首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
王昂生  N.Fukuta 《气象学报》1985,43(3):370-377
冰相粒子在成云降雨过程中具有举足轻重的作用。30年来,Nakaya,Mason和Kobayashi等人从事了冰晶增长规律的研究,不过他们的成绩主要在水面饱和以上区域里。近年来,Kobayashi,Vanli等人在低冰面过饱和区取得少量资料,引起了广泛兴趣,并推论出广为引用的模式。  相似文献   

2.
基于观测资料和中尺度数值模式WRF对2019年2月14日发生在北京地区的一次典型低涡低槽型降雪系统进行了观测资料分析和数值模拟,研究了降雪产生的云微物理机制,探讨了雪的形成过程并进行了人工催化降雪的数值模拟分析。结果表明:低涡前部暖湿平流带来的水汽和低涡切变线附近强烈的上升运动造成了此次区域性大雪;雪的凝华增长、雪降落过程中凇附云水继续长大、云冰自动转换为雪、冰晶和雪碰并聚合是此次降雪的主要微物理过程。催化模拟显示,人工播撒碘化银催化剂之后,云中产生大量冰晶,增多的冰晶通过凝华增长、碰并、聚合、凇附等转换成雪的过程增加,进而造成地面降雪的增加。  相似文献   

3.
本文利用“太行山东麓人工增雨防雹作业技术试验”的飞机和地面雷达观测数据,重点研究分析了2018年5月21日一次典型西风槽天气系统影响下的层状云微物理特征。结果表明,?5°C层的过冷水含量低于0.05 g m?3,冰粒子数浓度量级101~102 L?1。冰粒子数浓度高值区主要以针状和柱状冰晶为主。这可能低层是Hallett-Mossop机制和其他冰晶繁生机制共同作用下所产生的冰晶碎片在冰面过饱和条件下凝华增长所形成的。冰粒子数浓度低值区的冰晶形状基本以片状或枝状为主。?5°C层的冰雪晶增长主要以凝华和聚并增长为主,凇附过程很弱。零度层附近云水含量峰值区的液态水占比达到70%以上。云水含量峰值区的粒子主要以直径10~50 μm的云滴为主,伴随着少量聚合状冰晶。零度层其他区域的过冷水含量维持在0.05 g m?3左右,冰晶形态主要以聚合状、凇附状及霰粒子为主。液水层则主要以球形液滴及半融化状态的冰粒子为主。垂直探测表明:零度层以上的冰雪晶数浓度呈现随高度递增的趋势。在发展稳定的层状云内,混合层的过冷水含量很低,冰粒子主要通过凝华和聚并过程增长,云体冰晶化程度较高。而在发展较为旺盛的层状云区里过冷水含量也较高,大量液滴的存在也表明混合层冰-液相之间的转化不充分。不同温度层的粒子谱显示,冷水含量高值区的冰粒子平均浓度比过冷水低值区高,但平均直径比过冷水低值区小。  相似文献   

4.
一次火箭人工增雨分析   总被引:2,自引:0,他引:2  
王以琳  魏建苏 《气象科学》2009,29(2):260-265
根据冰晶增长理论和播云条件,完善了以往人工增雨作业指标,提出在有利的天气形势下进行人工增雨作业时,确定水平作业范围的指标为:冷层中冰面饱和区、水汽积分量≥9 mm的区域和水汽垂直输送区的重合区.确定作业高度的指标为:在垂直剖面图上冰面饱和区、水汽垂直输送区和准饱和区的重合区.作业时间应选在水平、垂直指标出现和消失的时间段内.利用MM5中尺度模式的输出结果,以3 h为时间间隔,在0~-30 ℃层之间间隔5 ℃输出计算的各种作业指标预报图和综合图,形成业务化网页.应用作业指标于2007年3月3日在山东省聊城市莘县组织实施了一次火箭人工增雨作业,并对以上指标进行了验证.  相似文献   

5.
雹云中与冰相有关的起电机制   总被引:1,自引:0,他引:1  
本文从近代大量观测事实,尤其是七十年代发现的次生冰晶(Secondaryice)现象出发,利用与降水有关的极化和非极化机制,根据实际观测雹云中降水强度计算电场增长。讨论极化电中性面下移、多次碰撞以及由于冰表面电导率较低而表征极化电荷转移时间较长等对起电的抑制。计算指出,对于较强的雹云,这些抑制较弱,电场可达击穿值。 计算还指出:当雹云中出现次生冰晶,表面电位差机制和次生冰晶起电可以在比极化机制更短的时间内,电场增长到4000v/cm。对于强雹云,极化和表面电位差机制是优势起电机制,云下部次正电荷区是次生冰晶起电所致。对于弱雹云,次生冰晶起电是优势机制,这类云没有次正电荷区。  相似文献   

6.
东北冷涡中尺度云系降水机制研究 II: 数值模拟   总被引:1,自引:1,他引:0  
在利用卫星、雷达和机载PMS(粒子测量系统)等观测资料对2003年7月8日东北冷涡积层混合云系的降水形成机制分析的基础上,将观测分析与数值模拟研究相结合,用中尺度数值模式对积层混合云系做数值模拟,并结合观测资料进一步分析了积层混合云系的微物理结构、粒子形成过程和降水形成机制,获得如下结果:(1)混合云中对流云具有分层的微物理结构.冰晶含水量最大值出现的高度最高,其次由高到低的排序是雪、云水、霰和雨;雨水主要出现在云的暖区;各种粒子中以雨水含水量最高,其次是霰.对流云体生命期较长,微物理结构基本稳定.(2)粒子形成增长过程有差异.冰晶通过凝华过程增长.雪主要来源于冰晶,产生后主要通过撞冻、收集冰晶和凝华过程增长,其中撞冻过冷云水增长对雪质量贡献最大,其产生率极大值高度与过冷云水相当.丰富的过冷云水,给雪的撞冻增长提供了有利条件.在高、中和低层雪的形成有着不同的机制,高层雪收集冰晶长大后,下落到低层又以雪撞冻过冷云水的结淞增长为主要过程.霰主要由雨滴冻结和雪的转化产生,过冷雨滴与冰晶接触冻结成霰;过冷雨滴收集雪,雪随着雨滴的冻结而转化成霰.因此霰的产生与过冷雨滴关系极大.霰主要撞冻云水、收集雪和冰晶增长,其中撞冻是霰的重要增长过程.雨水主要由霰的融化形成,降水主要是由冷云过程产生的.在过冷层,霰撞冻增长占优势.云上部的冰晶和雪对云的中部具有播撒作用,过冷层中存在丰富的过冷水,对冰相粒子的撞冻增长有利.对云水消耗的分析表明,雨滴对云滴的收集、霰和雪对云水的撞冻增长是消耗云水的主要过程.(3)从各种粒子的形成和增长过程可以看出,大部分雨水由霰融化形成,暖云过程贡献要小得多.可见,降水主要是由冷云过程产生的,这与观测分析的结果一致.  相似文献   

7.
河南省一次冷锋降水过程的水汽分布特征及其增雨潜力   总被引:4,自引:1,他引:3  
选取2002年4月4~5日河南省的一次冷锋降水过程,利用实测的间隔3h一次的加密探空资料,研究了降水发展过程中云与水汽的背景分布特征。分析结果指出:云系的空间分布与等假相当位温面上的准饱和区分布一致,地面雨区与其高湿区(>85%)相对应。850~700hPa之间水汽含量最大,主要位于东—西、南—北水汽通量交汇区,这与中低空风场东—西风180°风向切变、低层水面过饱和区相对应。伴随此次地面锋线移入,高空327K等假相当位温线垂直范围扩大,600hPa以上是一个较大的中性层结区,并伴有云中准饱和区厚度不断增加,说明高积云有层云化和加厚的倾向,云内中上空位势不稳定又有利于云向上垂直发展,从而有利于降水产生。高层-15℃以上高度的冰面过饱和区有利于过冷水的形成,因而也有利于冰晶的繁生增长,零度层高度以下的水面过饱和区内水汽凝结率高,液态水成物容易生成,这对于高层冰晶效应形成的云滴在下落时,能更好的进行碰并增长。所以,此次降水过程中存在两个较好的人工催化时段,分别是5日5~8时和15~17时(北京时),这与计算雨强反映出的潜力区相一致,因此,采用计算雨强或整层大气可降水量来判断催化潜力或许更加合理,但这些基于理论分析的潜力判断需要进一步配合云中冰晶和液态水的观测资料作论证。可见,利用探空资料可计算出各种物理量,这些物理量有助于我们进一步了解云系结构及水汽分布特征,当缺乏雷达和卫星等探测数据时,这对于实际人工影响天气研究和业务作业还是有参考意义的。  相似文献   

8.
利用机载粒子测量系统资料、天气雷达和Ka波段云雷达资料,分析了2017年5月22日河北省一次低槽冷锋降水过程积层混合云的微物理结构。结果表明:降水云系出现在低槽槽前西南气流中,积层混合云为大范围的层状云系中镶嵌大量对流云核结构,0℃层高度位于3577—4004m,随降水过程发展0℃层高度降低,嵌入的对流加强将抬升云顶高度。云内粒子浓度随云内对流的发生和加强而提高,云粒子浓度从1.8×10^5L^-1上升至5.0×10^5L^-1;云内过冷水含量大幅提高,从0.05g·m^-3上升至0.60g·m^-3,冷云中上层过冷水含量可长时间维持在0.20g·m^-3,中上层过冷水占比达60%。对流发生和加强可提高冰晶粒子增长速度,弱对流区冷云低层出现冰晶粒子浓度爆发增长区,强对流区冷云中上层成为冰晶粒子浓度快速增长区;最大降水粒子直径从8000μm增长至10000μm以上,直径在10000μm以上降水粒子谱分布区域从云底向中上层拓展。  相似文献   

9.
朱士超  郭学良 《气象学报》2014,72(2):366-389
利用中国国家科技支撑计划重点项目环北京地区3架飞机联合云探测试验数据,分析了2009年4月18日和5月1日两次积层混合云中冰晶形状、分布与增长过程。结果表明:飞机在0—-16℃范围的云层内观测到的冰晶形状主要包括板状、针柱状、柱帽状、辐枝状和不规则状。云中低层的冰晶形状受云顶温度影响,云顶温度不同,冰晶形状不同,当云顶温度高于-8℃时,云中低层的冰晶以板状和针柱状为主;当云顶温度低于-13℃时,在云中低层可观测到辐枝状冰晶;当云顶温度低于-18℃时,在云中低层可观测到柱帽状冰晶。同时冰晶形态还受其所处云中位置的影响,在积层混合云中的嵌入对流区含有更多的凇附状冰晶;在融化层以上,冰晶的增长过程主要包括凝华、凇附和聚合过程,在垂直方向上,随着高度降低云中过冷水增多,冰晶的凇附增长也相应增强。积层混合云中的对流区和层云区粒子谱下落拓宽速率有明显差别,在4.8—4.2 km(-11.6—-8℃)高度层,对流区粒子谱拓宽速率为3 mm/km,而层云区为3.67 mm/km,层云中粒子拓宽增长的速率略高于对流区;而在4.2—3.6 km(-8—-5℃)高度层,对流区的粒子谱拓宽速率为6.67 mm/km,层云区为2.33 mm/km,对流区的粒子拓宽增长速率是层云区的近3倍,主要原因是对流区低层的过冷水含量较高。  相似文献   

10.
东北冷涡中尺度云系降水机制研究 I: 观测分析   总被引:2,自引:2,他引:0  
利用机载云粒子测量系统等仪器对2003年7月8日冷涡云系的积层混合云探测的资料,分析冷涡云系中的微物理结构、微物理过程和降水形成机制.结果表明:在4km以上高度,2-DC粒子浓度随高度快速增加,而粒子平均直径逐渐减小,粒子在下落过程中获得了增长.积层混合云中对流云在垂直方向上出现明显的分层的微物理结构:4.6km以上高度只存在针状冰晶;4.5~3.5 km高度,存在过冷水和冰相粒子.过冷水含量较高,冰相粒子除针状冰晶外,还有少量冰雪晶聚合体或霰粒子,其中在紧靠0℃层之上的3.5km高度,主要存在冰雪晶聚合体或霰粒子.在紧靠0℃层之下,粒子为椭球形,还有一些未完全融化的冰晶,再降低200 m高度,粒子完全是球形,这里完全是雨滴.降水粒子主要是雨水.云系液态水含量十分丰富,过冷水含量最大值可达3.3 g/m3,云体上部也达到2.0 g/m3.云垂直方向上微物理结构分析表明,云中冰晶除了通过冰核核化形成外,可能还存在冰晶的繁生过程.冰晶产生后通过聚并进一步长大,撞冻过冷水也是冰雪晶增长的方式之一.在云的暖区降水粒子为雨滴,其中至少有一部分是由冰相粒子(冰晶聚合体或霰粒子)融化形成.因此冷云过程参与了降水形成过程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号