首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Dozens of references recognizing pediment landforms in widely varying lithologic, climatic, and tectonic settings suggest a ubiquity in pediment forming processes on mountain piedmonts worldwide. Previous modeling work illustrates the development of a unique range in arid/semiarid piedmont slope (< 0.2 or 11.3°) and regolith thickness (2–4 m) that defines pediments, despite varying the initial conditions and domain characteristics (initial regolith thickness, slope, distance from basin to crest, topographic perturbations, and boundary conditions) and process rates (fluvial sediment transport efficiency and weathering rates). This paper expands upon the sensitivity analysis through numerical simulation of pediment development in the presence of spatially varying rock type, various base level histories, various styles of sediment transport, and various rainfall rates to determine how pediment development might be restricted in certain environments. This work suggests that in landscapes characterized by soil and vegetation types that favor incisive fluvial sediment transport styles coupled with incisive base level conditions, pediment development will be disrupted by the roughening of sediment mantled surfaces, thereby creating spatial variability in topography, regolith thickness, and bedrock weathering rates. Base level incision rates that exceed the integrated sediment flux along a hillslope derived from upslope weathering and sediment transport on the order of 10− 3 m y− 1 restrict pediment development by fostering piedmont incision and/or wholesale removal (stripping) of regolith mantles prior to footslope pediment development. Simulations illustrate an insensitivity to alternating layers of sandstone and shale 3–15 m thick oriented in various geometric configurations (vertical, horizontal, and dip-slope) and generating different regolith hydrologic properties and exhibiting weathering rate variations up to 3-fold. Higher fluxes and residence times of subsurface groundwater in more humid environments, as well as dissolution-type weathering, lead to a thickening of regolith mantles on erosional piedmonts on the order of 101 m and an elimination of pediment morphology. An initial test of the model sensitivity analysis in arid/semiarid environments, for which field reconnaissance and detailed geomorphic mapping indicate the presence of pediments controlled by climatic conditions (soil hydrologic properties, vegetation characteristics, and bedrock weathering style) that are known and constant, supports our modeling results that pediments are more prevalent in hydrologically-open basins.  相似文献   

2.
The Quaternary evolution and the morpho-sedimentary features of some of the most important rivers in Spain (Ebro and Tagus rivers among others) have been controlled by subsidence due to alluvial karstification of the evaporitic bedrock. The subsidence mechanism may range from catastrophic collapse to slow sagging of the alluvium by passive bending. In the Ebro Basin, the mechanisms and processes involved in karstic subsidence were studied through the analysis of present-day closed depressions as well as through old subsidence depressions (palaeocollapses and solution-induced basins) and associated deformations recorded in the Quaternary alluvial sediments. The Gállego–Ebro river system is presented as a case study of channel adjustments and geomorphic and sedimentary evolution of fluvial systems in dissolution-induced subsidence areas. In this fluvial system, evaporite dissolution during particular Quaternary time intervals (namely early and middle Pleistocene) have lead to the development of a solution-induced basin, approximately 30 km-long by 8 km-wide, filled by Quaternary deposits with a total thickness in excess of 190 m. The main river response to balance the subsidence in the alluvial plain was aggradation in the central reach of the subsiding area, and degradation both in the upstream reach and in the valley sides where alluvial fans and covered pediments may prograde over the fluvial sediments. The main sinking areas are recognized in the sedimentary record by anomalous thickenings in the alluvial deposits and fine-grained sediments deposited in backswamp and ponded areas.  相似文献   

3.
A large landslide on the urban fringe of metropolitan Phoenix, Arizona   总被引:2,自引:1,他引:2  
A granitic rock avalanche, one of the largest Quaternary landslides in Arizona outside the Grand Canyon with a volume of approximately 5.25 M m3 and a width a little under 0.5 km, ran 1 km from the eastern McDowell Mountains. With lateral levees and pressure ridges, the rock avalanche deposit displays many features found on classic sturzstroms. Failure occurred along a major joint plane paralleling the slope with a dip of 44°, when a major base level lowering event in the Salt River system would have undermined the base of the failed slope, and probably during a period of more moisture than normally available in the present-day arid climate. Failure at the subsurface weathering front highlights the importance of the dramatic permeability change between grussified regolith and relatively fresh bedrock. Rock varnish microlaminations (VMLs) dating, in concert with other geomorphic evidence, suggests that the rock avalanche deposit is slightly older than 500 ka. The rock vanish results also have important implications for sampling strategies designed to use cosmogenic nuclide to date Quaternary landslide deposits. Discovery of a large landslide in close proximity to the extending urban fringe of metropolitan Phoenix argues for a more careful analysis of landslide hazards in the region, especially where rapid development excavates bedrock at the base of steep mountain slopes and where the subsurface weathering front is near the surface.  相似文献   

4.
The post-orogenic evolution of the Laramide landscape of the western U.S. has been characterized by late Cenozoic channel incision of basins and their adjacent ranges. One means of constraining the incision history of basins is dating the remnants of gravel-capped surfaces above modern streams. Here, we focus on an extensive remnant of the Rocky Flats surface between Golden and Boulder, Colorado, and use in situ-produced 10Be and 26Al concentrations in terrace alluvium to constrain the Quaternary history of this surface. Coal and Ralston Creeks, both tributaries of the South Platte River, abandoned the Rocky Flats surface and formed the Verdos and Slocum pediments, which are cut into Cretaceous bedrock between Rocky Flats and the modern stream elevations. Rocky Flats alluvium ranges widely in age, from > 2 Ma to  400 ka, with oldest ages to the east and younger ages closer to the mountain front. Numerical modeling of isotope concentration depth profiles suggests that individual sites have experienced multiple resurfacing events. Preliminary results indicate that Verdos and Slocum alluvium along Ralston Creek, which is slightly larger than Coal Creek, is several hundred thousand years old. Fluvial incision into these surfaces appears therefore to progress headward in response to downcutting of the South Platte River. The complex ages of these surfaces call into question any correlation of such surfaces based solely on their elevation above the modern channel.  相似文献   

5.
In an actively deforming orogen, maintenance of a topographic steady state requires that hillslope erosion, river incision, and rock uplift rates are balanced over timescales of 105–107 years. Over shorter times, <105 years, hillslope erosion and bedrock river incision rates fluctuate with changes in climate. On 104-year timescales, the Marsyandi River in the central Nepal Himalaya has oscillated between bedrock incision and valley alluviation in response to changes in monsoon intensity and sediment flux. Stratigraphy and 14C ages of fill terrace deposits reveal a major alluviation, coincident with a monsoonal maximum, ca. 50–35 ky BP. Cosmogenic 10Be and 26Al exposure ages define an alluviation and reincision event ca. 9–6 ky BP, also at a time of strong South Asian monsoons. The terrace deposits that line the Lesser Himalayan channel are largely composed of debris flows which originate in the Greater Himalayan rocks up to 40 km away. The terrace sequences contain many cubic kilometers of sediment, but probably represent only 2–8% of the sediments which flushed through the Marsyandi during the accumulation period. At 104-year timescales, maximum bedrock incision rates are 7 mm/year in the Greater Himalaya and 1.5 mm/year in the Lesser Himalayan Mahabarat Range. We propose a model in which river channel erosion is temporally out-of-phase with hillslope erosion. Increased monsoonal precipitation causes an increase in hillslope-derived sediment that overwhelms the transport capacity of the river. The resulting aggradation protects the bedrock channel from erosion, allowing the river gradient to steepen as rock uplift continues. When the alluvium is later removed and the bedrock channel re-exposed, bedrock incision rates probably accelerate beyond the long-term mean as the river gradient adjusts downward toward a more “equilibrium” profile. Efforts to document dynamic equilibrium in active orogens require quantification of rates over time intervals significantly exceeding the scale of these millennial fluctuations in rate.  相似文献   

6.
A revised typology of Australian tropical rivers was applied to the complete channel network (named and major rivers) shown on 1:250 000 topographic maps for three large drainage basins in northern Australia (Daly River, NT; Fitzroy River, WA; Flinders River, Qld). Reach mapping and classification were conducted using the revised typology. The 12 major river types proposed were: (1) bedrock rivers; (2) bedrock‐confined and ‐constrained rivers; (3) low sinuosity (straight) rivers; (4) meandering rivers; (5) wandering rivers; (6) anabranching rivers; (7) chains of ponds; (8) gullies; (9) floodouts; (10) lakes, swamps, billabongs and wetlands; (11) non‐channelized valley floors; and (12) estuarine rivers. The 12 major river types were developed based on river reach mapping for more than 264 000 km2 of tropical Australian catchments. At scales larger than 1:250 000, subdivision of each major river type is recommended. In the Daly and Fitzroy catchments, confined and constrained rivers dominate, whereas in the Flinders and Fitzroy catchments, anabranching rivers dominate. The dominant river types need benchmarking with adequate numbers of control reaches so that channel changes induced by human and natural impacts can be measured by reference to the stability of these controls. Wandering rivers, floodouts and non‐channelized valley floors were rare for the 1:250 000 channel network in northern Australia but need inclusion in national parks.  相似文献   

7.
This paper explores how, and to what extent, a phase of relief-rejuvenation modifies the mode of surface erosion in an approximately 63 km2 drainage basin located at the northern border of the Swiss Alps (Luzern area). In the study area, the retreat of the Alpine glaciers at the end of the Last Glacial Maximum (LGM) caused base level to lower by approximately 80 m. The fluvial system adapted to the lowered base level by headward erosion. This is indicated by knickzones in the longitudinal stream profiles and by the continuous upstream narrowing of the width of the valley floor towards these knickzones. In the headwaters above these knickzones, processes are still to a significant extent controlled by the higher base level of the LGM. There, frequent exposure of bedrock in channels and especially on hillslopes implies that sediment flux is to a large extent limited by weathering rates. In the knickzones, however, exposure of bedrock in channels implies that sediment flux is supply-limited, and that erosion rates are controlled by stream power.The morphometric analysis reveals the existence of length scales in the topography that result from distinct geomorphic processes. Along the tributaries where the upstream sizes of the drainage basins exceed 100,000–200,000 m2, the mode of sediment transport and erosion changes from predominantly hillslope processes (i.e., landsliding, creep of regolith, rock avalanches and to some extent debris flows) to processes in channels (fluvial processes and debris flows). This length scale reflects the minimum size of the contributing area for channelized processes to take over in the geomorphic development (i.e., threshold size of drainage basin). This threshold size depends on the ratio between production rates of sediment on hillslopes, and export rates of sediment by processes in channels. Consequently, in the headwaters, erosion rates and sediment flux, and hence landscape evolution rates, are to a large extent limited by weathering processes. In contrast, in the lower portion of the drainage basin that adjusts to the lowered base-level, rates of channelized erosion and relief formation are controlled mainly by stream power. Hence, this paper shows that base-level lowering, headward erosion and establishment of knickzones separate drainage basins in two segments with different controls on rates of surface erosion, sediment flux and relief formation.  相似文献   

8.
Granitic regolith, developed in the Boulder Creek catchment and adjacent areas, records a history of deep weathering, some of which may predate Quaternary time. Field and well-log measurements of weathering, chemical denudation and rates of erosion derived from 10Be cosmogenic radionuclide (CRN) data help to quantify rates of landscape change in the post-orogenic Rocky Mountains. The density of oxidized, fractured bedrock ranges from 2.7 to about 2.2 g cm− 3, saprolite and grus have densities between 2.0 and 1.8 g cm− 3, and 30 soil samples averaged 1.6 ± 0.2 g cm− 3. Highly weathered regolith in 540 wells averages 3.3 m thick, mean depth to bedrock in 1661 wells is 7 m, and the weathered thickness exceeds 10 m in relatively large local areas east of the late Pleistocene glacial limit. Thickness of regolith shows no simple relationship to rock type or structure, local slope, or distance from channels. Catchments in the vicinity of the Boulder Creek have an average CRN erosion rate of 2.2 ± 0.7 cm kyr− 1 for the past 10,000 to 40,000 yr. Annual losses of cations and SiO2 vary from about 2 to 5 g m− 2 over a runoff range of 10 to nearly 160 cm.Using measured rates in simple box models shows that if a substantial fraction of void space is created by volume expansion in the weathering rock materials, 7 m of weathered rock materials could form in as little as 230 kyr. If density loss results mainly from chemical denudation and some volume expansion, however, the same weathering profile would take > 1340 kyr to form. Rates of erosion measured by CRN could be balanced by the rate of soil formation from saprolite if the annual solute loss from soil is 2.0 g m− 2 and 70% of the density decrease from saprolite to grus and soil results from strain. Saprolite, however, forms from oxidized bedrock at a far slower rate and rates of saprolite formation cannot balance soil and grus losses to erosion. The zone of thick weathered regolith is likely an eroding relict landscape. The undulating surface marked by relatively low relief and tors is not literally a topographic surface of Eocene, Oligocene or Miocene age unless it was covered with deposits that were removed in Pliocene or Quaternary time.  相似文献   

9.
Norikazu Matsuoka   《Geomorphology》2008,99(1-4):353-368
Rates and processes of frost weathering in the Alps were investigated by visual observations of intensively shattered rocks, continuous monitoring of frost wedging and rock temperatures in bedrock and measurements of rockfall activity. Rapid frost weathering of hard-intact rocks occurs along lakes and streams where seasonal freezing promotes ice segregation in the rock. Otherwise, rocks require pre-existing weakness or a long exposure period for intensively shattered. Automated monitoring shows that crack opening occurs at three scales, including small opening accompanying short-term frost cycles, slightly larger movements during seasonal freezing and occasional large opening originating from refreezing of snow-melt water during seasonal thawing. The opening events require at least partial water saturation in the crack. The repetition of crack opening (frost wedging) results in permanent opening and finally debris dislocation. Debris collections below fractured rockwalls show that pebble falls occur at an average rate of about 0.1 mm a− 1 with significant spatial and inter-annual variations. Occasional large boulder falls significantly raise the rockwall erosion rates, controlled by such factors as the joint distribution in the bedrock, repetition of annual freeze–thaw cycles and extraordinary summer thaw.  相似文献   

10.
Geomorphic differences between slopes backing two distinct desert piedmont types provide a proxy indicator for the kind of landform developed at the corresponding mountain base. Here, the term ‘bedrock pediment’ describes subaerial bedrock platforms that emanate from a mountain base while ‘alluvial slope’ describes suballuvial bedrock platforms that extend from the mountain. Mountain slopes backing bedrock pediments have been demonstrated to be mantled by larger clast sizes than corresponding slopes backing alluvial slopes in the Phoenix region, Arizona, USA. The present research focuses on using the disparate particle sizes between slopes backing bedrock pediments and alluvial slopes as an indicator for the piedmont form developed at the mountain base, and uses high-resolution remotely sensed digital data as a medium for quantitative landform assessments. A gravel + bedrock versus soil index developed from airborne midinfrared multispectral imagery acquired by the Thermal Infrared Multispectral Scanner (TIMS) indicates the presence of slopes mantled with larger particle sizes versus slopes mantled with smaller particle sizes and greater soil coverage. Two test areas confirm the applicability of this method and further demonstrate the usefulness of high-resolution midinfrared multispectral imagery as a geomorphic tool in arid regions.  相似文献   

11.
Impacts of colonial settlement upon catchment-scale fluvial geomorphic relationships are reported for a relatively small catchment in northern Rio de Janeiro State, Brazil. Structural controls have induced the type and patterns of rivers in Macaé Basin. Fault block activity has resulted in steep, incised headwater streams above the escarpment. Confined and partly confined rivers in mid-catchment reaches of the rounded foothills have limited potential for geomorphic adjustment. Fluvial, estuarine and marine sediments in low relief landscapes of the lowland plain have supported the development of meandering sand bed rivers, with many cut-and-fill (intact valley fill) deposits in tributary systems. Indigenous people exerted relatively minor, localized impacts upon the geomorphology of this river system. Portuguese settlement since the sixteenth century brought about clearance of much of the Atlantic Forest of lowland reaches, and subsequent establishment of sugar cane and coffee plantations. Lowland reaches were channelized from the 1940s-1980s for flood protection and to support the expansion of pastoral agriculture. Significant adjustments have occurred to these geomorphologically sensitive reaches. In contrast, although rivers in the rounded foothills were impacted by forest clearance, the limited availability of sediment stores along these reaches has limited the extent of geomorphic responses to human disturbance. Relatively inaccessible upland reaches were even less impacted, and are now major conservation areas. Building on principles of the River Styles framework, catchment-scale evolutionary trajectories of rivers in the Macaé Basin are assessed based on analysis of patterns of river types, their capacity for adjustment and connectivity relationships, and responses to disturbance events. From this, three future scenarios of prospective evolutionary traits are developed: a ‘steady as she goes’ scenario, an optimistic (effective, proactive management) scenario, and a ‘doomsday’ scenario.  相似文献   

12.
The role of post-Little Ice Age (LIA) Neoglacial retreat on landslide activity is investigated in 19 alpine basins along the upper Lillooet River Valley, British Columbia. We examine how Neoglacial scouring and glacial recession have modified hillslope form and slope stability, and construct a decision-making flowchart to identify landslide hazards associated with glacial retreat. This work is based on field mapping, GIS analysis, statistical associations between landslides and terrain attributes, and a comparison between Neoglaciated and non-Neoglaciated terrain within each basin.The bedrock landslide response to glacial retreat varies appreciably according to lithology and the extent of glacial scour below the LIA trimline. Valleys carved in weak Quaternary volcanics show significant erosional oversteepening and contain deep-seated slope movement features, active rock fall, rock slides, and rock avalanches near glacial trimlines. Basins in stronger granitic rock rarely show increased bedrock instability resulting from post-LIA retreat, except for shallow-seated rock slides along some trimlines and failures on previously unstable slopes. In surficial materials, landslides associated with post-LIA retreat originate in till or colluvium, as debris slides or debris avalanches, and are concentrated along lateral moraines or glacial trimlines.Significant spatial association was also observed between recent catastrophic failures, gravitational slope deformation, and slopes that were oversteepened then debuttressed by glacial erosion. Eight out of nine catastrophic rock slope failures occurred just above glacial trimlines and all occurred in areas with a previous history of deep-seated gravitational slope movement, implying that this type of deformation is a precursor to catastrophic detachment.  相似文献   

13.
Field observations of weathering processes and the related landforms, combined with laboratory analyses of weathering products, permit a synthetic evaluation of Late Cenozoic weathering environments in the Sør Rondane Mountains, Antarctica, an arid upland characterized by low temperatures and strong winds. Rates and character of weathering depend mainly on moisture availability and the bedrock geology. Under the humid weathering regime that occurs only locally around the margin of the present sheet, frequent diurnal freeze-thaw cycles in summer cause relatively rapid rock fragmentation. Most of the mountains are situated in the arid weathering regime, under which rock breakdown is very slow unless the rock contains plenty of salts. Salt weathering becomes more intensive and extensive with exposure age, as a result of salt accumulation in rock, eventually producing soils as small as fine-silt size. Lack of clay mineralization even in weathered rocks having been exposed above the ice sheet prior to 4 Ma ago indicates that hydrolysis or carbonation of rock minerals has been insignificant during the past 4 Ma. The final products of weathering are due mainly to salt action and reflect the parent lithology. Resistant fine-grained granite forms strongly oxidized tors carved with tafoni, or fields of mushroom-like boulders overlying the fractured bedrock. Less resistant rocks, like biotite gneiss and amphibolite, produce stone pavements underlain by saline, silty soils up to 30–40 cm thick, the thickness of which corresponds to the maximum thaw depth.  相似文献   

14.
The New River crosses three physiogeologic provinces of the ancient, tectonically quiescent Appalachian orogen and is ideally situated to record variability in fluvial erosion rates over the late Cenozoic. Active erosion features on resistant bedrock that floors the river at prominent knickpoints demonstrate that the river is currently incising toward base level. However, thick sequences of alluvial fill and fluvial terraces cut into this fill record an incision history for the river that includes several periods of stalled downcutting and aggradation. We used cosmogenic 10Be exposure dating, aided by mapping and sedimentological examination of terrace deposits, to constrain the timing of events in this history. 10Be concentration depth profiles were used to help account for variables such as cosmogenic inheritance and terrace bioturbation. Fill-cut and strath terraces at elevations 10, 20, and 50 m above the modern river yield model cosmogenic exposure ages of 130, 600, and 600–950 ka, respectively, but uncertainties on these ages are not well constrained. These results provide the first direct constraint on the history of alluvial aggradation and incision events recorded by New River terrace deposits. The exposure ages yield a long-term average incision rate of 43 m/my, which is comparable to rates measured elsewhere in the Appalachians. During specific intervals over the last 1 Ma, however, the New River's incision rate reached 100 m/my. Modern erosion rates on bedrock at a prominent knickpoint are between 28 and 87 m/my, in good agreement with rates calculated between terrace abandonment events and significantly faster than 2 m/my rates of surface erosion from ancient terrace remnants. Fluctuations between aggradation and rapid incision operate on timescales of 104− 105 year, similar to those of late Cenozoic climate variations, though uncertainties in model ages preclude direct correlation of these fluctuations to specific climate change events. These second-order fluctuations appear within a longer-term signal of dominant aggradation (until 2 Ma) followed by dominant incision. A similar signal is observed on other Appalachian rivers and may be the result of sediment supply fluctuations driven by the increased frequency of climate changes in the late Cenozoic.  相似文献   

15.
The concept of‘syntectonic’ conglomerate is based on the idea that gravel progradation is mainly generated by an increase in tectonic uplift and erosion of a source area with attendant increase in sediment flux supplied to a basin. However, other mechanisms, such as changes in basin subsidence rates, sorting of supplied sediment, and capability of transporting streams, can also lead to progradation and be difficult to distinguish from a syntectonic origin. Here we use our previously developed model to help understand the origin of gravel progradation in three Neogene alluvial basins - the Bermejo Basin of Argentina, the Himalayan Foreland Basin, and the San Pedro Basin of southern Arizona - all of which have available high-resolution magnetostratigraphy. Interpretation of the origin of gravel progradation in these basins begins with calculation of basin equilibrium time, which is the time-scale required for the streams to reach a steady-state profile, assuming constant conditions. We then compare the time-scale of the observed changes in the basin with the equilibrium time to determine if and how the model can be applied to the stratigraphic record. Most of the changes we have studied occur on time scales longer than the equilibrium time (‘slow variations’), in which case the key to interpretation is the relationship between overall grain-size change and sedimentation rate in vertical sections. Of the three examples studied only one, the Bermejo Basin, is consistent with the traditional model of syntectonic progradation. Overall progradation in the two other basins is most consistent with a long-term reduction in basin subsidence rates. In addition, short-term variation in diffusivity or sediment flux, probably climatically driven, is the most likely control of small-scale progradation of gravel tongues in the San Pedro Basin. These results, along with observations from other basins, suggest that subsidence is clearly an important control on clastic progradation on ‘slow’ time scales (i.e. generally a million years or more). If subsidence rates are directly linked to tectonic events, then subsidence-driven progradation marks times of tectonic quiescence and is clearly not syntectonic in the traditional sense. These examples show that the model can be useful in interpreting the rock record, particularly when combined with other traditional basin-analysis techniques. In particular, our results can be used to help discriminate between clastic progradation due to tectonic origin and progradation resulting from other mechanisms in alluvial basins.  相似文献   

16.
This paper investigates the hydrothermal fluid circulation that was linked to the extensional evolution of the Adriatic rifted margin during the Jurassic opening of the Alpine Tethys. Remnants of this rifted margin are spectacularly preserved in SE Switzerland and N Italy. Five study areas were chosen ranging from the former proximal to the most distal part of the margin. We demonstrate an intimate link between Jurassic extensional tectonics and fluid activity affecting the pre- to early post-rift sedimentary sequences. Nature, composition and origin of fluids are constrained by a multidisciplinary approach based on field observations and including geochemical (O-C, Sr, He isotopes, U-Pb datings, fluid inclusion microthermometry) and petrological methods. Several fluid-related diagenetic products and processes such as dolomitization, veining, hydraulic brecciation, and silicification can be recognized. It appears that different paleogeographic settings and different stratigraphic levels document distinct phases of fluid activity. The fluids reached temperatures of up to 150°C near paleo-seafloor. They were enriched in 18O, had high 87Sr/86Sr and low 3He/4He ratios, documenting a strong interaction between seawater and a granitic basement. Many lines of evidence point to the occurrence of over-pressured fluids and long-lasting fluid circulation due to fault-valve mechanisms and high thermal gradients. Two main stages with different fluid chemistry can be recognized: (1) a carbonate-rich stage that developed during the stretching phases and was linked to high-angle normal faulting, and (2) a silica-rich stage occurring during late rift exhumation of crustal and mantle rocks in the distal domains in the presence of detachment faults and high thermal gradients. This paper provides, for the first time, a large and robust characterization of fluid–rock interactions occurring during rifting along an almost complete section across a magma-poor rifted margin.  相似文献   

17.
Development of mountainous topography in the Basin Ranges, USA   总被引:1,自引:0,他引:1  
  相似文献   

18.
Rates and processes of rock weathering, soil formation, and mountain erosion during the Quaternary were evaluated in an inland Antarctic cold desert. The fieldwork involved investigations of weathering features and soil profiles for different stages after deglaciation. Laboratory analyses addressed chemistry of rock coatings and soils, as well as 10Be and 26Al exposure ages of the bedrock. Less resistant gneiss bedrock exposed over 1 Ma shows stone pavements underlain by in situ produced silty soils thinner than 40 cm and rich in sulfates, which reflect the active layer thickness, the absence of cryoturbation, and the predominance of salt weathering. During the same exposure period, more resistant granite bedrock has undergone long-lasting cavernous weathering that produces rootless mushroom-like boulders with a strongly Fe-oxidized coating. The red coating protects the upper surface from weathering while very slow microcracking progresses by the growth of sulfates. Geomorphological evidence and cosmogenic exposure ages combine to provide contrasting average erosion rates. No erosion during the Quaternary is suggested by a striated roche moutonnée exposed more than 2 Ma ago. Differential erosion between granite and gneiss suggests a significant lowering rate of desert pavements in excess of 10 m Ma− 1. The landscape has been (on the whole) stable, but the erosion rate varies spatially according to microclimate, geology, and surface composition.  相似文献   

19.
利用中国境内红河流域23个气象站点1960-2007年的逐日降水数据,分析流域强降水事件频次和强度的变化特征及其相关影响。结果表明:①强降水频次和强度在空间上表现出由东南向西北逐渐递减的趋势,流域下游的河口-金平-绿春-江城一带为高值区,上游的巍山-南涧-弥渡一带则为低值区。②强降水频次和强度的变化趋势存在空间差异,趋势增加的站点大多分布在李仙江上游、元江中上游和藤条江流域,趋势减少的站点大多分布在李仙江下游、元江下游和盘龙河流域。③从流域整体来看,在α=0.05的显著性水平下,近48年来强降水频次和强度没有明显的上升趋势,频次和强度的趋势变化幅度分别为0.26 days/10a和0.18 mm·day-1/10a;研究时段内频次和强度在时间变化上没有显著突变点。④基于相关统计数据分析强降水变化的影响,表明近20年间强降水频次和强度的增加,增大了局部地区滑坡泥石流、洪涝灾害的风险,河流泥沙含量也随之增加。  相似文献   

20.
In tectonically active regions, bedrock channels play a critical role in dictating the pace of landscape evolution. Models of fluvial incision into bedrock provide a means of investigating relationships between gradients of bedrock channels and patterns of active deformation. Variations in lithology, orographic precipitation, sediment supply, and erosional processes serve to complicate tectonic inferences derived from morphologic data, yet most tectonically active landscapes are characterized by these complexities. In contrast, the central Oregon Coast Range (OCR), which is situated above the Cascadia subduction zone, has experienced rock uplift for several million years, did not experience Pleistocene glaciation, boasts a relatively uniform lithology, and exhibits minor variations in precipitation. Although numerous process-based geomorphic studies suggest that rates of erosion across the OCR are relatively constant, it has not been demonstrated that bedrock channel gradients in the region exhibit spatially consistent values. Analysis of broadly distributed, small drainage basins (5–20 km) in the central OCR enables us to explore regional variability in bedrock channel gradients resulting from differential rock uplift or other sources. Consistent with previous studies that have documented local structural control of deformed fluvial terraces in the western portion of our study area, our data reveal a roughly 20-km-wide band of systematically elevated channel slopes (roughly twice the background value), roughly coincident with the strike of N–S-trending mapped folds. Although many factors could feasibly generate this pattern, including variable rock strength, precipitation gradients, or temporal or spatial variations in forearc deformation, the elevated bedrock channel slopes likely reflect differential rock uplift related to activity of local structures. Importantly, our analysis suggests that rock uplift and erosion rates may vary systematically across the OCR. Although our calculations were focused on the fluvial-dominated portion of study basins, our results have implications for upstream areas, including unchanneled valleys that often serve as source areas for long-runout debris flows. Zero-order basins (or topographic hollows) within the N–S-trending band of elevated channel slopes tend to be steeper than adjacent areas and may experience more frequent evacuation by shallow landsliding. Thus, this region of the OCR may be highly sensitive to land use practices and high-intensity rainstorms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号