through remineralization by microzooplankton. The results indicated that the phytoplankton net growth rate increased in turn from inside the bay, to outside the bay, to in the Xiaogang Harbor. The phytoplankton maximum growth rates and microzooplankton grazing mortality rates were 1.14 and 0.92 d-1 outside the bay, 0.42 and 0.32 d-1 inside the bay and 0.98 and 0.62 d-1 in the harbor respectively. Outside the bay, the remineralized nitrogen (Kr=24.49) had heavy influence on the growth of the phytoplankton. Inside the bay, the remineralized phosphorus(Kr=3.49) strongly affected the phytoplankton growth. In the harbor, the remineralized phosphorus (Kr=3.73) was in larger demand by phytoplankton growth. The results demonstrated that the different nutrients pools supplied for phytoplankton growth were greatly in accordance with the phytoplankton community structure, microzooplankton grazing mortality rates and environmental conditions. It is revealed that nutrient remineralization is much more important for the phytoplankton growth in the Jiaozhou Bay than previously believed.  相似文献   

16.
Phytoplankton group-specific growth and microzooplankton grazing were determined seasonally using the dilution technique with high-performance liquid chromatography (HPLC) in the Xiamen Bay, a subtropical bay in southeast China, between May 2003 and February 2004. The results showed that growth rates of phytoplankton ranged from 0.71 to 2.2 d^-1 with the highest value occurred in the inner bay in May. Mierozooplankton grazing rates ranged from 0.5 to 3.1 d^-1 with the highest value occurred in the inner bay in August. Microzooplankton grazing impact ranged from 39% to 95% on total phytoplankton Chl a biomass, and 65% to 181% on primary production. The growth and grazing rates of each phytoplankton group varied, the highest growth rate (up to 3.3 d^-1 ) was recorded for diatoms in August, while the maximum grazing rate ( up to 2.1 d ^-1 ) was recorded for chlorophytes in February in the inner bay. Among main phytoplankton groups, grazing pressure of microzooplankton ranged from 10% to 83% on Chl a biomass, and from 14% to 151% on primary production. The highest grazing pressure on biomass was observed for cryptophytes (83%) in August, while the maximum grazing pressure on primary production was observed for eyanobacteria (up to 151% ) in December in the inner bay. Net growth rates of larger phytoplanktons (diatoms and dinoflagellates) were higher than those of smaller groups ( prasinophytes, chlorophytes and cyanobacteria). Relative preference index showed that microzooplankton grazed preferentially on prasinophytes and avoided to harvest diatoms in cold seasons (December and February).  相似文献   

17.
During late winter and spring of 2002 and 2003, 24 two- to three-day cruises were conducted to Dabob Bay, Washington State, USA, to examine the grazing, egg production, and hatching success rates of adult female Calanus pacificus and Pseudocalanus newmani. Here, we discuss the results of our grazing experiments for P. newmani. Each week, we conducted traditional microzooplankton dilution experiments and “copepod dilution” experiments, each from two different layers. Grazing was measured by changes in chlorophyll concentration and direct cell counts. Clearance rates on individual prey species, as calculated by cell counts, showed that Pseudocalanus are highly selective in their feeding, and may have much higher grazing rates on individual taxa than calculated from bulk chlorophyll disappearance. The grazing rates of the copepods, however, are typically an order of magnitude lower than the grazing rates of the microzooplankton community, or the growth rates of the phytoplankton. P. newmani ingested diatoms, but, at certain times fed preferentially on microzooplankton, such as ciliates, tintinnids, and larger dinoflagellates. Removal of the microzooplankton may have released the other phytoplankton species from grazing pressure, allowing those species’ abundance to increase, which was measured as an apparent “negative” grazing on those phytoplankton species. The net result of grazing on some phytoplankton species, while simultaneously releasing others from grazing pressure resulted in bulk chlorophyll-derived estimates of grazing which were essentially zero or slightly negative; thus bulk chlorophyll disappearance is a poor indicator of copepod grazing. Whether copepods can significantly release phytoplankton from the grazing pressure by microzooplankton in situ, thus causing a trophic cascade, remains to be verified, but is suggested by our study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号