首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Landsat Thematic Mapper (TM) image acquired on 23 July 1991 recorded widespread activity associated with the Episode 48 of the Pu'u 'O'o-Kupaianaha eruption of Kilauea Volcano, Hawaii. The scene contains a very large number (>3500) of thermally elevated near infrared (0.8–2.35 m) pixels (each 900 m2), which enable the spatial distribution of volcanic activity to be identified. This activity includes a lava lake within Pu'u 'O'o cone, an active lava tube system (7.9 km in length) with skylights between the Kupaianaha lava shield and several ocean entry points, and extensive active surface flows (total area of 1.3 km2) within a much larger area of cooling flows (total16 km2). The production of an average flux density map from the TM data of the flow field, wherein the average flux density is defined in units of Wm-2, allows for the chronology of emplacement of active and cooling flows to be determined. The flux density map reveals that there were at least three breakouts (>5000 Wm-2) feeding active flows, but on the day that the data were collected the TM recorded a waning phase of surface activity in this area, based on the relatively large amount of intermediate power-emitting (cooling) flows compared to high power-emitting (active) flows. The production of a comparable flux density map for future eruptions would aid in the assessment of volcanic hazards if the data were available in near-real time.  相似文献   

2.
The Colima Volcanic Complex at the western end of the Mexican Volcanic Belt is the most active andesitic volcano in Mexico. Short-wavelength infrared data from the Landsat Thematic Mapper satellite were used to determine the temperature and fractional area of radiant picture elements for two January data acquisitions in 1985 and 1986. The 1986 data showed four 28.5 m by 28.5 m pixels (picture elements) whose hot subpixel components had temperatures ranging from 511–774° C and areas of 1.8–13 m2. The 1985 data had no radiating areas above background temperatures. Ground observations and measurements in November 1985 and February 1986 reported the presence of hot fumaroles at the summit with temperatures of 135–895° C. This study demonstrates the utility of satellite data for monitoring volcanic activity.  相似文献   

3.
The eruption that started in the Hekla volcano in South Iceland on 17 January 1991, and came to an end on 11 March, produced mainly andesitic lava. This lava covers 23 km2 and has an estimated volume of 0.15 km3. This is the third eruption in only 20 years, whereas the average repose period since 1104 is 55 years. Earthquakes, as well as a strain pulse recorded by borehole strainmeters, occurred less than half an hour before the start of the eruption. The initial plinian phase was very short-lived, producing a total of only 0.02 km3 of tephra. The eruption cloud attained 11.5 km in height in only 10 min, but it became detached from the volcano a few hours later. Several fissures were active during the first day of the eruption, including a part of the summit fissure. By the second day, however, the activity was already essentially limited to that segment of the principal fissure where the main crater subsequently formed. The average effusion rate during the first two days of the eruption was about 800 m3 s–1. After this peak, the effusion rate declined rapidly to 10–20 m3 s–1, then more slowly to 1 m3 s–1, and remained at 1–12 m3 s–1 until the end of the eruption. Site observations near the main crater suggest that the intensity of the volcanic tremor varied directly with the force of the eruption. A notable rise in the fluorine concentration of riverwater in the vicinity of the eruptive fissures occurred on the 5th day of the eruption, but it levelled off on the 6th day and then remained essentially constant. The volume and initial silica content of the lava and tephra, the explosivity and effusion rate during the earliest stage of the eruption, as well as the magnitude attained by the associated earthquakes, support earlier suggestions that these parameters are positively related to the length of the preceeding repose period. The chemical difference between the eruptive material of Hekla itself and the lavas erupted in its vicinity can be explained in terms of a density-stratified magma reservoir located at the bottom of the crust. We propose that the shape of this reservoir, its location at the west margin of a propagating rift, and its association with a crustal weakness, all contribute to the high eruption frequency of Hekla.  相似文献   

4.
Utilizing historical accounts, field mapping, and photogeology, this paper presents a chronology of, and an analysis of magma transport during, the December 1919 to August 1920 satellitic shield eruption of Mauna Iki on the SW rift zone of Kilauea Volcano, Hawaii. The eruption can be divided into four stages based on the nature of the eruptive activity. Stage 1 consisted of the shallow injection of a dike from the summit region to the eventual eruption site 10 km downrift. During stage 2, a low ridge of pahoehoe formed in the vent area; later a large a'a flow broke out of this ridge and flowed 8.5 km SW at an average flow front velocity of 0.5 km/day. The eruption continued until mid-August producing almost exclusively pahoehoe, first as gas-rich overflows from a lava pond (stage 3), and later as denser tube-fed lava (stage 4) that reached almost 8 km from the vent at an average flow-front velocity of 0.1 km/day. Magma transport during the Mauna Iki eruption is examined using three criteria: (1) eruption characteristics and volumetric flow rates; (2) changes in the surface height of the Halemaumau lava lake; and (3) tilt measurements made at the summit of Kilauea. We find good correlation between Halemaumau lake activity and the eruptive stages. Additionally, the E-W component of summit tilt tended to mimic the lake activity. The N-S component, however, did not. Multiple storage zones in the shallow summit region probably accounted for the decoupling of E-W and N-S tilt components. Analysis of these criteria shows that at different times during the eruption, magma was either emplaced into the volcano without eruption, hydraulically drained from Halemaumau to Mauna Iki, or fed at steady-state conditions from summit storage to Mauna Iki. Volume calculations indicate that the supply rate to Kilauea during the eruption was around 3 m3/s, similar to that calculated during the Mauna Ulu and Kupaianaha shield-building eruptions, and consistent with previously determined values of long-term supply to Kilauea.  相似文献   

5.
The magma eruption rates of Merapi volcano form 1890 to 1992 are re-examined chronologically. For this volcano, movements of extruded lavas and domes as well as their extrusions are important because they control the modes of the subsequent activities and cause nuées ardentes and lahars. The monthly eruption rates varied widely, but the cumulative volume of lavas has increased linearly and is expressed as 0.1x106 m3/month. The magma production rate of this volcano may have been constant for these 100 years. Recurrent excessive effusion of lavas is tentatively interpreted by assuming a magma reservoir. The averaged eruption rate is small in comparison with other volcanoes such as Nyramuragia, Kilauea and Vesuvio. However, it is remarkable that the activity has been continuous for these 100 years and the total amount of lava discharged during this period reached more than 108 m3. A simple model for the formation of the 1992 lava dome is presented. The viscosity of the lavas is probably between 106 and 107 P and the length of the magma conduit is probably less than 10 km.  相似文献   

6.
 We analyze digital topographic data collected in September 1993 over a ∼500-km2 portion of K*lauea Volcano, Hawai'i, by the C-band (5.6-cm wavelength) topographic synthetic aperture radar (TOPSAR) airborne interferometric radar. Field surveys covering an ∼1-km2 area of the summit caldera and the distal end of an ∼8-m-thick 'a'* flow indicate that the 10-m spatial resolution TOPSAR data have a vertical accuracy of 1–2 m over a variety of volcanic surfaces. After conversion to a common datum, TOPSAR data agree favorably with a digital elevation model (DEM) produced by the U.S. Geological Survey (USGS), with the important exception of the region of the ongoing eruption (which postdates the USGS DEM). This DEM comparison gives us confidence that subtracting the USGS data from TOPSAR data will produce a reasonable estimate of the erupted volume as of September 1993. This subtraction produces dense rock equivalent (DRE) volumes of 392, 439, and 90×106 m3 for the Pu'u '*'*, K*pa'ianah*, and episode 50–53 stages of the eruption, respectively. These are 124, 89, and 94% of the volumes calculated by staff of the Hawaiian Volcano Observatory (HVO) but do not include lava of K*pa'ianah* and episodes 50–53 that flowed into the ocean and are thus invisible to TOPSAR. Accounting for this lava increases the TOPSAR volumes to 124, 159, and 129% of the HVO volumes. Including the ±2-m uncertainty derived from the field surveys produces TOPSAR-derived volumes for the eruption as a whole that range between 81 and 125% of the USGS-derived values. The vesicularity- and ocean-corrected TOPSAR volumes yield volumetric eruption rates of 4.5, 4.5, and 2.7 m3/s for the three stages of the eruption, which compare with HVO-derived values of 3.6, 2.8, and 2.1 m3/s, respectively. Our analysis shows that care must be taken when vertically registering the TOPSAR and USGS DEMs to a common datum because C-band TOPSAR penetrates only partially into thick forest and therefore produces a DEM within the tree canopy, whereas the USGS DEM is adjusted for vegetation. Received: 28 April 1998 / Accepted: 1 February 1999  相似文献   

7.
Summary The real area of contact has been determined, and measurements of the maximum and average surface temperatures generated during frictional sliding along precut surfaces in Tennessee sand-stone have been made, through the use of thermodyes. Triaxial tests have been made at 50 MPa confining pressure and constant displacement rates of 10–2 to 10–6 cm/sec, and displacements up to 0.4 om. At 0.2 cm of stable sliding, the maximum temperature decreases with decreasing nominal displacement rate from between 1150° to 1175°C at 10–2 cm/sec to between 75° to 115°C at 10–3 cm/sec. The average temperature of the surface is between 75 and 115°C at 10–2 cm/sec, but shows no rise from room temperature at 10–3 cm/sec. At 0.4 cm displacement, and in the stick-slip mode, as the nominal displacement rate decreases from 10–3 to 10–6 cm/sec, the maximum temperature decreases from between 1120° to 1150°C to between 1040° to 1065°C. The average surface temperature is 115° to 135°C at displacement rates from 2.6×10–3 to 10–4 cm/sec.With a decrease in the displacement rate from 10–2 to 10–6 cm/sec, the real area of contact increases from about 5 to 14 percent of the apparent area; the avergge area of asperity contact increases from 2.5 to 7.5×10–4 cm2. Although fracture is the dominate mechanism during stick-up thermal softening and creep may also contribute to the unstable sliding process.  相似文献   

8.
藏南羊卓雍错湖面大气湍流特征观测分析   总被引:2,自引:1,他引:1  
沈鹏珂  张雪芹 《湖泊科学》2019,31(1):243-255
湍流运动是大气边界层的本质特征,是地表与大气之间能量和物质交换的主要方式.本文利用2016和2017年4-10月藏南羊卓雍错湖泊涡动观测资料,分析了湖面大气湍流方差和湍流特征量的统计和变化特征.结果表明:(1)不稳定层结下,三维风速分量和超声虚温、水汽密度、CO2密度的无量纲标准差随稳定度变化符合Monin-Obukhov相似理论的"1/3"或"-1/3"次幂律,垂直风速的拟合效果最好;稳定层结下,除CO2密度无量纲标准差与稳定度无明显关系外,其他量基本上满足相似性规律;中性条件下,以上物理量的无量纲标准差分别趋近常数:3.57、3.93、0.77、20.91、6.35和11.96.(2)水平方向平均湍流强度(0.60和0.58)大于垂直方向(0.13),三维方向湍流强度与平均风速的变化呈显著负相关,相关系数分别为-0.39、-0.42和-0.34.(3)湖面湍流动能随风速呈线性增长,增长率达0.45 m/s;近中性层结时湍流动能最大,层结越稳定或不稳定湍流动能均减小.(4)湖泊下午到傍晚动量输送较强,13:00-22:30时间段平均动量通量达0.091 kg/(m·s2);热量输送以潜热为主,潜热通量日平均值(77.3 W/m2)是感热通量(14.6 W/m2)的5.3倍,感热和潜热通量日变化峰值分别出现在5:30(22.4 W/m2)和16:00(106.6 W/m2).  相似文献   

9.
Forward-Looking Infrared (FLIR) nighttime thermal images were used to extract the thermal and morphological properties for the surface of a blocky-to-rubbley lava mass active within the summit crater of the Caliente vent at Santiaguito lava dome (Guatemala). Thermally the crater was characterized by three concentric regions: a hot outer annulus of loose fine material at 150–400°C, an inner cold annulus of blocky lava at 40–80°C, and a warm central core at 100–200°C comprising younger, hotter lava. Intermittent explosions resulted in thermal renewal of some surfaces, mostly across the outer annulus where loose, fine, fill material was ejected to expose hotter, underlying, material. Surface heat flux densities (radiative + free convection) were dominated by losses from the outer annulus (0.3–1.5 × 104  s−1m−2), followed by the hot central core (0.1–0.4 × 104 J s−1m−2) and cold annulus (0.04–0.1 × 104 J s−1m−2). Overall surface power output was also dominated by the outer annulus region (31–176 MJ s−1), but the cold annulus contributed equal power (2.41–7.07 MJ s−1) as the hot central core (2.68–6.92 MJ s−1) due to its greater area. Cooled surfaces (i.e. the upper thermal boundary layer separating surface temperatures from underlying material at magmatic temperatures) across the central core and cold annulus had estimated thicknesses, based on simple conductive model, of 0.3–2.2 and 1.5–4.3 m. The stability of the thermal structure through time and between explosions indicates that it is linked to a deeper structural control likely comprising a central massive plug, feeding lava flow from the SW rim of the crater, surrounded by an arcuate, marginal fracture zone through which heat and mass can preferentially flow.  相似文献   

10.
Geology of a submarine volcanic caldera in the Tonga Arc: Dive results   总被引:2,自引:0,他引:2  
A submersible dive conducted on Volcano #1 located near 21° 09′S–175° 45′W on the Tonga Arc showed that the volcanic edifice with a caldera floor area of 30 km2 located at and 450 m deep (b.s.l.=below sea level) was constructed recently during episodic volcanism. The sequential volcanic events are recorded along a faulted terrain formed in response to the collapse of the caldera wall. The post-caldera events are marked by occasional eruptions that have built scoriaceous cones associated with low-temperature hydrothermal venting and localized small-scale collapse features. The stratigraphy of the caldera wall indicates that the volcano was built by explosive volcanism alternating with quieter eruptive events. The repeated, violent explosive events formed ≤ 20 m thick sequences composed of alternating fine-grained ash beds and sand- to boulder-sized pyroclastic layers. During quieter volcanic events, dykes and massive flows intruded and/or accompanied the eruption of the volcaniclastic deposits throughout the sections of the wall explored. Massive columnar-jointed flows consist of viscous, silica-rich lavas forming tabular and giant radial-jointed (GRJ) flows formed in large (> 8 m in diameter) conduits and extruded onto the sea floor. In addition, massive lava flows forming sill-like complexes were observed underneath and near the giant radial-jointed columnar flows. Also, an intermittent quiet type of eruption produced vesicular lava flows, which are interbedded within the pyroclastic layered deposits. The massive and vesicular lavas consist of andesites and dacites with Ca-depleted (pigeonite) and Ca-enriched (salite) pyroxene, and intermediate (andesine-labradorite) to calcic (bytownite) plagioclase. They are depleted in total alkalis (Na2O + K2O < 3%), K2O (< 1%), Zr/Y (< 1.8), Nb/Zr (< 0.01) and light Rare Earth Elements. We interpret that these andesite–dacite series were erupted after undergoing crystal-liquid fractionation in a magma chamber located underneath the caldera floor.  相似文献   

11.
After the March–April 1986 explosive eruption a comprehensive gas study at Augustine was undertaken in the summers of 1986 and 1987. Airborne COSPEC measurements indicate that passive SO2 emission rates declined exponentially during this period from 380±45 metric tons/day (T/D) on 7/24/86 to 27±6 T/D on 8/24/87. These data are consistent with the hypothesis that the Augustine magma reservoir has become more degassed as volcanic activity decreased after the spring 1986 eruption. Gas samples collected in 1987 from an 870°C fumarole on the andesitic lava dome show various degrees of disequilibrium due to oxidation of reduced gas species and condensation (and loss) of H2O in the intake tube of the sampling apparatus. Thermochemical restoration of the data permits removal of these effects to infer an equilibrium composition of the gases. Although not conclusive, this restoration is consistent with the idea that the gases were in equilibrium at 870°C with an oxygen fugacity near the Ni–NiO buffer. These restored gas compositions show that, relative to other convergent plate volcanoes, the Augustine gases are very HCl rich (5.3–6.0 mol% HCl), S rich (7.1 mol% total S), and H2O poor (83.9–84.8 mol% H2O). Values of D and 18O suggest that the H2O in the dome gases is a mixture of primary magmatic water (PMW) and local seawater. Part of the Cl in the Augustine volcanic gases probably comes from this shallow seawater source. Additional Cl may come from subducted oceanic crust because data by Johnston (1978) show that Cl-rich glass inclusions in olivine crystals contain hornblende, which is evidence for a deep source (>25km) for part of the Cl. Gas samples collected in 1986 from 390°–642°C fumaroles on a ramp surrounding the inner summit crater have been oxidized so severely that restoration to an equilibrium composition is not possible. H and O isotope data suggest that these gases are variable mixtures of seawater, FMW, and meteoric steam. These samples are much more H2O-rich (92%–97% H2O) than the dome gases, possibly due to a larger meteoric steam component. The 1986 samples also have higher Cl/S, S/C, and F/Cl ratios, which imply that the magmatic component in these gases is from the more degassed 1976 magma. Thus, the 1987 samples from the lava dome are better indicators than the 1986 samples of degassing within the Augustine magma reservoir, even though they were collected a year later and contain a significant seawater component. Future gas studies at Augustine should emphasize fumaroles on active lava domes. Condensates collected from the same lava-dome fumarole have enrichments ot 107–102 in Cl, Br, F, B, Cd, As, S, Bi, Pb, Sb, Mo, Zn, Cu, K, Li, Na, Si, and Ni. Lower-temperature (200°–650°C) fumaroles around the volcano are generally less enriched in highly volatile elements. However, these lower-termperature fumaroles have higher concentration of rock-forming elements, probably derived from the wall rock.  相似文献   

12.
A study of the historic record of activity of Piton de la Fournaise has revealed a cyclic pattern of eruption involving effusion of oceanite lava from major-flank centers every 20–40 years. Calculated volumes of the recent lava flows and pyroclastic ejecta have established an effusion rate of 3.9 m3 s−1 since 1931 and 6.2 m3 s−1 since 1951. Flank eruptions outside the present caldera define a distribution maximum which is expected to correlate with the depth range of a high-level magma reservoir.A model has been constructed which requires replenishment of a high-level magma chamber at a constant rate and regular eruption from summit and minor-flank centers, acting as “safety valves” to the magma chamber; when the magma chamber reaches its maximum expansion, a major-flank outburst of oceanitic lava occurs.The fact that calculated effusion rates are not consistent with radiometric dates implies an increase in effusion volume with time for the volcano.  相似文献   

13.
In southern British Columbia the terrestrial heat flow is low (44 mW m–2) to the west of the Coast Plutonic Complex (CPC), average in CPC (50–60 mW m–2),and high to the east(80–90 mW m–2). The average heat flow in CPC and the low heat generation (less than 1 W m–3) indicate that a relatively large amount of heat flows upwards into the crust which is generally quite cool. Until two million years ago the Explorer plate underthrust this part of the American plate, carrying crustal material into the mantle. Melted crustal rocks have produced the inland Pemberton and Garibaldi volcanic belts in the CPC.Meager Mountain, a volcanic complex in the CPC 150 km north of Vancouver, is a possible geothermal energy resource. It is the product of intermittent activity over a period of 4 My, the most recent eruption being the Bridge River Ash 2440 y B.P. The original explosive eruption produced extensive fracturing in the granitic basement, and a basal explosion breccia from the surface of a cold brittle crust. This breccia may be a geothermal reservoir. Other volcanic complexes in the CPC have a similar potential for geothermal energy.Earth Physics Contribution No. 704.  相似文献   

14.
The June 1991 eruption of Mount Pinatubo, Philippines breached a significant, pre-eruptive magmatic-hydrothermal system consisting of a hot (>300 °C) core at two-phase conditions and surrounding, cooler (<260 °C) liquid outflows to the N and S. The eruption created a large, closed crater that accumulated hydrothermal upwellings, near-surface aquifer and meteoric inflows. A shallow lake formed by early September 1991, and showed a long-term increase in level of ~1 m/month until an artificial drainage was created in September 2001. Comparison of the temporal trends in lake chemistry to pre- and post-eruptive springs distinguishes processes important in lake evolution. The lake was initially near-neutral pH and dominated by meteoric influx and Cl–SO4 and Cl–HCO3 hydrothermal waters, with peaks in SO4 and Ca concentrations resulting from leaching of anhydrite and aerosol-laden tephra. Magmatic discharge, acidity (pH~2) and rock dissolution peaked in late 1992, during and immediately after eruption of a lava dome on the crater floor. Since cessation of dome growth, trends in lake pH (increase from 3 to 5.5), temperature (decline from 40 to 26 °C), and chemical and isotopic composition indicate that magmatic degassing and rock dissolution have declined significantly relative to the input of meteoric water and immature hydrothermal brine. Higher concentrations of Cl, Na, K, Li and B, and lower concentrations of Mg, Ca, Fe, SO4 and F up to 1999 highlight the importance of a dilute hydrothermal contribution, as do stable-isotope and tritium compositions of the various fluids. However, samples taken since that time indicate further dilution and steeper trends of increasing pH and declining temperature. Present gas and brine compositions from crater fumaroles and hot springs indicate boiling of an immature Cl–SO4 geothermal fluid of near-neutral pH at approximately 200 °C, rather than direct discharge from magma. It appears that remnants of the pre-eruptive hydrothermal system invaded the magma conduit shortly after the end of dome emplacement, blocking the direct degassing path. This, along with the large catchment area (~5 km2) and the high precipitation rate of the area, led to a rapid transition from a small and hot acid lake to a large lake with near-ambient temperature and pH. This behavior contrasts with that of peak-activity lakes that have more sustained volcanic gas influx (e.g., Kawah Ijen, Indonesia; Poas and Rincón de la Vieja, Costa Rica).Editorial responsibility: H. Shinohara  相似文献   

15.
The late Pleistocene San Venanzo maar and nearby Pian di Celle tuff ring in the San Venanzo area of Umbria, central Italy, appear to represent different aspects of an eruptive cycle accompanied by diatreme formation. Approximately 6x106 m3 of mostly lapillisized, juvenile ejecta with lesser amounts of lithics and 1x106 m3 of lava were erupted. The stratigraphy indicates intense explosive activity followed by lava flows and subvolcanic intrusions. The pyroclastic material includes lithic breccia derived from vent and diatreme wall erosion, roughly stratified lapilli tuff deposited by concentrated pyroclastic surge, chaotic scoriaceous pyroclastic flow and inverse graded grain-flow deposits. The key feature of the pyroclastics is the presence of concentric-shelled lapilli generated by accretion around the lithics during magma ascent in the diatreme conduits. The rock types range from kalsilite leucite olivine melilitite lavas and subvolcanic intrusions to carbonatite, phonolite and calcitic melilitite pyroclasts. Juvenile ejecta contain essential calcite whose composition and texture indicate a magmatic origin. Pyroclastic carbonatite activity is also indicated by the presence of carbonatite ash beds. The San Venanzo maar-forming event is believed to have been trigered by fluid-rich carbonatite-phonolite magma. The eruptive centre the moved to the Pian di Celle tuff ring, where the eruption of degassed olivine melilititic magma and late intrusions ended magmatic activity in the area. In both volcanoes the absence of phreatomagmatic features together with the presence of large amounts of primary calcite suggests carbonatite segregation and violent exsolution of CO2 which, flowing through the diatremes, produced the peculiar intrusive pyroclastic facies and triggered explosions.  相似文献   

16.
The latest cycle of volcanism on Tenerife has involved the construction of two stratovolcanoes, Teide and Pico Viejo (PV), and numerous flank vent systems on the floor of the Las Cañadas Caldera, which has been partially infilled by magmatic products of the basanite-phonolite series. The only known substantial post-caldera explosive eruption occurred 2 ka bp from satellite vents at Montaña Blanca (MB), to the east of Teide and at PV. The MB eruption began with extrusion of 0.022 km3 of phonolite lava (unit I) from a WNW-ESE fissure system. The eruption then entered an explosive subplinian phase. Over a 7–11 hour period, 0.25 km3 (DRE) of phonolitic pumice (unit II) was deposited from a 15 km high subplinian column, dispersed to the NE by 10 m/s winds. Pyroclastic activity also occurred from vents near PV to the west of Teide. Fire-fountaining towards the end of the explosive phase formed a proximal welded spatter facies. The eruption closed with extrusion of small volume domes and lavas (0.025 km3) at both vent systems. Geochemical, petrological data and Fe-Ti oxide geothermometry indicate the eruption of a chemically and thermally stratified magma system. The most mafic and hottest (875°C) unit I magma can yield the more evolved and cooler (755–825°C) phonolites of units II and III by between 7 and 11% fractional crystallization of an assemblage dominated by alkali feldspar. Analyses of glass inclusions from phenocrysts by ion microprobe show that the pumice was derived from the water-saturated roof zone of a chamber containing 3.0–4.5 wt.% H2O and abundant halogens (F0.35wt.%). Hotter, more mafic tephritic magma intermingled with the evolved phonolites in banded pumice, indicating the injection of mafic magma into the system during or just before eruption. Reconstruction ot the event indicates a small chamber chemically stratified by in situ (side-wall) crystallization at a depth of 3–4 km below PV. Although phonolite is the dominant product of the youngest activity of the Teide-PV system, there has been no eruption of phonolitic magma for at least 500 years from teide itself and for 2000 years from the PV system. Therefore there could be a large volume of highly evolved, volatile-rich magma accumulating in these magma systems. An eruption of fluorine-rich magma comparable with MB would have major damaging effects on the island.  相似文献   

17.
The basaltic Kaupulehu 1800–1801 lava flow of Hualalai Volcano, Hawaii contains abundant ultramafix xenoliths. Many of these xenoliths occur as bedded layers of semi-rounded nodules, each thinly coated with a veneer (typically 1 mm thick) of lava. The nodule beds are analogous to cobble deposits of fluvial sedimentary systems. Although several mechanisms have been proposed for the formation of the nodule beds, it was found that, at more than one locality, the nodule beds are overbank levee deposits. The geological occurrence of the nodules, certain diagnostic aspects of the flow morphology and consideration of the inferred emplacement process indicate that the Kaupulehu flow had an exceptionally low viscosity on eruption and that the flow of the lava stream was extremely rapid, with flow velocities of at least 10 m s-1 (more than 40 km h-1). This flow is the youngest on Hualalai Volcano and future eruptions of a similar type would pose considerable hazard to life as well as property.  相似文献   

18.
19.
Atmospheric mercury concentrations were measured during a nautical expedition on the Atlantic Ocean between Hamburg (54°N, 10°E) and Santo Domingo (20°N, 67°W). In addition, samples were taken during flights on a commerical aircraft in the upper and middle troposphere between 60°N and 55°S, mostly over the Pacific Ocean. The data obtained in the lower troposphere over the Northern Atlantic show considerable variation in the Hg concentrations, with values ranging between 1 and 11 ng/m3; the average concentration was found to be 2.8 ng/m3. The upper tropospheric data show an interhemispheric difference with average values of 1.45 ng/m3 and 1.08 ng/m3 in the Northern and Southern Hemisphere, respectively. This suggests that mercury production occurs predominantly over the continents both by natural and anthropogenic processes. The mercury content in aerosols was found to be 0.3 ng/m3, or one-tenth of the atmospheric concentration. The data indicate a mean residence time of mercury in the atmosphere of a few months to one year.  相似文献   

20.
The 1975 sub-terminal activity was characterised by low effusion rates (0.3–0.5 m3 s−1) and the formation of a compound lava field composed of many thousands of flow units. Several boccas were active simultaneously and effusion rates from individual boccas varied from about 10−4 to 0.25 m3s−1. The morphology of lava flows was determined by effusion rate (E): aa flows with well-developed channels and levees formed when E > 2 × 10−3 m3 s−1, small pahoehoe flows formed when 2 × 10−3 m3 s−1 >E > 5 > 10−4 m3 s−1 and pahoehoe toes formed when E < 5 × 10−4 m3 s−1. There was very little variation with time in the effusion temperature, composition or phenocryst content of the lava.New boccas were commonly formed at the fronts of mature lava flows which had either ceased to flow or were moving slowly. These secondary boccas developed when fluid lava in the interior of mature aa flows either found a weakness in the flow front or was exposed by avalanching of the moving flow front. The resulting release of fluid lava was accompanied by either partial drainage of the mature flow or by the formation of a lava tube in the parent flow. The temperature of the lava forming the new bocca decreased with increasing distance from the source bocca (0.035°C m−1). It is demonstrated from the rate of temperature decrease and from theoretical considerations that many of the Etna lavas still contained a substantial proportion of uncooled material in their interior as they came to rest. The formation of secondary boccas is postulated to be one reason why direct measurements of effusion rates tend, in general, to overestimate the total effusion rates of sub-terminal Etna lava fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号