首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 806 毫秒
1.
周建  吕志伟 《测绘工程》2012,21(2):14-16
介绍3种不同的地球重力场模型及其(约化)动力学定轨中所涉及的动力学模型,并基于Collocation轨道积分方法对CHAMP卫星进行数值积分,然后将轨道积分结果与JPL快速精密星历相比较。实验结果表明,由CHAMP卫星SST数据反演生成的EIGEN-2模型引力位系数具有较高的精度,能够满足低轨卫星精密定轨的需要。  相似文献   

2.
研究了星载GPS伪距测量精度评定方法以及粗差的探测方法,用自编的软件对CHAMP卫星和SAC-C卫星的星载GPS实测数据进行了详细的分析。结果表明:随着卫星高度角的不同,多路径效应与伪距测量噪声对星载GPS伪距测量精度的影响在0.5~3.0 m之间;CHAMP和SAC-C星载GPS观测数据中,伪距粗差观测值所占的比例分别达到1.2%和3.0%。  相似文献   

3.
利用地球重力场模型计算CHAMP卫星参考轨道   总被引:3,自引:1,他引:3  
结合CHAMP卫星观测数据的动力法反演,研究了CHAMP卫星参考轨道的数值方法。分别通过利用40~50阶重力位系数模型计算轨道,并与业已公布的卫星轨道数据进行比较,结果表明,CHAMP(低轨)卫星轨道对重力场低频部分的敏感度较大,考虑低阶(40阶左右)重力场模型计算的卫星参考轨道精度较高。  相似文献   

4.
由星载GPS双差相位数据进行CHAMP卫星动力学定轨   总被引:1,自引:0,他引:1  
为了确定CHAMP卫星的轨道,由星载GPS数据和IGS跟踪站的GPS数据构造星地相位双差观测量,利用EOP、SGO、时间等数据,对GPS数据进行预处理,包括钟差改正、模糊度解算和周跳探测、卫星姿态改正、天线偏差和相位中心改正等,采用CHAMP卫星受力摄动模型,根据动力学原理,对CHAMP卫星进行实际定轨。与德国GFZ定轨结果PSO相比,本方法定轨结果径向精度为0.2857m。对于1d的重叠轨道,径向轨道差异的RMS为0.0958m。对于轨道端点比较,径向轨道差异平均为0.0666m。  相似文献   

5.
结合CHAMP卫星观测数据的动力法反演,研究了CHAMP卫星参考轨道的数值方法.分别通过利用40~50阶重力位系数模型计算轨道,并与业已公布的卫星轨道数据进行比较,结果表明, CHAMP(低轨)卫星轨道对重力场低频部分的敏感度较大,考虑低阶(40阶左右)重力场模型计算的卫星参考轨道精度较高.  相似文献   

6.
研究了星载GPS伪距测量精度评定方法以及粗差的探测方法,用自编的软件对CHAMP卫星和SAC-C卫星的星载GPS实测数据进行了详细的分析.结果表明:随着卫星高度角的不同,多路径效应与伪距测量噪声对星载GPS伪距测量精度的影响在0.5~3.0 m之间;CHAMP和SAC-C星载GPS观测数据中,伪距粗差观测值所占的比例分别达到1.2%和3.0%.  相似文献   

7.
利用SLR检核CHAMP卫星轨道   总被引:5,自引:0,他引:5  
初步研究了利用SLR检核CHAMP卫星轨道的方法。采用2002年1月1日到16日的SLR观测数据对GFZ提供的事后科学轨道进行了检核实验,实验结果表明,GFZ事后科学轨道没有明显的系统偏差,其精度优于10cm。  相似文献   

8.
本文紧密结合当前卫星重力测量技术的发展需求,围绕利用CHAMP卫星轨道和加速度计数据恢复地球重力场展开研究,重点在CHAMP数据预处理、重力场恢复、正则化算法等方面进行了理论和实践上的系统研究,建立了一套完整的CHAMP重力场恢复理论和算法。论文的主要内容和创新点概括如下:  相似文献   

9.
定轨是地球探测卫星任务顺利执行的关键。星载GPS技术提供了大量、连续的高低卫星跟踪观测,为低轨卫星精密定轨提供了技术支撑。为了确定CHAMP卫星的轨道,并分析定轨精度,利用CHAMP卫星星载GPS数据,运用零差简动力法进行精密定轨,给出了精密定轨流程。利用实际数据进行了精密定轨实验,结果与德国地学研究中心(GFZ)公布的CHAMP卫星快速轨道(RSO)进行了对比,结果显示:求解轨道可以达到厘米量级。  相似文献   

10.
低轨卫星精密定轨中重力场模型误差的补偿   总被引:2,自引:0,他引:2  
分析了不同重力场对低轨卫星运动影响的特征,并基于CHAMP卫星和GRACE卫星的真实轨道,利用轨道积分和轨道拟舍的方法,研究了线性分段加速度、周期性分段加速度以厦虚拟随机脉冲加速度在精密定轨中对重力场模型误差的补偿效果。  相似文献   

11.
针对北斗卫星导航系统(BDS)完备性研究较少的现状,该文提出了一种导航星历中轨道观测数据的完备性监测新方法。采用轨道积分方法分析了北斗卫星的轨道残差均方根值;通过概率统计的方法,分别计算所有北斗卫星的轨道残差极限误差值(告警限差),剔除误差超限甚至粗差卫星,实现事后轨道完备性监测。另外通过比较分析剔除监测标记出的误差卫星之前和之后对测站精密单点定位的影响,验证完备性的风险性。最后通过实测数据对该算法进行了验证和分析。实验结果表明:该算法可以实现卫星轨道的监测示警,标记误差卫星,达到轨道完备性监测效果。  相似文献   

12.
徐天河 《测绘学报》2005,34(4):371-371
本文紧密结合当前卫星重力测量技术发展需求,围绕利用CHAMP轨道和加速度计数据恢复地球重力场展开研究,重点在CHAMP数据预处理、重力场恢复、正则化算法等方面进行了理论和实践上的系统研究,建立了一套完整的CHAMP重力场恢复理论和算法.论文的主要创新点有:  相似文献   

13.
在动力学模型补偿算法的基础上,推导了星载GPS实时定轨的卡尔曼滤波模型。以此为理论基础,自主研制了星载GPS实时定轨软件SATODS。使用CHAMP卫星上的星载GPS实测伪距数据以及GPS卫星广播星历来模拟实时定轨数据处理,并将实时定轨结果与JPL精密轨道进行比较分析。结果表明,在滤波收敛后,实时定轨的轨道精度和速度精度的3dRMS分别可达到1.0m和1.2mm/s,受观测数据的GPS卫星数、PDOP值、粗差数据和数据中断等因素的影响较小。  相似文献   

14.
基于能量守恒方程给出了利用卫星轨迹交叉点标定CHAMP卫星加速度数据的基本原理和方法 ,并给出了其严密的积分公式及其离散化形式。为了控制加速度数据的扰动异常 ,建议采用抗差估计求解参数值 ,并基于实测的CHAMP卫星加速度计数据进行了计算与比较 ,验证了该方法的有效性  相似文献   

15.
星载加速度传感器的在轨运动影响   总被引:2,自引:0,他引:2  
加速度传感器测量卫星所受非引力加速度的精度是利用该技术精确恢复重力场的重要指标。根据卫星运动理论 ,给出了轨道升交点赤经摄动、近升距摄动、卫星运动、坐标轴旋转引起的加速度性质以及相应表达式。针对CHAMP卫星轨道 ,讨论了各项的影响量级  相似文献   

16.
星载GPS载波相位测量的周跳探测方法研究   总被引:6,自引:0,他引:6  
提出了一种基于粗差探测理论的星载GPS载波相位数据周跳的探测方法。并编制了相关软件对CHAMP星载GPS测量数据进行了验算。结果表明,当跟踪的有效GPS卫星多于5颗时。能够探测出所有的周跳。  相似文献   

17.
根据GEO导航卫星的轨道特性,给出了严密的伪距观测和载波相位观测数学模型;讨论了其轨道和星钟差的解算条件,以及多星组差定轨的可行性。结果表明:在利用伪距时,如果测站钟差已知,需要4个以上站的数据才能进行定轨和星钟解算;如果站钟、星钟钟差已知,需要3个以上站的数据才能确定轨道。在利用站间组差伪距时,须有4个以上测站的钟差信息才能进行轨道和星钟解算;利用GEO卫星与MEO(IGSO)卫星组差定轨时,需要GEO卫星钟差已知且有3组星间组差数据。利用GEO卫星载波相位观测资料,不能单独解算轨道。  相似文献   

18.
实时用户从广播星历获取卫星轨道和钟差,广播星历的质量影响用户的定位精度。本文首先描述了GPS广播星历中非整点时刻数据块的三种出现形式;其次,结合一周GPS星历从轨道和钟差两方面分别对非整点时刻数据块进行分析,结果证明非整点时刻数据块并非粗差数据,且其精度优于整点时刻数据块;最后,针对GPS星历中非整点时刻数据块,给出了使用建议。  相似文献   

19.
根据GEO导航卫星的轨道特性,给出了严密的伪距观测和载波相位观测数学模型;讨论了其轨道和星钟差的解算条件,以及多星组差定轨的可行性.结果表明:在利用伪距时,如果测站钟差已知,需要4个以上站的数据才能进行定轨和星钟解算;如果站钟、星钟钟差已知,需要3个以上站的数据才能确定轨道.在利用站间组差伪距时,须有4个以上测站的钟差信息才能进行轨道和星钟解算;利用GEO卫星与MEO(IGSO)卫星组差定轨时,需要GEO卫星钟差已知且有3组星间组差数据.利用GEO卫星载波相位观测资料,不能单独解算轨道.  相似文献   

20.
本文介绍了InSAR卫星轨道状态矢量内插方法,基于荷兰Delft大学开发的Doris雷达干涉软件分析了SAR卫星轨道数据误差对基线参数、参考椭球面相位、地形干涉相位和数字高程模型(DEM)精度的影响。以西藏玛尼地区为例,采用ERS1/2卫星数据,利用Doris软件,分别生成了基于欧空局(ESA)粗略轨道数据和荷兰Delft大学精密轨道数据的数字高程模型(DEM),并以SRTMDEM为基准对其精度进行了对比分析。结果表明,基于粗轨数据获取的DEM明显存在系统偏差,而基于精轨数据获取的DEM与SRTM DEM吻合的很好,相对于前者,精度提高5倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号