首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The climate of the 1930s was used as an analog of the climate that might occur in Missouri, Iowa, Nebraska and Kansas (the MINK region) as a consequence of global warming. The analog climate was imposed on the agriculture of the region under technological and economic conditions prevailing in 1984/87 and again under a scenario of conditions that might prevail in 2030. The EPIC model of Williamset al. (1984), modified to allow consideration of the yield enhancing effects of CO2 enrichment, was used to evaluate the impacts of the analog climate on the productivity and water use of some 50 representative farm enterprises. Before farm level adjustments and adaptations to the changed climate, and absent CO2 enrichment (from 350 to 450 ppm), production of corn, sorghum and soybeans was depressed by the analog climate in about the same percent under both current and 2030 conditions. Production of dryland wheat was unaffected. Irrigated wheat production actually increased. Farm level adjustments using low-cost currently available technologies, combined with CO2 enrichment, eliminated about 80% of the negative impact of the analog climate on 1984/87 baseline crop production. The same farm level adjustments, plus new technologies developed in response to the analog climate, when combined with CO2 enrichment, converted the negative impact on 2030 crop production to a small increase. The analog climate would have little direct effect on animal production in MINK. The effect, if any, would be by way of the impact on production of feed-grains and soybeans. Since this impact would be small after on-farm adjustments and CO2 enrichment, animal production in MINK would be little affected by the analog climate.  相似文献   

2.
The impacts of climate change on the agricultural, energy, forestry, and water sectors of MINK would reverberate negatively throughout the regional economy. Allowing for sectoral adjustments to the new climate, however, the decline in regional income and production would not likely exceed 1–2%. The largest economy-wide impacts would be by way of the agricultural and water sectors. The impacts by way of forestry and energy would be negligible, unless the nation adopts a program of massive reforestation to capture CO2, which would positively affect the regional economy.  相似文献   

3.
Water Resources Implications of Global Warming: A U.S. Regional Perspective   总被引:8,自引:1,他引:7  
The implications of global warming for the performance of six U.S. water resource systems are evaluated. The six case study sites represent a range of geographic and hydrologic, as well as institutional and social settings. Large, multi-reservoir systems (Columbia River, Missouri River, Apalachicola-Chatahoochee-Flint (ACF) Rivers), small, one or two reservoir systems (Tacoma and Boston) and medium size systems (Savannah River) are represented. The river basins range from mountainous to low relief and semi-humid to semi-arid, and the system operational purposes range from predominantly municipal to broadly multi-purpose. The studies inferred, using a chain of climate downscaling, hydrologic and water resources systems models, the sensitivity of six water resources systems to changes in precipitation, temperature and solar radiation. The climate change scenarios used in this study are based on results from transient climate change experiments performed with coupled ocean-atmosphere General Circulation Models (GCMs) for the 1995 Intergovernmental Panel on Climate Change (IPCC) assessment. An earlier doubled-CO2 scenario from one of the GCMs was also used in the evaluation. The GCM scenarios were transferred to the local level using a simple downscaling approach that scales local weather variables by fixed monthly ratios (for precipitation) and fixed monthly shifts (for temperature). For those river basins where snow plays an important role in the current climate hydrology (Tacoma, Columbia, Missouri and, to a lesser extent, Boston) changes in temperature result in important changes in seasonal streamflow hydrographs. In these systems, spring snowmelt peaks are reduced and winter flows increase, on average. Changes in precipitation are generally reflected in the annual total runoff volumes more than in the seasonal shape of the hydrographs. In the Savannah and ACF systems, where snow plays a minor hydrological role, changes in hydrological response are linked more directly to temperature and precipitation changes. Effects on system performance varied from system to system, from GCM to GCM, and for each system operating objective (such as hydropower production, municipal and industrial supply, flood control, recreation, navigation and instream flow protection). Effects were generally smaller for the transient scenarios than for the doubled CO2 scenario. In terms of streamflow, one of the transient scenarios tended to have increases at most sites, while another tended to have decreases at most sites. The third showed no general consistency over the six sites. Generally, the water resource system performance effects were determined by the hydrologic changes and the amount of buffering provided by the system's storage capacity. The effects of demand growth and other plausible future operational considerations were evaluated as well. For most sites, the effects of these non-climatic effects on future system performance would about equal or exceed the effects of climate change over system planning horizons.  相似文献   

4.
A nested regional climate model is used to generate a scenario of climate change over the MINK region (Missouri, Iowa, Nebraska, Kansas) due to doubling of carbon dioxide concentration (2 × CO2) for use in agricultural impact assessment studies. Five-year long present day (control) and 2 × CO2 simulations are completed at a horizontal grid point spacing of 50 km. Monthly and seasonal precipitation and surface air temperature over the MINK region are reproduced well by the model in the control run, except for an underestimation of both variables during the spring months. The performance of the nested model in the control run is greatly improved compared to a similar experiment performed with a previous version of the nested modeling system by Giorgi et al. (1994). The nested model generally improves the simulation of spatial precipitation patterns compared to the driving general circulation model (GCM), especially during the summer. Seasonal surface warming of 4 to 6 K and seasonal precipitation increases of 6 to 24% are simulated in 2 × CO2 conditions. The control run temperature biases are smaller than the simulated changes in all seasons, while the precipitation biases are of the same order of magnitude as the simulated changes. Although the large scale patterns of change in the driving GCM and nested RegCM model are similar, significant differences between the models, and substantial spatial variability, occur within the MINK region.  相似文献   

5.
Increased atmospheric CO2 concentration and climate change may significantly impact the hydrological and meteorological processes of a watershed system. Quantifying and understanding hydrological responses to elevated ambient CO2 and climate change is, therefore, critical for formulating adaptive strategies for an appropriate management of water resources. In this study, the Soil and Water Assessment Tool (SWAT) model was applied to assess the effects of increased CO2 concentration and climate change in the Upper Mississippi River Basin (UMRB). The standard SWAT model was modified to represent more mechanistic vegetation type specific responses of stomatal conductance reduction and leaf area increase to elevated CO2 based on physiological studies. For estimating the historical impacts of increased CO2 in the recent past decades, the incremental (i.e., dynamic) rises of CO2 concentration at a monthly time-scale were also introduced into the model. Our study results indicated that about 1–4% of the streamflow in the UMRB during 1986 through 2008 could be attributed to the elevated CO2 concentration. In addition to evaluating a range of future climate sensitivity scenarios, the climate projections by four General Circulation Models (GCMs) under different greenhouse gas emission scenarios were used to predict the hydrological effects in the late twenty-first century (2071–2100). Our simulations demonstrated that the water yield would increase in spring and substantially decrease in summer, while soil moisture would rise in spring and decline in summer. Such an uneven distribution of water with higher variability compared to the baseline level (1961–1990) may cause an increased risk of both flooding and drought events in the basin.  相似文献   

6.
Climate change impacts on Laurentian Great Lakes levels   总被引:1,自引:1,他引:1  
Scenarios of water supplies reflecting CO2-induced climatic change are used to determine potential impacts on levels of the Laurentian Great Lakes and likely water management policy implications. The water supplies are based on conceptual models that link climate change scenarios from general circulation models to estimates of basin runoff, overlake precipitation, and lake evaporation. The water supply components are used in conjunction with operational regulation plans and hydraulic routing models of outlet and connecting channel flows to estimate water levels on Lakes Superior, Michigan, Huron, St. Clair, Erie, and Ontario. Three steady-state climate change scenarios, corresponding to modeling a doubling of atmospheric CO2, are compared to a steady-state simulation obtained with historical data representing an unchanged atmosphere. One transient climate change scenario, representing a modeled transition from present conditions to doubled CO2 concentrations, is compared to a transient simulation with historical data. The environmental, socioeconomic, and policy implications of the climate change effects modeled herein suggest that new paradigms in water management will be required to address the prospective increased allocation conflicts between users of the Great Lakes.GLERL Contribution No. 645.  相似文献   

7.
The Ogallala or High Plains aquifer provides water for about 20% of the irrigated land in the United States. About 20 km3 (16.6 million acre-feet) of water are withdrawn annually from this aquifer. In general, recharge has not compensated for withdrawals since major irrigation development began in this region in the 1940s. The mining of the Ogallala has been pictured as an analogue to climate change in that many GCMs predict a warmer and drier future for this region. In this paper we attempt to anticipate the possible impacts of climate change on the sustainability of the aquifer as a source of water for irrigation and other purposes in the region. We have applied HUMUS, the Hydrologic Unit Model of the U.S. to the Missouri and Arkansas-White-Red water resource regions that overlie the Ogallala. We have imposed three general circulation model (GISS, UKTR and BMRC) projections of future climate change on this region and simulated the changes that may be induced in water yields (runoff plus lateral flow) and ground water recharge. Each GCM was applied to HUMUS at three levels of global mean temperature (GMT) to represent increasing severity of climate change (a surrogate for time). HUMUS was also run at three levels of atmospheric CO2 concentration (hereafter denoted by [CO2]) in order to estimate the impacts of direct CO2 effects on photosynthesis and evapotranspiration. Since the UKTR and GISS GCMs project increased precipitation in the Missouri basin, water yields increase there. The BMRC GCM predicts sharply decreased precipitation and, hence, reduced water yields. Precipitation reductions are even greater in the Arkansas basin under BMRC as are the consequent water yield losses. GISS and UKTR climates lead to only moderate yield losses in the Arkansas. CO2-fertilization reverses these losses and yields increase slightly. CO2 fertilization increases recharge in the base (no climate change) case in both basins. Recharge is reduced under all three GCMs and severities of climate change.  相似文献   

8.
Detection of effects of changing climate on the hydrologic responses of rivers can be further complicated by changes in land use, drainage, and water use. To discern effects of human-caused changes in a basin and those due to precipitation over time, a comparison was made of annual mean flows and peakflows in Midwestern basins that experienced increases in annual precipitation and heavy rain events during 1940–1990. Two pairs of basins, one pair in a rural area and one pair in an urbanized area, were selected for in-pair comparisons, with one basin in each pair experiencing more land use and drainage changes during 1940–1990 than the other basin. All basins experienced significant upward trends in annual precipitation and annual mean flows. Human-produced changes affecting runoff in both rural basins accounted for about two-thirds of the fluctuations in the mean flows, and precipitation changes accounted for the other third. However, much of the change in peakflows in the rural basin undergoing sizable changes in drainage was due to these changes (85%) versus 75% in the rural basin without comparable shifts in drainage. The mean and peak flows of the two urban basins showed considerably more response to precipitation shifts than those of the two rural basins. The urbanized area doubled within one urban basin during 1940–1990, and these land use changes explained much more of the increase in mean flows and peakflows there than in the urban basin with less change in land use. By 1990 precipitation accounted for 69% of the upward trend in mean flows since 1941 in the heavily developed urban basin, as compared to 37% of the trend in the less settled urban basin. For purposes of assessing climate change, the precipitation changes over fifty years in all basins produced marked uptrends in basin streamflow, but the magnitude of the precipitation effect was masked by the land use and drainage changes. The results illustrate the need for careful analysis of natural basin characteristics (soils and basin shape), land use and drainage changes, and of various precipitation conditions if the influence of shifting precipitation on hydrologic conditions is to be detected, accurately measured, and correctly interpreted. For such studies the paired basin comparison techniques appears to be a valuable approach.  相似文献   

9.
A physical model was developed for describing the thermal environment of ponded shallow water as a model for rice fields in relation to climatic conditions. The model was used to assess probable effects of CO2-induced warming on the thermal conditions of ponded shallow water. It was assumed that an altered equilibrium climate was produced by atmospheric CO2 which was twice that of present levels. The 1951–80 climatic means of Japan were used as baseline data. Water temperature and energy balance characteristics predicted from the model were compared between both climates. The most notable results were that water temperature under CO2 doubling rose 2 to 4 °C. These increases in temperature would induce a remarkable northward shift of the 15 °C isotherm which characterizes the isochrone of safe transplanting dates for rice seedlings. CO2-warming would have a considerable influence on the energy balance characteristics, intensifying the evaporation rate from the water surface. Changes in thermal conditions of rice fields due to CO2-induced climatic warming are, therefore, expected to bring about significant effects on aquatic environments and the life forms they support.  相似文献   

10.
Effect of climate change on watershed system: a regional analysis   总被引:1,自引:0,他引:1  
Climate-induced increase in surface temperatures can impact hydrologic processes of a watershed system. This study uses a continuous simulation model to evaluate potential implications of increasing temperature on water quantity and quality at a regional scale in the Connecticut River Watershed of New England. The increase in temperature was modeled using Intergovernmental Panel on Climate Change (IPCC) high and low warming scenarios to incorporate the range of possible temperature change. It was predicted that climate change can have a significant affects on streamflow, sediment loading, and nutrient (nitrogen and phosphorus) loading in a watershed. Climate change also influences the timing and magnitude of runoff and sediment yield. Changes in variability of flows and pollutant loading that are induced by climate change have important implications on water supplies, water quality, and aquatic ecosystems of a watershed. Potential impacts of these changes include deficit supplies during peak seasons of water demand, increased eutrophication potential, and impacts on fish migration.  相似文献   

11.
The impacts of year-to-year and decade-to-decade climatic variations on some of the Pacific Northwest's key natural resources can be quantified to estimate sensitivity to regional climatic changes expected as part of anthropogenic global climatic change. Warmer, drier years, often associated with El Niño events and/or the warm phase of the Pacific Decadal Oscillation, tend to be associated with below-average snowpack, streamflow, and flood risk, below-average salmon survival, below-average forest growth, and above-average risk of forest fire. During the 20th century, the region experienced a warming of 0.8 °C. Using output from eight climate models, we project a further warming of 0.5–2.5 °C (central estimate 1.5 °C) by the 2020s, 1.5–3.2°C (2.3 °C) by the 2040s, and an increase in precipitation except in summer. The foremost impact of a warming climate will be the reduction of regional snowpack, which presently supplies water for ecosystems and human uses during the dry summers. Our understanding of past climate also illustrates the responses of human management systems to climatic stresses, and suggests that a warming of the rate projected would pose significant challenges to the management of natural resources. Resource managers and planners currently have few plans for adapting to or mitigating the ecological and economic effects of climatic change.  相似文献   

12.
A four step methodology has been developed for study of the regional impacts of climate change and the possible responses thereto. First the region's climate sensitive sectors and total economy are described (Task A, current baseline). Next a scenario of climate change is imposed on the current baseline (Task B, current baseline with climate change). A new baseline describing the climate sensitive sectors and total regional economy is projected for some time in the future (Task C, future baseline, year 2030) in the absence of climate change. Finally, the climate change scenario is reimposed on the future baseline (Task D, future baseline with climate change). Impacts of the climate change scenario on the current and future regional economies are determined by means of simulation models and other appropriate techniques. These techniques are also used to assess the impacts of an elevated CO2 concentration (450 ppm) and of various forms of adjustments and adaptations. The region chosen for the first test of the methodology is composed of the four U.S. states of Missouri, Iowa, Nebraska and Kansas. The climate change scenario is the actual weather of the 1930s decade in the MINK region. ‘Current’ climate is the actual weather of the period 1951–1980.  相似文献   

13.
Jian Ni 《Climatic change》2002,55(1-2):61-75
The BIOME3 model was used to simulate the distribution patterns and carbon storage of the horizontal, zonal boreal forests in northeast and northwest China using a mapping system for vegetation patterns combined with carbon density estimates from vegetation and soils. The BIOME3 prediction is in reasonable good agreement with the potential distribution of Chinese boreal forests. The effects of changing atmospheric CO2 concentration had a nonlinear effect on boreal forest distribution, with 3.5–10.8% reduced areas for both increasing and decreasing CO2. In contrast, the increased climate together with and without changing CO2 concentration showed dramatic changes in geographic patterns, with 70% reduction in area and disappearance of almost boreal forests in northeast China. The baseline carbon storage in boreal forests of China is 4.60 PgC (median estimate) based on the vegetation area of actual boreal forest distribution. If taking the large area of agricultural crops into account, the median value of potential carbon storage is 6.92 PgC. The increasing (340–500 ppmv) and decreasing CO2 concentration (340–200 ppmv) led to decrease of carbon storage, 0.33 PgC and 1.01 PgC respectively compared to BIOME3 potential prediction under present climate and CO2 conditions. Both climate change alone and climate change with CO2 enrichment (340–500 ppmv) reduced largely the carbon stored in vegetation and soils by ca. 6.5 PgC. The effect of climate change is more significant than the direct physiological effect of CO2 concentration on the boreal forests of China, showing a large reduction in both distribution area and carbon storage.  相似文献   

14.
To simulate effects of projected climate change on water temperature characteristics of small lakes in the contiguous U.S., a deterministic, one-dimensional year-round water temperature model is applied. In cold regions the model simulates ice and snow cover on a lake. The lake parameters required as model input are surface area, maximum depth, and Secchi depth as a measure of radiation attenuation and trophic state. The model is driven by daily weather data. Weather records from 209 stations in the contiguous U.S. for the period 1961–1979 were used to represent present climate conditions. The projected climate change owing to a doubling of atmospheric CO2 was obtained from the output of the Canadian Climate Center General Circulation Model. The simulated water temperature and ice characteristics are related to the geometric and trophic state lake characteristics and to geographic location. By interpolation, the sensitivity of lake water temperature characteristics to latitude, longitude, lake geometry and trophic status can therefore be quantified for small lakes in the contiguous U.S. The 2× CO2 climate scenario is projected to increase maximum and minimum lake surface temperatures by up to 5.2°C. (Maximum surface water temperatures in lakes near the northern and the southern border of the contiguous U.S. currently differ by up to 13°C.) Maximum temperature differences between lake surface and lake bottom are projected to increase in average by only 1 to 2°C after climate warming. The duration of seasonal summer stratification is projected to be up to 66 days longer under a 2×CO2 climate scenario. Water temperatures of less than 8°C are projected to occur on lake bottoms during a period which is on the order of 50 days shorter under a 2×CO2 climate scenario. With water temperature change projected to be as high as 5.2°C, ecological impacts such as shifts in species distributions and in fish habitat are most likely. Ice covers on lakes of northern regions would also be changed strongly.  相似文献   

15.
Climate Change and Water Resources in Britain   总被引:10,自引:0,他引:10  
This paper explores the potential implications of climate change for the use and management of water resources in Britain. It is based on a review of simulations of changes in river flows, groundwater recharge and river water quality. These simulations imply, under feasible climate change scenarios, that annual, winter and summer runoff will decrease in southern Britain, groundwater recharge will be reduced and that water quality – as characterised by nitrate concentrations and dissolved oxygen contents – will deteriorate. In northern Britain, river flows are likely to increase throughout the year, particularly in winter. Climate change may lead to increased demands for water, over and above that increase which is forecast for non-climatic reasons, primarily due to increased use for garden watering. These increased pressures on the water resource base will impact not only upon the reliability of water supplies, but also upon navigation, aquatic ecosystems, recreation and power generation, and will have implications for water quality management. Flood risk is likely to increase, implying a reduction in standards of flood protection. The paper discusses adaptation options.  相似文献   

16.
A crop-growth-simulation model based on SUCROS87 was used to study effects of temperature rise and increase of atmospheric CO2 concentration on wheat yields in several regions in Europe. The model simulated potential and water-limited crop production (growth with ample supply of nutrients and in the absence of damage by pests, diseases and weeds). Historic daily weather data from 13 sites in Western Europe were used as starting point.For potential production (optimal water) a 3 °C temperature rise led to a yield decline due to a shortening of the growing period on all locations. Doubling of the CO2 concentration caused an increase in yield of 40% due to higher assimilation rates. It was found that effects of higher temperature and higher CO2 concentration were nearly additive and the combination of both led to a yield increase of 1–2 ton ha-1. A very small CO2-temperature interaction was found: the effect of doubled CO2 concentration on crop yield was larger at higher temperatures. The inter-annual yield variability was hardly affected.When water was limiting crop-production effects of temperature rise and higher CO2 levels were different than for the potential production. Rise in temperature led to a smaller yield reduction, doubled CO2 concentration to a larger yield increase and combination of both led to a large yield increase (3 ton ha-1) in comparison with yields simulated for the present situation. Both rise in temperature and increase in the CO2 concentration reduced water requirements of the crop. Water shortages became smaller, leading to a reduction in inter-annual variability. It is concluded that when no major changes in precipitation pattern occur a climate change will not affect wheat yields since negative effects of higher temperatures are compensated by positive effects of CO2 enrichment.  相似文献   

17.
A model to calculate the water balance of a hummocky sedge fen in the northern Hudson Bay Lowland is presented. The model develops the potential latent heat flux (evaporation) as a function of net radiation and atmospheric temperature. It is about equally sensitive to a 2% change in net radiation and a 1°C change in temperature. The modelled potential evaporation agrees well with the Priestley–Taylor formulation of evaporation under conditions of a non-limiting water supply. The actual evaporative heat flux is modelled by expressing actual/potential evaporation as a function of potential accumulated water deficit. Model evaporation agrees well with energy balance calculations using 7 years of measured data including wet and dry extremes. Water deficit is defined as the depth of water below reservoir capacity. Modelled water table changes concur with measurements taken over a 4 year period. When net radiation, temperature and precipitation measurements are available the water balance can be projected to longer time periods. Over a 30 year interval (1965–1994) the water balance of the sedge fen showed the following. During the growing season, there was an increase in precipitation, no change in temperature and a decrease in net radiation, evapotranspiration and water deficit. There was also a decrease in winter snow depths. The fen was brought back to reservoir capacity during final snowmelt every year but one. Summer rainfall was the most important single factor affecting the water balance and the ratio actual/potential evaporation emerged as a linear function of rainfall amount. A 2 × CO2 climate warming scenario with an annual temperature increase of 4°C and no precipitation change indicates lesser snow amounts and a shorter snow cover period. A greater summer water deficit, triggered mainly by greater evaporation during the month of May, is partially alleviated by lesser evaporation magnitudes in July. The greater water deficit would be counterbalanced by a 23% increase in summer rainfall. On average, the fen's water reservoir would still be recharged after winter snowmelt but the ground would remain at reservoir capacity for a shorter time. The warming scenario with a 10% decline in summer rainfall would create a large increase in the longevity and severity of the water deficit and this would be particularly evident during drier years. The carbon budget and peat accumulation and breakdown rates are strongly affected by changes in the water balance. Some evidence implies that greater water deficits lead to an increase in net carbon emissions. This implies that the sedge peatland could lose biomass under such conditions. An example is given where increased water deficit results in large decreases in local wetland streamflow.  相似文献   

18.
Highlights of the previous papers in this series are reviewed. Methodology developed for the MINK study has improved the ability of impacts analysis to deal with questions of (1) spatial and temporal variability in climate change; (2) CO2-enrichment effects; (3) the reactions of complex enterprises (farms and forests) to climate change and their ability to adjust and adapt; and (4) integrated effects on current and, more particularly, on future regional economies. The methodology also provides for systematic study of adjustment and adaptation opportunities and of the inter-industry linkages that determine what the overall impacts on the regional economy might be. The analysis shows that with a 1930s dust bowl climate the region-wide economic impacts would be small, after adjustments in affected sectors. In this final paper we consider whether synergistic effects among sectoral impacts and more severe climate change scenarios might alter this conclusion. The MINK analysis, as is, leads to the conclusion that a strong research capacity will be required to ensure that technologies facilitating adaptation to climate change will be available when needed. The capacity to deal with climate change also requires an open economy allowing for free trade and movement of people and for institutions that protect unpriced environmental values. More severe climate scenarios and negative synergisms can only strengthen these conclusions.  相似文献   

19.
This modeling study addresses the potential impacts of climate change and changing climate variability due to increased atmospheric CO2 concentration on soybean (Glycine max (L.) Merrill) yields in theMidwestern Great Lakes Region. Nine representative farm locations and six future climate scenarios were analyzed using the crop growth model SOYGRO. Under the future climate scenarios earlierplanting dates produced soybean yield increases of up to 120% above current levels in the central and northern areas of the study region. In the southern areas, comparatively small increases (0.1 to 20%) and small decreases (–0.1 to–25%) in yield are found. The decreases in yield occurred under the Hadley Center greenhouse gas run (HadCM2-GHG), representing a greater warming, and the doubled climate variability scenario – a more extreme and variableclimate. Optimum planting dates become later in the southern regions. CO2fertilization effects (555 ppmv) are found to be significant for soybean, increasing yields around 20% under future climate scenarios.For the study region as a whole the climate changes modeled in this research would have an overall beneficial effect, with mean soybean yield increases of 40% over current levels.  相似文献   

20.
Crop growth models, used in climate change impact assessments to project production on a local scale, can obtain the daily weather information to drive them from models of the Earth's climate. General Circulation Models (GCMs), often used for this purpose, provide weather information for the entire globe but often cannot depict details of regional climates especially where complex topography plays an important role in weather patterns. The U.S. Pacific Northwest is an important wheat growing region where climate patterns are difficult to resolve with a coarse scale GCM. Here, we use the PNNL Regional Climate Model (RCM) which uses a sub-grid parameterization to resolve the complex topography and simulate meteorology to drive the Erosion Productivity Impact Calculator (EPIC) crop model. The climate scenarios were extracted from the PNNL-RCM baseline and 2 × CO2 simulationsfor each of sixteen 90 km2 grid cells of the RCM, with differentiation byelevation and without correction for climate biases. The dominant agricultural soil type and farm management practices were established for each grid cell. Using these climate and management data in EPIC, we simulated winter wheat production in eastern Washington for current climate conditions (baseline) and a 2 × CO2 `greenhouse' scenario of climate change.Dryland wheat yields for the baseline climate averaged 4.52 Mg ha–1 across the study region. Yields were zero at high elevations where temperatures were too low to allow the crops to mature. The highest yields (7.32 Mgha–1) occurred at intermediate elevations with sufficientprecipitation and mild temperatures. Mean yield of dryland winter wheat increased to 5.45 Mg ha–1 for the 2 × CO2 climate, which wasmarkedly warmer and wetter. Simulated yields of irrigated wheat were generally higher than dryland yields and followed the same pattern but were, of course, less sensitive to increases in precipitation. Increases in dryland and irrigated wheat yields were due, principally, to decreases in the frequency of temperature and water stress. This study shows that the elevation of a farm is a more important determinant of yield than farm location in eastern Washington and that climate changes would affect wheat yields at all farms in the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号