首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although most cut slopes in Ohio consist of inter-layered, sub-horizontal units of hard and soft sedimentary rocks (sandstone, limestone, dolostone, shale, claystone, mudstone), slopes consisting of relatively thick hard rock units are not uncommon. Design of stable cut slopes in hard rock units needs to consider rock mass strength and orientation of discontinuities with respect to slope face. Results of kinematic stability analyses show that hard-rock cut slopes are less likely to have conventional plane and wedge failures, caused by unfavorable orientation of discontinuities. The main cause of failure is identified to be the undercutting-induced toppling, which is not amenable to traditional kinematic or rock mass strength-based analyses. Therefore, to recommend a suitable slope angle, numerical models, using UDEC software, were employed to study how various slope angles affect the process of undercutting-induced toppling failures. The UDEC models showed a slope angle of 45° (1H:1 V) to be the most stable angle. However, a 63° (0.5H:1 V) slope angle can significantly reduce the potential for such failures and is therefore more appropriate than the widely used angle of 76° (0.25H:1 V).  相似文献   

2.
In the present study, cut slope stability assessment along ghat road section of Kolli hills was carried out by using various geotechnical parameters of rock and soil slope sections and structural kinematics of major discontinuities is presented. The rock slope (RS) stability assessment was carried out using Rock Mass Rating basic (RMRbasic) and Slope Mass Rating (SMR) classification systems. The type of failure and their Factor of Safety (FOS) for individual RS was calculated using Hoek and Bray method. In the case of soil slopes (SS), the FOS was calculated using Circular Failure Chart (CFC) and Limit Equilibrium (LE) methods. The input data for the slope stability analyses were collected through extensive field work followed by stereonet plotting and laboratory test. There are six rock slope sections, and five soil slope sections were taken into consideration for the cut slope stability analyses. The area depicts class II (RS-1, 2, & 6) and class III (RS-3, 4, & 5) of RMR classes. The SMR result depicts for RS-1, RS-2, and RS-6 are 64.40, 60.02, and 60.70, respectively, and falls in class II stable condition. The SMR values of RS-3 and RS-5 were 44.33 and 57, respectively, and come under the class III partially stable condition. The RS-4 with SMR value of 17.33 falls under the class I completely unstable condition. The FOS of planar failure case indicates that RS-3 (FOS = 0.22) is more unstable, while all other sections are having greater than 1 FOS. The calculated FOS values using CFC method reveals that the FOS is very close to 1 for all the SS sections that fall under completely saturated condition which indicates that these slope sections may fail during heavy rainfall. In LE method, the sections SS-3 and SS-4 are unsafe under partially and completely saturated (natural slope) condition. In average slope condition, all the SS sections are unsafe under partially or completely saturated conditions. The facets 2, 3, 4, and 5 required mitigation measures, to improve the stability of slopes. Site-specific mitigation measures were suggested for partially or completely unstable rock and soil cut slopes.  相似文献   

3.
汶川地震极重灾区地质背景及次生斜坡灾害空间发育规律   总被引:22,自引:4,他引:18  
512汶川大地震造成大量的次生斜坡灾害,本次研究区域为汶川大地震的11个重灾区,包括汶川、北川、青川、安县、平武、茂县、江油、彭州、什邡、绵竹、理县等市县。通过对重灾区航片、卫片、雷达图像的解译研究发现,重灾区次生斜坡灾害的主要灾种表现为崩塌、滑坡以及崩塌、滑坡高速运动解体形成的碎屑流(个别地方由于水的参与表现为泥石流)以及它们堵江形成的堰塞湖。研究发现地震次生斜坡灾害的发育具有明显的丛集性规律。从区域上看,次生斜坡灾害明显呈带状,沿龙门山断裂带展布,并主要受北川映秀断裂控制。各灾种的发育在不同地段发育的规模、频率差别较大。以灾害分布面积来排序,汶川县灾害面积最大,为131.55km2,其次为北川县,为45.57km2,其余9个县(市)灾害面积相差不大,均介于6~17km2,其中理县灾害面积最小,为6.25km2。各灾种的发育在不同地段发育的规模、频率差别较大。青川县、平武县灾种主要为滑坡,汶川县、茂县、安县、理县灾种主要表现崩塌转化的碎屑流,北川的主要灾种则为碎屑流,其次为滑坡,什邡、彭州、绵竹、江油等地主要灾种为崩塌。 灾种发育的这种地域性差别主要受控于地层岩性,除此而外,还与构造特征、地形地貌等因素紧密相关。研究表明:岩性对灾害种类的展布有决定性控制作用。统计发现,岩性越坚硬,崩塌、碎屑流发育率越高,滑坡则在软岩地区、较软岩地区和较坚硬区发育率最高,泥石流则在软岩地区最为发育。地形地貌对次生斜坡灾害的发育有重要影响,统计表明,崩塌、碎屑流以及泥石流在1200~2000m坡段范围内发育率最高,其次为800~1200m坡段;而滑坡则在800~1200m坡段范围发育率最高。对坡度而言,除11~20坡度范围外,崩塌和碎屑流的发育率总体具有随坡度增高而增大的特点;而滑坡和泥石流的发育率呈现典型的单峰特征,在1~20范围内发育率最大。坡向对地震次生斜坡灾害的发育影响不明显。 地震次生斜坡灾害的发育规律表明,地震斜坡灾害的发生主要受控于活动构造本身,并沿活动构造呈带状展布,同时受场地条件如岩性、地形地貌等因素的强烈控制。  相似文献   

4.
Vishal  V.  Siddique  T.  Purohit  Rohan  Phophliya  Mohit K.  Pradhan  S. P. 《Natural Hazards》2017,85(1):487-503

A massive disaster occurred in June 2013 in Kedarnath, India, due to cloudburst and extremely heavy rain along the Chorabari glacier. The resulting flash floods further aggravated the instability of natural and hill cut slopes at different places on the downstream side. The village Rambara that existed in close proximity of Kedarnath was swept away under flow of debris and water. The immediate surrounding area, which housed over a hundred and fifty shops and hotels, was completely washed away leaving no trace of civilization. This calamity in Uttarakhand is considered as India’s worst natural disasters after the tsunami in December 2004. On the downstream of the affected areas lie other pilgrim destinations that witness innumerable footfalls every year. Investigation of the health of the slopes on the routes to these destinations is therefore very important to ensure minimal damage to humans and machinery. The Himalayan terrain is a tectonically active mountain belt, having a large number of unstable natural and road cut slopes. Such slopes with rugged topography lie in the high seismic vulnerability zone. Further, the instability is aggravated by natural and anthropogenic activities increasing at a rapid and uncontrollable rate. In the light of the Kedarnath tragedy, more advanced research is being conducted along the National Highways to monitor and prevent slope/structure failures. This study was conducted to evaluate the hazard potential along National Highway-58, near Saknidhar village of Devprayag district by analysing rockfall using hazard rating systems and numerical simulation. Rockfall hazard rating systems were applied to evaluate the conditions of the slopes and to identify the associated risks. Based on the field and laboratory analyses, the parameters required for numerical models were determined. The bounce height, roll-out distance, kinetic energy and speed of the detached blocks were determined by using a competent rockfall simulator. The results obtained were used to identify rockfall risk in the region. Optimization strategies were applied during investigation by modifying the slope angle, ditch width and ditch angle to assess the possibility of a hazard to occur in different scenarios. The simulation studies revealed that an increasing slope angle could significantly increase the kinetic energy of the rock blocks. However, an increase in the ditch angle and the ditch width reduces the energy of moving blocks. The maximum bounce height above the slope varied from 0.003 m to 0.8 m for 10-kg blocks, whereas the maximum velocity and the maximum kinetic energy under such circumstances were 7.882 m/s and 379.89 J, respectively. The barrier capacity was found to be 233.18 J for 10-kg falling blocks at a height of 10.02 m. From the optimization studies, it was found that the risk can be reduced by up to 13 % if the slope of 70° has a ditch angle of 15° while on a flat ditch, the maximum risk will be at an angle of 65°. If the ditch angle is increased, the vertical component of the falling blocks is more effective than that in case of a flat ditch. These optimization studies lay foundation for advanced research for mitigation of rockfall hazards in similar potential areas.

  相似文献   

5.
顺层高边坡开挖松动区研究   总被引:2,自引:1,他引:1  
孙书伟  马惠民  张忠平 《岩土力学》2008,29(6):1665-1668
开挖顺层岩石高边坡,往往需要进行预加固,因而合理确定坡体开挖松动区范围便成为核心问题。根据坡体开挖后的应力和位移状态,给出了开挖松动区的明确定义;结合重庆万州-梁平高速公路沿线各顺层高边坡失稳实例,对顺层高边坡开挖松动区进行了研究,简述了松动区的特点,分析了开挖松动区的影响因素。从岩体结构出发,以开挖深度和岩层倾角为主控元素,对顺层高边坡开挖松动区的长度进行了统计分析,结果表明:岩层倾角在15~30°的砂泥岩顺层高边坡最易产生开挖失稳,且松动区长度与开挖深度有关,二者比值较为集中地分布在2~5之间。  相似文献   

6.
Slopes composed of stratified and poorly cemented rocks that fail during heavy rainfalls are typical in the outer zone of Taiwan's Western Foothills. This study investigates how hydraulic conductivity anisotropy influences pore water pressure (PWP) distributed in stratified, poorly cemented rock slopes and related slope stability through numerical simulation. The notion of representing thin alternating beds of stratified, poorly cemented rocks as an equivalent anisotropic medium for ground‐water flow analysis in finite slopes was validated. PWP was then derived in a modelled slope comprising an anisotropic medium with suitable boundary conditions. Simulation results indicate the significance of the principal directions of hydraulic conductivity tensor and the anisotropic ratio on PWP estimation for anisotropic finite slopes. For a stratified, poorly cemented rock slope, estimating PWP utilizing a phreatic surface with isotropic and hydrostatic assumptions will yield incorrect results. Stability analysis results demonstrate that hydraulic conductivity anisotropy affects the slope safety factor and slip surface pattern. Consequently, steady‐state groundwater flow analysis is essential for stratified, poorly cemented rock slopes when evaluating PWP distribution and slope stability. This study highlights the importance of hydraulic conductivity anisotropy on the stability of a stratified, poorly cemented rock slope. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
喜马拉雅山东南地区地质灾害发育规律初步研究   总被引:2,自引:0,他引:2  
利用遥感手段,结合MapGis,研究了喜马拉雅山东南地区地质灾害的发育情况,发现本区发育的主要地质灾害有滑坡、崩塌、泥石流、冰湖以及堰塞湖。其中崩塌、滑坡、泥石流斜坡地质灾害是本区最重要的地质灾害类型,占到总灾害数量的95.3%。在此基础上对喜马拉雅山东南地区地质灾害发育规律初步研究,发现本区地质灾害的发育在空间上的分布并非均匀,而是具有丛集性的特点。滑坡灾害主要发育在隆子和朗县。泥石流灾害比较严重的有米林、隆子和洛扎3县,而崩塌则主要集中在隆子县。研究发现,本区滑坡发育与地层、地形坡度以及土地类型关系密切,其中修康群、日当组和念青唐古拉群是本区的易滑地层。涅如组由于面积大,其中发育的滑坡较多,但是滑坡的发育率只略高于本区的平均水平。统计表明,16~30的坡度范围是滑坡最容易发生的。大于45以上的坡段很少发生滑坡。灌木林和天然草地这两种土地类型滑坡发育率最高。对于泥石流,研究表明,涅如组中泥石流发育面积最大,发育率也最高。泥石流发育的最适宜坡度也是16~30这样一个坡度范围。冰川和永久积雪区则最易发生泥石流。崩塌发育与地层类型、坡度的关系较为密切,崩塌主要发育在涅如组中,并且集中在坡度大于60以上的陡坡段中。这些初步成果的取得,是以后进行该区地质灾害空间预测的基础。  相似文献   

8.
临空面的几何形状在边坡破坏模式与稳定性分析中起着举足轻重的作用。运动学分析是确定边坡破坏模式与评价边坡稳定性的一种有效方法。目前基于运动学分析的边坡稳定性研究主要集中于单临空面边坡的破坏模式与最大安全开挖边坡角的确定。本文将此项研究扩展至双临空面边坡,将其破坏模式细分为4种,分别为沿结构面发生单平面滑动、沿结构面发生楔形体滑动、沿两个结构面的交线发生楔形体滑动以及倾倒破坏。在立体投影中得出,平滑滑动与楔形体滑动的滑动区为双临空面真倾向线与摩擦圆所组成的区域,单个结构面倾角矢量与两个结构面交线矢量位于该区城内;倾倒破坏区为双临空面真倾向线、摩擦圆与基圆所组成的区域,结构面的法向矢量位于该区城内。提出了双临空面边坡最大安全开挖边坡角的确定方法及边坡设计原则。最后将上述方法应用于三峡库区湖北省秭归县郭家坝镇郭家坝村生基坡高边坡,研究了该双临空面边坡的破坏模式并给出了最大安全边坡角的建议值  相似文献   

9.
One of the most important considerations in designing cut slopes in sub-horizontal, inter-layered, sedimentary rocks subject to differential weathering is predicting the total depth of undercutting. Undercutting-induced rockfalls are a major problem for many roadways in Ohio. The total depth of undercutting was measured for 59 profiles from 18 cut slope sites in Ohio with references to cut faces of hard rock units containing pre-split blast-hole traces. The presence of blast hole traces ensured that the rock face represented the slope surface that was cut during construction. Additionally, initial design plans were used for reference. Step-wise regression was used to determine the geological, geotechnical, and geometrical factors that have the highest influence on the total depth of undercutting. Selected independent factors used in the regression analysis included the vertical distance of the undercut unit from the slope crest, the relative position of the undercut unit from the slope crest, the total thickness of the undercut unit, the spacing of orthogonal joints within the undercut unit, the slake durability index value of the undercutting unit, the initial slope angle, and the age of the road cut. Factors that showed the most significant correlation with the total depth of undercutting were found to be the vertical distance of the undercut unit from the slope crest, the relative position of the undercut unit from the slope crest, the total thickness of the undercut unit, joint spacing within the undercut unit, and the slake durability index of the undercutting unit. The regression analysis resulted in an R2 value of 0.61, with the depth of undercutting correlating most strongly with a closer relative position of the undercut unit to the slope crest above it and to a closer spacing of orthogonal joints within the undercut unit. These results can be attributed to the fact that more porous and fractured rock units closer to the slope crest intercept and transport greater amounts of infiltrating groundwater, producing greater depths of undercutting. Also, closely jointed rock units are more permeable, allowing more groundwater seepage, which also leads to greater undercutting.  相似文献   

10.
田小甫 《地质与勘探》2012,48(4):840-846
[摘 要] 本文采用数值模拟的方法,利用UDEC 软件,开展了结构面对岩质边坡地震动影响的数值 模拟研究,研究内容涉及结构面产状和位置变化对岩体边坡地震动放大系数空间展布的影响。根据岩 体边坡中结构面发育的一般规律,本文模型工况主要考虑与坡面相交的贯穿性结构面,模拟的主要物理 对象是层面、贯穿性长大软弱结构面等。数值模拟结果表明:结构面越靠近坡顶,边坡上部的地震动响 应越强烈;顺倾结构面会使坡肩部形成更强烈的地震动响应;边坡越陡,坡顶和坡肩部的地震动响应越 强烈。上述规律对于岩质边坡地震稳定性分析具有指导意义。  相似文献   

11.
顺层岩质路堑边坡稳定性的敏感性因素分析   总被引:3,自引:0,他引:3  
龚文惠  王平  陈峰 《岩土力学》2007,28(4):812-816
运用弹塑性理论和有限元法,建立了顺层岩质路堑边坡稳定性的模拟分析模型。结合沪蓉国道主干线湖北宜昌至恩施高速公路的顺层岩质路堑高边坡工程,分析了结构面强度、岩层厚度、岩层倾角等各项因素对顺层岩质路堑边坡稳定性的影响,探讨了顺层岩质路堑边坡稳定性的规律。结果表明:软弱结构面的强度参数对顺层岩质路堑边坡稳定性起主要控制作用,岩层倾角对顺层岩质路堑边坡的稳定性也有明显的影响。在该工程的地质条件下,当岩层倾角为38°左右时,顺层路堑边坡的稳定性最差。  相似文献   

12.
This paper presents a comparative study of two methods, Sarma's method and the discontinuous deformation analysis (DDA), for rock slope stability analysis. The comparison concerns the stability analysis of two classic rock slopes. The study shows that the DDA, which accounts for the block kinematics, provides a very different factor of safety as compared with Sarma's method. More realistic reaction forces around each rock block can be obtained by the DDA, including the thrust forces between rock blocks and the forces between the base and the blocks. The DDA's result shows two possible directions for the relative movement between two contiguous blocks at the initiation of slope failure. It also indicates that the limit equilibrium condition may not occur along the interfaces of rock blocks at the initiation of slope failure. The determination of realistic interaction forces around each block will be very important in rock slope stability analysis if nonlinear failure criteria are considered.  相似文献   

13.
The occurrence of foliated rock masses is common in mining environment. Methods employing continuum approximation in describing the deformation of such rock masses possess a clear advantage over methods where each rock layer and each inter‐layer interface (joint) is explicitly modelled. In devising such a continuum model it is imperative that moment (couple) stresses and internal rotations associated with the bending of the rock layers be properly incorporated in the model formulation. Such an approach will lead to a Cosserat‐type theory. In the present model, the behaviour of the intact rock layer is assumed to be linearly elastic and the joints are assumed to be elastic–perfectly plastic. Condition of slip at the interfaces are determined by a Mohr–Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformations. The model is incorporated into the finite element program AFENA and validated against an analytical solution of elementary buckling problems of a layered medium under gravity loading. A design chart suitable for assessing the stability of slopes in foliated rock masses against flexural buckling failure has been developed. The design chart is easy to use and provides a quick estimate of critical loading factors for slopes in foliated rock masses. It is shown that the model based on Euler's buckling theory as proposed by Cavers (Rock Mechanics and Rock Engineering 1981; 14 :87–104) substantially overestimates the critical heights for a vertical slope and underestimates the same for sub‐vertical slopes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
江学良  曹平 《岩土力学》2006,27(Z1):691-696
采取该弹塑性有限元程序,在考虑施工爆破、岩体节理影响的条件下,对常-张高速公路的重点边坡的施工过程进行了模拟,分析了开挖过程中,岩体的变形和应力状态及屈服状态,并用降低材料强度储备的有限元强度折减法,根据边坡岩体单元的屈服连通程度和关键部位的位移变化对高边坡的整体安全系数进行了研究。通过对重点边坡K123的分析表明,边坡在其施工过程中是稳定的。  相似文献   

15.
预应力锚索加固岩质边坡的设计实例   总被引:24,自引:5,他引:19  
在修筑高等级公路时 ,常需要开挖而形成高陡路堑边坡 ,边坡稳定与否将影响公路施工和运营的安全。 对具有潜在滑动面的不稳定岩质边坡 ,通常采用预应力锚索和锚杆加固以节约工程投资与缩短施工时间。结合某高速公路路堑岩质边坡工程 ,在分析边坡工程地质条件的基础上 ,提出了预应力锚索加固边坡的设计方法和步骤 ,为相关边坡工程的加固提供借鉴经验。  相似文献   

16.
乌鲁木齐-尉犁高速公路是连接天山南北的重要通道,翻越天山公路沿线将产生大量的工程边坡,如何快速、准确地评价高寒地区现有边坡的稳定性,以及后续建设过程中对边坡稳定性的影响,直接关系到线位选择、工程量及投资估算量。基于岩体基本质量,选取边坡岩体结构面与边坡临空面组合因素、水文条件作为主要影响因素对现有边坡岩体质量进行修正,构建了现状的边坡岩体质量评价体系(TBQ)。在此基础上,考虑了大温差及水文条件造成的冻融风化作用、地震影响以及开挖方式等因素,构建了边坡岩体稳定性的预测评价体系(TFBQ),对于完善高寒地区边坡质量评价体系具有重要的研究意义。通过运用该体系对项目区边坡进行了稳定性评价及预测适用性分析,取得了较好效果。  相似文献   

17.
岩性及岩体结构对斜坡地震加速度响应的影响   总被引:1,自引:0,他引:1  
刘汉香  许强  侯红娟 《岩土力学》2013,34(9):2482-2488
斜坡岩体的岩性及岩体结构是斜坡在地震作用下产生变形破坏的主要控制因素。基于振动台模型试验,对4个斜坡模型探讨了这2个因素对斜坡地震动力响应的影响。岩性包括强度相对较高的硬岩和强度相对较低的软岩,对这两种岩性的斜坡又分别考虑了不含结构面的均质斜坡和含水平层状结构面的斜坡。基于传感器采集到的大量数据,以主频相近的天然地震波和10 Hz正弦波加载为分析工况,获得了以下几点认识:(1)4个模型斜坡坡面和坡内的水平向加速度均具有高程放大效应,尤其是软岩斜坡坡顶放大效应最显著;(2)软岩斜坡对水平向加速度的高程放大效应强于硬岩斜坡,尤其是在均质斜坡中表现最显著,均质软岩斜坡的高程放大效应呈现出明显的非线性特征;(3)当加载方向与水平层面平行时,含水平层状结构面的斜坡比均质斜坡产生了更强的高程放大效应,且在软岩斜坡中体现最显著;(4)岩性差异对斜坡水平向加速度高程效应的影响比结构差异的影响更为显著。研究结果为岩质斜坡的抗震设计提供了一定参考。  相似文献   

18.
高速公路开挖形成越来越多的工程边坡。缓倾外层状结构边坡作为一种典型的岩质边坡,一般情况下整体稳定性较好,但在特定的结构面组合状况下,开挖后也可能产生整体变形破坏。本文以软弱结构面和长大裂隙发育的公路工程边坡为例,通过岩体结构及边坡一定范围内已有边坡破坏现象的调查研究,采用工程地质类比和三维离散元法综合分析边坡变形破坏模式,并针对变形破坏模式的特点,提出支护对策。研究结果表明,结构面贯通坡体形成切割块体的后缘和侧缘边界时,缓倾外层状结构边坡可沿层面产生滑移-拉裂变形,若滑面与临空面具有一定夹角,边坡的变形可表现为旋转式滑移-拉裂;结构面组合控制的缓倾外层状结构岩质边坡稳定性受坡体中下部的关键块体控制,一旦关键块体失稳,将引起上部块体的连锁失稳,此类边坡变形控制的重点是对关键块体分布区域进行强支护;支护工程实施后的变形监测结果表明,基于变形破坏模式分析的边坡支护方案保证了边坡施工和运营过程中的安全。  相似文献   

19.
20.
The present contribution is a complete study extending before, during, and after the excavation of the mountain side that lying north of road 7. It includes slope stability analysis, rock cut design, and rockfall modeling for natural slope and rock cut face. Neoproterozoic granodiorite and biotite granite forming the slope body have medium to very high strengths. Mineral compositions and textures of these intact rocks control the strength values. These rocks are intensively dissected by fractures that are filled with montmorillonite and chlorite. The high plasticity and slippery nature of these filling materials represent the main problem that may face a rock cut designer because they damage the mechanical properties of these fractures. The problem begins with the selection of the rock mass classification that deals with the fracture fillings and extends during the stability analysis and the suggestion of mitigation and supporting measures. The rock masses building the natural slope are suffered by plane, wedge, and toppling failures. Therefore, two rock cut designs are suggested to avoid the hazards related to these failures and considering the construction cost as well. Rockfall modeling for the natural slope and rock cut designs was done to assess the hazards related to these falling of the blocks. The kinetic energy of falling blocks is represented on the roadway by the coverage distance and block rebound amplitude. Slope height has a positive effect on the values of these distance and amplitude, whereas the steepness of berm height has a negative effect on them. Coverage distance is a function to the location of rockfall barrier and to the width of road ditch, while the amplitude controls the barrier height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号