首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The Alexandra Formation, located in the Northwest Territories of Canada, is formed of a Late Devonian (Frasnian) reef system that developed on a gently sloping, epicontinental ramp in the Western Canada Sedimentary Basin. High‐resolution sequence stratigraphic analysis of its deposits delineates two reef complexes that are separated by a Type I sequence boundary. The second reef complex developed on the outer ramp, basinward of the first, after sea‐level fell ≈17 m. Stratigraphic complexity of the second reef complex was a result of its initiation during forced regression, and its development through an entire cycle of sea‐level rise followed by sea‐level fall. Its highstand systems tract was not characterized by high rates of carbonate production or sediment shedding. Rather, these features took place as sea‐level fell, after its highstand systems tract. The sequence stratigraphic framework of this regressive reef system highlights a number of depositional parameters that differ from high‐relief, shelf‐situated reef systems with steep, narrow margins. These have implications for understanding the controls on the development of ramp‐situated reef systems, and the nature of reef systems with gently sloping profiles. This study demonstrates that the development of stromatoporoid reef systems may be far more complex than generally realized, and that high‐resolution sequence stratigraphy may provide the tools for better understanding of complex, often enigmatic, aspects of these systems.  相似文献   

2.
西藏安多县东巧晚侏罗世生物礁的发现   总被引:3,自引:1,他引:2       下载免费PDF全文
首次发现西藏安多县东巧地区晚侏罗世生物礁,造礁生物以层孔虫和六射珊瑚为主,其中,层孔虫可分为枝状、筒状和块状三种类型,它们多以原地生长状态保存.礁岩石学特征研究表明,礁岩可分为筒状-枝状层孔虫障积岩、枝状层孔虫障积岩、筒状层孔虫障积岩、筒状-块状层孔虫障积-骨架岩和筒状层孔虫-六射珊瑚障积-骨架岩.礁体类型可分为筒状-枝状层孔虫障积岩隆礁、枝状层孔虫障积岩隆礁、筒状层孔虫障积岩隆礁、筒状-块状层孔虫障积-骨架岩隆礁和筒状层孔虫-六射珊瑚障积-骨架岩隆礁,礁体的演化均经历了奠基阶段、发育阶段和衰亡阶段.  相似文献   

3.
重庆开县上二叠统长兴组红花生物礁成礁模式   总被引:4,自引:0,他引:4       下载免费PDF全文
通过对红花生物礁露头的精细解剖和微相分析,研究了礁的内部构成和成礁模式。红花生物礁发育3期礁体旋回:礁A、礁B和礁C。礁A由生屑泥晶灰岩和骨架岩构成;礁B由生屑泥晶灰岩、粘结岩、骨架岩和生屑灰岩构成;礁C由粘结岩、骨架岩和生屑灰岩构成。红花生物礁造礁生物有钙质海绵、钙藻类、苔藓虫和水螅类,附礁生物为有孔虫、腕足类、双壳类、腹足类和棘皮动物等。单个礁体内,由下往上的生物演化为:腕足类+双壳类+有孔虫组合→钙藻类→钙质海绵+水螅类+钙藻类+苔藓虫组合→生物碎屑;岩性演化为:生屑泥晶灰岩→粘结岩→骨架岩→生屑灰岩。礁B的生屑滩内生屑间为泥晶充填,生屑分选、磨圆较好,是由相邻的高能生屑滩侵蚀搬运到礁B侧翼低能区沉积形成。3期礁都发育在碎屑滩上,礁A为低能环境下形成的礁,礁B和礁C在礁A形成的高地上成礁,为高能环境礁;单个礁体的完整成礁模式为:在浅滩之上,钙藻类大量生长、粘结吸附颗粒固结基底,钙质海绵和钙藻类在硬质基底上繁茂生长,形成具有抗浪格架的生物礁,礁体暴露水面死亡后遭波浪、水流改造形成生屑滩。  相似文献   

4.
The Al‐Jawf area of northern Saudi Arabia provides spectacular outcrops of Early Devonian carbonate bioherms in the Wadi Murayr and Dumat Al‐Jandal areas. These carbonate bioherms belong to the Qasr Member of the Late Pragian–Early Emsian Jauf Formation (~405 Ma) and are surrounded by a bioclastic carbonate succession. The Qasr Member is the first major carbonate unit of the Palaeozoic succession in Saudi Arabia that mainly consists of microbialite carbonates and metazoan reefs exhibiting distinct mound features. These bioherm complexes and their associated carbonate facies are pervasively dolomitized. Stratigraphic, petrographic and geochemical analyses were conducted to determine the facies distribution and interpret their depositional and diagenetic processes. A total of 11 facies are identified from a range of depositional environments within a carbonate platform system, ranging from tidal flats, lagoon, shoal, patch reefs to reef front. The main diagenetic processes are carbonate cementation and dolomitization. Dolomitization occurred as both fabric preserved (mostly in grain‐dominated facies) and fabric destructive (mud‐dominated facies). The microbialites and coralline sponges facies show poor reservoir with visual porosity less than 5%, but this succession may have a potential to serve as a good source for the underlying and overlying facies. Ooid and peloidal grainstone facies show fair to good visual porosity that locally exceeds 10% with intergranular porosity as the dominant type. However, in the most studied samples, vuggy and intraparticle porosities are observed as the dominant type. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Stacked stromatoporoid‐dominated biostromes of the Ludlow‐age Hemse Group (Silurian) in eastern Gotland, Sweden, are 0·5–5 m thick and a few tens of metres to >1 km in lateral extent. They form one of the world's richest Palaeozoic stromatoporoid deposits. This study compiles published and new data to provide an overall facies model for these biostromes, which is assessed in relation to possible modern analogues. Some biostromes have predominantly in‐place fossils and are regarded as reefs, but lack rigid frameworks because of abundant low‐profile non‐framebuilding stromatoporoids; other biostromes consist of stromatoporoid‐rich rudstones interpreted here as storm deposits. Variation between these two `end‐members' occurs both between interlayered biostromes and also vertically and laterally within individual biostromes. Such variation produces problems of applying established reef classification terms and demonstrates the need for the development of terminology that recognizes taphonomic destruction of reef fabrics. An approach to such terminology is found in all four categories of a recent biostrome classification scheme that are easily recognized in the Hemse biostrome facies: autobiostromes (>60% in place); autoparabiostromes (a mixture of in‐place and overturned reef‐building organisms, 20–60% in place); parabiostromes (builders are overturned and damaged, <20% in place); and allobiostromes (transported and detrital reef material, nothing in place). These categories provide a broad taphofacies scheme for the Hemse biostromes, which are mostly autoparabiostrome to allobiostrome. The biostromes developed on crinoidal grainstone sheets and expanded laterally across relatively flat substrates in a marine setting of low siliciclastic input. Planar erosion surfaces commonly terminate biostrome tops. Three broadly similar modern analogues are identified, each of which has elements in common with the Hemse biostromes, but none of which is an exact equivalent: (a) laterally expanded and coalesced back‐barrier patch reefs behind the Belize barrier, an area influenced by limited accommodation space; (b) a hurricane‐influenced shelf, interpreted for Grand Cayman, where reef cores consist of rubble and lack substantial framework; the wide distribution of rounded pebbles and cobbles of stromatoporoids in the Hemse biostromes most probably resulted from hurricanes; (c) coral carpets in 5–15 m water depth of the northern Red Sea, where lateral expansion of low‐diversity frames dominated by Porites coral has produced low‐profile biostromes up to 8 m thick and several km long. Such carpets accumulated large amounts of carbonate, with little export, as in the Hemse biostromes, although the latter did not build frameworks because of the nature of growth of the stromatoporoids. The notable lack of algae in the Hemse biostrome facies is also a feature of Red Sea coral carpets; nevertheless, coral carpets are ecologically different. Hemse biostromes lack evidence of a barrier reef system, although this may not be exposed; the facies assemblage is consistent with either a storm/hurricane‐influenced mid‐ to upper ramp or back‐barrier system.  相似文献   

6.
贵州独山中泥盆统生物礁中同生滑塌构造及其地质意义   总被引:1,自引:0,他引:1  
贵州独山泥盆系是典型的浅海碳酸盐岩台地相沉积。独山鸡窝寨村中泥盆统鸡窝寨组下部发育由障积岩、粘结岩、骨架岩和生物砾灰岩等所构成的小型丘状生物礁,造礁生物主要为层孔虫和珊瑚。礁体内发育小型褶皱和小型断层等变形构造,褶皱以平卧褶皱和紧密褶皱为主,且转折端多以尖棱状和圆弧状为主,而小型断层则主要为小型的逆断层和分布于褶皱转折端的小型张性断层。礁体内的变形构造特征以及正常沉积的钙质泥岩基底和灰岩盖层共生表明,该生物礁形成过程中曾发生过可能与中泥盆世吉维特期黔桂海火山活动相关的同生变形滑塌,且可能与吉维特期黔贵海处较为频繁的火山活动相关。  相似文献   

7.
ABSTRACT The depositional organization and architecture of the middle–late Devonian Yangdi rimmed carbonate platform margin in the Guilin area of South China were related to oblique, extensional faulting in a strike‐slip setting. The platform margin shows two main stages of construction in the late Givetian to Frasnian, with a bioconstructed margin evolving into a sand‐shoal system. In the late Givetian, the platform margin was rimmed with microbial buildups composed mainly of cyanobacterial colonies (mostly Renalcis and Epiphyton). These grew upwards and produced an aggradational (locally slightly retrogradational) architecture with steep foreslope clinoforms. Three depositional sequences (S3–S5) are recognized in the upper Givetian strata, which are dominated by extensive microbialites. Metre‐scale depositional cyclicity occurs in most facies associations, except in the platform‐margin buildups and upper foreslope facies. In the latest Givetian (at the top of sequence S5), relative platform uplift (± subaerial exposure) and associated rapid basin subsidence (probably a block‐tilting effect) caused large‐scale platform collapse and slope erosion to give local scalloped embayments along the platform margin and the synchronous demise of microbial buildups. Subsequently, sand shoals and banks composed of ooids and peloids and, a little later, stromatoporoid buildups on the palaeohighs, developed along the platform margin, from which abundant loose sediment was transported downslope to form gravity‐flow deposits. Another strong tectonic episode caused further platform collapse in the early Frasnian (at the top of sequence S6), leading to large‐scale breccia release and the death of the stromatoporoid buildups. Siliceous facies (banded cherts and siliceous shales) were then deposited extensively in the basin centre as a result of the influx of hydrothermal fluids. The platform‐margin sand‐shoal/bank system, possibly with gullies on the slope, persisted into the latest Frasnian until the restoration of microbial buildups. Four sequences (S6–S9), characterized by abundant sand‐shoal deposits on the margin and gravity‐flow and hemipelagic deposits on the slope, are distinguished in the Frasnian strata. Smaller‐scale depositional cyclicity is evident in all facies associations across the platform–slope–basin transect. The distinctive depositional architecture and evolution of this Yangdi Platform are interpreted as having been controlled mainly by regional tectonics with contributions from eustasy, environmental factors, oceanographic setting, biotic and sedimentary fabrics.  相似文献   

8.
Comparative sedimentology and palaeoecology of Oxfordian (Upper Jurassic) coral-dominated reefs of England, France, Italy and Switzerland has been used to: (1) identify and characterize different types of Late Jurassic coral reefs with regard to their litho- and biofacies; and (2) develop a depositional model for these reefs relating different reef types to each other within a palaeoenvironmental framework. Eight generic reef types and one associated reef facies are recognized. These are: (I) biostromal units dominated by platy microsolenids developed within clean limestone facies; (II) biostromal units dominated by platy microsolenids developed within marly facies; (III) reefal thickets dominated by tall dense phaceloid colonies developed within pure carbonate muds; (IV) microbial-coral reefs dominated by massive, branching ramose and phaceloid colonies; (V) large high diversity reefal units associated with large volumes of bioclastic material; (VI) small species-poor reefs developed within mixed carbonate/siliciclastic facies; (VII) microbial-coral reefs dominated by massive colonies; (VIII) reefal thickets dominated by branching ramose colonies with widely spaced branches developed amongst sand shoals and coral debris channels; and (IX) conglomerates rich in rounded coral fragments (the reef associated facies). The development of these different constructional and compositional reef types is interpreted as being primarily a function of light intensity, hydrodynamic energy levels and sediment balance. A conceptual depositional model based on these parameters can be used to predict the spatial and temporal distribution of different reefal carbonates and highlight sedimentological and palaeoecological trends in reef development.  相似文献   

9.
Late Frasnian mounds of the Yunghsien Formation, Guilin, South China, developed as part of the Guilin platform, mostly in reef‐flat and platform margin settings. Microbial mounds in platform margin settings at Hantang, about 10 km west of Guilin, contain Frasnian biota, such as Stachyodes and Kuangxiastraea and, thus, occur below the Frasnian‐Famennian mass extinction boundary. Platform margin facies were dominated by microbes, algae and receptaculitids. Massive corals and stromatoporoids are not common and rarely show reef‐building functions as they did in Givetian time. The margin mounds are composed of brachiopod‐receptaculitid cementstone, and a variety of boundstones that contain Rothpletzella, Renalcis, thrombolite and stromatolite. Other microbial communities include Girvanella, Izhella, Ortonella and Wetheredella. Solenoporoid algae are abundant locally. Zebra structures and neptunian dykes are well‐developed at some intervals. Pervasive early cementation played an important role in lithification of the microbial boundstones and rudstones. Frasnian reefs of many regions of the world were constructed by stromatoporoids and corals, although a shift to calcimicrobe‐dominated frameworks occurred before the Famennian. However, the exact ages of many Frasnian margin outcrops are poorly constrained owing to difficulties dating shallow carbonate facies. The Hantang mounds represent a microbe‐dominated reef‐building community with rare skeletal reef builders, consistent with major Late Devonian changes in reef composition, diversity and guild structure occurring before the end of the Frasnian. A similar transition occurred in the Canning Basin of Western Australia, but coeval successions in North America, Western Europe and the northern Urals are either less well‐known or represent different bathymetric settings. The transition in reef‐building style below the Frasnian‐Famennian boundary is documented here in the two best exposed successions on two continents, which may have been global. Set in the larger context of Late Devonian and Mississippian microbial reef‐building, the Hantang mounds help to demonstrate that controls on microbial reef communities differed from those on larger skeletal reef biota. Calcimicrobes replaced stromatoporoids as major reef builders before the Frasnian‐Famennian extinction event, and increasing stromatoporoid diversity towards the end of the Famennian did not result in a resurgence of skeletal reef frameworks. Calcimicrobes dominated margin facies through the Famennian, but declined near the Devonian‐Carboniferous boundary. Stromatolite and thrombolite facies, which occurred behind the mound margin at Hantang, rose to dominate Mississippian shallow‐water reef frameworks with only a minor resurgence of the important Frasnian calcimicrobe Renalcis in the Visean when well‐skeletonized organisms (corals) also became volumetrically significant frame builders again.  相似文献   

10.
黔南布寨泥盆纪生物礁的初步研究   总被引:2,自引:1,他引:1       下载免费PDF全文
黔南布寨生物礁受同沉积断层控制,发育在开阔台地边缘,其西南部和东北部分别是台盆相和滨海相沉积区。礁主要由以层孔虫和床板珊瑚为主的群落建成。礁相可明显划分出礁前、礁核、礁翼和礁后等亚相,其中礁后亚相与邻区的生物礁有很大区别,显示它发育在比邻区礁相对较深的环境中。生物礁的发育受到海平面升降的控制,分为两个大的旋回,分别形成鸡泡段和鸡窝寨段的生物礁  相似文献   

11.
12.
A Study of Devonian Reefs from Southern China   总被引:2,自引:0,他引:2  
Three Devonian reefs (bioherms) from Yunnan and Guangxi, southern China, are studied in detail. Six microfacies types are differentiated. Colonial rugose corals (Columnaria, Disphyllum and Hexagonaria) at Qujing, tabulate corals (Alveolites) with massive stromatoporoids (Actinostroma and Stromatoporella) and sponges at Panxi, and massive stromatoporoids (Actinostroma, Trupetostroma and Stromatoporella) at Yangshuo belong to the most important reef builders. All the three reefs studied clearly reveal a successive evolution history. They developed on the carbonate banks, shallow carbonate platforms and platform margins in the Late Givetian and terminated in the Frasnian due to sea-level falls related to local uplifts of platforms. This coincides with a eustatic fall of relative sea level at the Frasnian/Famennian transition.  相似文献   

13.
In the course of an exploration program in 1965 in the subsurface of the southeastern Elspe Syncline (Sauerland, Rhenish Schiefergebirge) was discovered a Middle Devonian reef, unknown up to now. The foundation is not yet drilled. The Meggen Reef forms a bioherm-like table reef which is completely surrounded by basinal sediments. According to organisms, matrix and primary voids within the reef limestones 7 facies types can be distinguished. The reef core is built of stromatoporoids and crinoids, the reef flank types are characterized by corals and crinoids. The subsided reef is covered with thin, partly condensed pelagic limestones. At the same time in the adjacent basin the stratiform pyrite-sphalerite-barite ore of Meggen is deposited. At the end of Middle Devonian time the Meggen reef and the overlying pelagic limestones are brecciated and transected by numerous sedimentary dikes. As in the sedimentary dikes the same acid tuffs are occurring, which follow immediately above the pyrite-sphalerite-barite ore of Meggen, there is a close connection between submarine destruction of the Meggen Reef, acid tuff eruptions and ascent of metall-bearing hydrothermal solutions. The Meggen Reef is due to the compression while the Variscan orogeny is deformed to an overturned and thrusted anticline and itself is thrusted over from the adjacent basin facies. With respect to the development of diagenetic processes, the following stages are distinguished: (1) during reef growth, (2) between reef growth and sedimentary dike formation, (3) between sedimentary dike formation and Variscan deformation and (4) during Variscan deformation.  相似文献   

14.
Bulk magnetic susceptibility measurements on sedimentological samples from all geological periods have been used widely in the last two decades for correlations and as a proxy for sea‐level variations. This paper explores the link between magnetic susceptibility, depositional setting and environmental parameters. These environmental parameters include distal–proximal transects, microfacies successions and fourth‐order trends on different carbonate platform types (platform, ramp, carbonate mound or atoll) during different Devonian stages (Eifelian, Givetian and Frasnian). Average magnetic susceptibility values over a distal–proximal‐trending facies succession vary markedly with depositional setting. On carbonate platforms, average magnetic susceptibility generally increases towards the top of shallowing‐upward sequences. On a distal–proximal transect, average magnetic susceptibility is intermediate for the deepest facies, decreases for the reef belts and increases to a maximum in the back‐reef zone. In ramps and atolls, magnetic susceptibility trends clearly differ; average magnetic susceptibility generally decreases towards the top of shallowing‐upward sequences and is highest in the deepest facies. The strong relationship between magnetic susceptibility, facies and sequences implies a strong environmental influence. However, the different responses in the different platform types suggest that sea‐level changes leading to variation in detrital input is not the only parameter controlling average magnetic susceptibility values. Other primary or secondary processes also probably influenced magnetic mineral distribution. Primary processes such as carbonate production and water agitation during deposition are probably key factors. When carbonate production is high, the proportion of magnetic minerals is diluted and the magnetic susceptibility signal decreases. High water agitation during deposition will also selectively remove magnetic minerals and will lead to low average magnetic susceptibility values. These parameters explain the lowest values observed on the reef platform, inner ramp and atoll crown, which are all in areas characterized by higher carbonate production and greater water agitation during deposition. The lowest values observed in the lagoon inside the atoll crown can be related to detrital isolation by the atoll crown. However, other parameters such as biogenic magnetite production or diagenesis can also influence the magnetic signal. Diagenesis can change magnetism by creating or destroying magnetic minerals. However, the influence of diagenesis probably is linked strongly to the primary facies (permeability, amount of clay or organic matter) and probably enhanced the primary signal. The complexity of the signal gives rise to correlation problems between different depositional settings. Thus, while magnetic susceptibility has the potential to be an important correlation tool, the results of this investigation indicate that it cannot be used without consideration of sedimentary processes and depositional environments and without strong biostratigraphical control.  相似文献   

15.
Devonian reef complexes were well developed in Western Australia and South China, but no detailed direct comparison has been made between reef building in the two regions. The regions differ in several respects, including tectonic, stratigraphic and palaeoceanographic–palaeogeographic settings, and the reef building styles reflect minor differences in reef builders and reef facies. Similarities and differences between the two reef complexes provide insights into the characteristics of platform margins, reef facies and microbial carbonates of both regions. Here we present a comparison of platform margin types from different stratigraphic positions in the Late Devonian reef complex of the Canning Basin, Western Australia and Middle and Late Devonian margin to marginal slope successions in Guilin, South China. Comparisons are integrated into a review of the reefal stratigraphy of both regions. Reef facies, reef complex architecture, temporal reef builder associations, 2nd order stratigraphy and platform cyclicity in the two regions were generally similar where the successions overlap temporally. However, carbonate deposition began earlier in South China. Carbonate complexes were also more widespread in South China and represent a thicker succession overall. Platforms in the Canning Basin grew directly on Precambrian crystalline basement or early Palaeozoic sedimentary rocks, but in South China, carbonate complexes developed conformably on older Devonian siliciclastic strata. Pre-Frasnian reef facies in South China had more abundant skeletal frameworks than in Canning Basin reefs of equivalent age, and Famennian shoaling margins containing various microbial reefs may have been more common and probably more diverse in South China. However, Late Devonian platform margin types have been documented more completely in the Canning Basin. Deep intra-platform troughs (deep depressions containing non-carbonate pelagic sediments — Nandan-type successions) that developed along syndepositional faults characterize Devonian carbonate platforms in South China, but have no equivalent on the Lennard Shelf, Canning Basin where inter-reef areas were more shallow. The South China platform-to-depression pattern was generally continuous from the Lower to Upper Devonian, indicating that many pre-Devonian tectonic features continued to exercise considerable effect through deposition. Localized, fault-controlled subsidence was an important factor in both regions, but similarities in 2nd order aggradation–progradation cycles suggest that eustasy was also an important control on the larger scale stratigraphic development of both regions.  相似文献   

16.
The Sierra Grande Formation (Silurian-Early Devonian) consists of quartz arenites associated with clast supported conglomerates, mudstones, shales and ironstones. Eight sedimentary facies are recognized: cross-stratified and massive sandstone, plane bedded sandstone, ripple laminated sandstone, interstratified sandstone and mudstone, laminated mudstone and shale, oolitic ironstone, massive conglomerate and sheet conglomerate lags. These facies are interpreted as shallow marine deposits, ranging from foreshore to inner platform environments. Facies associations, based on vertical relationships among lithofacies, suggest several depositional zones: (a) beach to upper shoreface, with abundant plane bedded and massive bioturbated sandstones; (b) upper shoreface to breaker zone, characterized by multistorey cross-stratified and massive sandstone bodies interpreted as subtidal longshore-flow induced sand bars; (c) subtidal, nearshore tidal sand bars, consisting of upward fining sandstone sequences; (d) lower shoreface zone, dominated by ripple laminated sandstone, associated with cross-stratified and horizontal laminated sandstone, formed by translatory and oscillatory flows; and (e) transitional nearshore-offshore and inner platform zones, with heterolithic and pelitic successions, and oolitic ironstone horizons. Tidal currents, fair weather waves and storm events interacted during the deposition of the Sierra Grande Formation. However, the relevant features of the siliciclastics suggest that fair weather and storm waves were the most important mechanisms in sediment accumulation. The Silurian-Lower Devonian platform was part of a continental interior sag located between southern South America and southern Africa. The Sierra Grande Formation was deposited during a second order sea level rise, in which a shallow epeiric sea flooded a deeply weathered low relief continent.  相似文献   

17.
缺氧条件是形成和保存优质烃源岩的重要条件。古氧相的研究对查明海相优质烃源岩时空分布、恢复地史时期古环境演化具有重要意义。泥盆纪时期,南华海受陆内裂陷作用影响,形成台地(滨岸台地和孤立台地)与台沟间列的盆地格局。不同的控制因素控制了古氧相的类型。在台沟和钦防裂陷海槽中,海水分层控制了泥盆纪的古氧相类型和变化。台沟和钦防裂陷海槽以厌氧相与准厌氧相为主。在台地相区,海平面变化控制了古氧相的类型和分布。台地相区的古氧相主要是常氧相和贫氧相。南华海中、晚泥盆世硅质沉积、磷质沉积发育,有机质丰富,形成了有机质-硅质-磷质沉积三位一体的特征,指示上升流作用明显。南华海地区泥盆纪位于赤道附近的信风带,向西的表面洋流越过南华海在西部形成离岸流,海底海水向东补充形成上升的底流,也说明了泥盆纪南华海上升流存在的可能性。  相似文献   

18.
Holocene reef development was investigated by coring on Britomart Reef, a mid-shelf reef, 23 km long and 8 km wide situated 120 km north of Townsville in the central Great Barrier Reef (GBR). Two holes were drilled, Britomart 1 on a lagoon patch reef, and Britomart 2 on the windward reef crest. The Holocene reef (25·5 m) is the thickest yet recorded in the GBR and overlies an uneven substrate of weathered Pleistocene limestone. Mineralogical and geochemical analyses show that magnesian calcite and aragonite were converted to low Mg-calcite below the Holocene-Pleistocene disconformity. Corals above the interface have 7500–8500 ppm Sr, but 1650–1500 ppm just below it, decreasing to 400–800 ppm downwards. The intermediate Sr values could be due to partial replacement of aragonite by calcite or higher original Sr content in the corals. Three units are recognized in the Holocene: (1) coral boundstone unit, (2) coral framestone unit, and (3) coral rudstone unit. The coral boundstone unit forms the top 5 m of both cores and is algal-bound coral rubble similar to the present reef top. The coral framestone unit is composed of massive head corals Diploastrea heliopora and Porites sp., and is currently forming in patch reefs situated in the lagoon and along the reef front. The coral rudstone unit comprises coral rudstone and floatstone with unabraded, and unbound, coral clasts in muddy matrix. This matrix may be up to 30% sponge chips. Radiocarbon dating indicates the reef grew more rapidly under the lagoon than under the reef front from 7000 to 5000 yr BP. The rate of reef growth matched existing estimates of sea-level rise, but lagged approximately 1000 years (5–10 m) behind it. Most of the reef mass accumulated between 8500 and 5000 yr BP as a mound of debris, perhaps stabilized by seagrasses or algae. Accretion of the reef top in a windward direction between 5000 and 3000 yr BP created the present, steep reef-front profile.  相似文献   

19.
Subaerial unconformities are used widely for palaeoenvironmental and palaeogeographic reconstructions, sequence stratigraphy and petroleum reservoir assessments. Recognition and interpretation of these unconformities, particularly those with associated palaeosols, may be problematic in Lower and Middle Palaeozoic carbonate successions because of the collective effect of limited land plant development, superficial similarities between some pedogenic and marine features, and overprinting by later diagenesis. The isolated Judy Creek reef complex in the Lower Frasnian Swan Hills Formation in west‐central Alberta, Canada, contains two subaerial unconformities, R0.5 and R4, which formed as a consequence of relative sea‐level falls of at least regional scale. Deposits beneath these unconformities have distinctive palaeosol and palaeokarst features. The lower unconformity, R0.5, occurs at the top of a progradational reefal phase of stromatoporoid rudstones–floatstones and peloidal packstones–grainstones and has been recognized in at least one other isolated Swan Hills reef complex (Snipe Lake). Palaeosol–palaeokarst profiles beneath this unconformity extend as deep as ca 2 m below the unconformity. These profiles are characterized by the presence of small rhizoliths, laminar calcretes, ferroan dolomite glaebules, desiccation cracks, breccias, green shale and solution vugs. The upper unconformity, R4, occurs at the top of a backstepping phase of reef growth and has been correlated widely between isolated reefs and carbonate banks on both the western and eastern shelves of the Central Alberta Basin. Palaeosol–palaeokarst profiles, extending as deep as ca 9·5 m beneath the R4 unconformity, are distinguished by abundant, sub‐horizontal desiccation cracks filled with green shale, occurring in peloidal wackestones–packstones. Comparison of the R0.5 and R4 profiles indicates that the major intrinsic controls on the development and modification of the profiles are parent‐material lithology, particularly the prior degree of induration and particle size; the low topographic relief at the top of the reef interior; and limited vegetation of the exposed reef top due to unfavourable growth conditions and geographic isolation. In addition to climate, the major extrinsic controls are the extent of relative sea‐level fall, estimated to be 2·5 to 3 m and 13 to 14 m associated with the R0.5 and R4 unconformities, respectively, and the degree of shoreface erosion during the ensuing marine transgression, estimated to be up to 3 m. This study highlights the complex interplay of mainly physical and chemical processes influencing the formation of subaerial unconformities in carbonate environments during the Devonian, before major evolutionary innovations among vascular land plants led to more intense pedogenesis.  相似文献   

20.
In south‐central Pennsylvania, USA, is the world's only Upper Silurian/lower Devonian period shallow water marine reef, located deep within a cave and operated for the tourist trade. Other unusual features in the cave include black basaltic rock, the presence of nearly perfect clear calcite crystals and varied cave decorations. The reef is primarily composed of stromatoporoids with brachiopods and crinoids and is part of the Upper Silurian Jersey Shore Member of the Keyser Formation siliciclastics and carbonates. Just outside the cave itself is a transition to the Devonian New Creek and Corriganville formations, also siliciclastics and carbonates. In these formations are the only actual fossil corals in the vicinity of the cave discovered by Boy Scouts in 1928 by climbing through a natural entrance. ‘Wonderland Coral Caverns’ was opened to the public in the 1930s and closed in the 1980s until a safer entrance could be created. The cave is the result of the Alleghanian Orogeny in which Silurian and Devonian sedimentary strata were buried without metamorphism beneath the encroaching northwest African continental mass as the proto‐Atlantic Ocean and the Rheic Ocean closed. The mass eroded completely and the resulting sediments were transported to the west of modern day Pennsylvania, leaving a karst topography and a well preserved fossil reef.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号