首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 779 毫秒
1.
A critical component of flood protection in some coastal areas is expected to be the potential contribution of wetlands to the lowering of surges as they propagate inland from the coast. Consequently, an accurate method to quantify the effect of wetlands on coastal surge levels is required. The degree to which wetlands attenuate surge is the subject of debate and difficult to assess. The potential of wetlands to reduce storm surge has typically been expressed as a constant attenuation rate, but the relationship is much more complex. A numerical storm surge model was applied to assess the sensitivity of surge response to specified wetland loss. Results suggest that wetlands do have the potential to reduce surges but the magnitude of attenuation is dependent on the surrounding coastal landscape and the strength and duration of the storm forcing. Numerical models that simulate the relevant physical processes can provide valuable information on how to best integrate wetlands into coastal protection plans. However, while the model applied for this study has displayed skill in estimating surges over wetlands, the formulations are missing key processes and model advancements are necessary.  相似文献   

2.
派比安台风对上海黄浦江潮位的影响及成因探讨   总被引:3,自引:3,他引:3  
徐建成 《海洋预报》2001,18(1):1-10
2000年派比安台风产生的历史第二高潮位对上海的防汛带来严重影响。本文通过比较历史上的风暴潮,从动力机制、天文高潮与增水极值相碰头,潮波共振和水利工程的影响等四个方面分析了这次风暴潮造成的高水位,及台风余振期边缘波的影响,并用SLOSH(Sea,Lake,Overland Surge from Hurricanes)模式模拟了这次风暴潮,为防台减灾的正确决策提供了理论依据。  相似文献   

3.
长江口受台风影响严重,台风风暴潮、上游洪峰及天文大潮相遇将致使长江下游至长江口水位暴涨,对沿岸至河口的防汛安全构成严重威胁。基于ADCIRC模型构建东中国海至长江口风暴潮数学模型,模拟9711号台风和0012号台风两场典型台风水位过程。以典型台风为基础构成多种台风路径,分析不同登陆位置和走向对长江沿线风暴增水影响。研究大洪水、不同路径台风、天文大潮共同影响下长江下游沿线风暴增水分布规律。结果表明:登陆位置处于长江口南侧情况下长江河道沿线增水大于正面登陆长江口和北侧登陆型台风;平行于长江河道方向移动的台风造成沿线增水大于斜向穿越长江口的台风,不同台风走向对于风暴增水影响程度小于登陆位置;台风风暴潮、上游洪峰及天文大潮“三碰头”情形下长江沿线增水分布呈单峰型,从大通至江阴不断增大,江阴至中浚维持高位,中浚至口外迅速减小。  相似文献   

4.
Given the history and future risk of storm surge in the United States, functional storm protection techniques are needed to protect vital sectors of the economy and coastal communities. It is widely hypothesized that coastal wetlands offer protection from storm surge and wave action, though the extent of this protection is unknown due to the complexities of flow through vegetation. Here we present the sensitivity of storm-surge numerical modeling results to various coastal wetlands characteristics. An idealized grid domain and 400-km2 marsh feature were used to evaluate the effects of marsh characteristics on hurricane surge, including the effects of bottom friction, elevation, and continuity (the ratio of healthy marsh to open water area within the total wetland area).Through coupled hydrodynamic and wave model simulations, it is confirmed that increased bottom friction reduces storm-surge levels for most storms. However, increases in depth associated with marsh elevation loss generally results in a reduction of surge. As marsh continuity is decreased, coastal surge increases as a result of enhanced surge conveyance into and out of the marsh. Storm surge is parameterized in terms of marsh morphology, namely marsh elevation, frictional characteristics, and degree of segmentation, which will assist in the justification for and optimization of marsh restoration in terms of storm protection.  相似文献   

5.
Super Cyclone Gonu is the strongest tropical cyclone on record in the Arabian Sea. Gonu caused coastal damage due to storm surge and storm wave impact as well as wadi flooding. High water marks, overland flow depths, and inundation distances were measured in the coastal flood zones along the Gulf of Oman from 1 to 4 August 2007. The high water marks peaked at Ras al-Hadd at the eastern tip of Oman exceeding 5 m. The storm surge of Gonu is modeled using the Advanced Circulation Model (ADCIRC). The multi-hazard aspect is analyzed by comparing observations from Cyclone Gonu with the 2004 Indian Ocean Tsunami.  相似文献   

6.
根据1965—2009年间影响北海市沿岸的热带气旋资料和风暴增水资料,进行统计分析北海市沿岸的风暴潮特征。结果表明:北海市沿岸平均每年发生风暴增水2—3次,其中较大以上强度的风暴增水每年0.87次,严重以上强度的风暴增水每3年有一次;北海市沿岸每年4—11月均有可能发生风暴增水,且集中在7—10月,尤以9月最多。影响北海市沿岸的热带气旋主要以西北行路径为主,且多是穿过雷州半岛或海南岛后在越南沿海登陆,此种情况下,风暴增水曲线表现为周期性波动。另外,本文还采用Pearson-Ⅲ分布和Gumbel分布来估算风暴增水频度,得出北海市沿岸不同重现期的高潮位值。  相似文献   

7.
—In China,estuarine and coastal cities are mostly regional economic development centers.Thedisasters by combined effect of upper reach flood,storm surge and typhoon waves are primary obstaclesto the economic development of such cities.Thus the risk analysis and system analysis of flood-stormsurge-wave disaster,economic loss and flood-storm surge control measures play a very important role inthe sustainable development of coastal cities.There are three types of coastal cities for consideration.Thefirst type of city is like Tianjin.The most significant damage is from the upper reach flood.The effect ofstorm surge is negligible,because in the estuary of the Haihe River,tidal locks are built.The Grey MarkovModel(GMM)is used to forecast the flood peak level.GMM combines the Grey system and the Markovtheory into a high-precision model.The predicted flood peak levels are close to the measured data.A syn-thetic model is established for economic assessment,risk analysis and flood-control benefit estimation.Asa n  相似文献   

8.
Simulation of storm-induced barrier island morphodynamics and flooding   总被引:1,自引:0,他引:1  
Prediction of coupled storm hydrodynamics and morphodynamics is essential for accurately designing coastal flood protection measures. A numerical simulation methodology was developed and implemented to evaluate and assess engineering design solutions for storm damage reduction along the south shore of Long Island, New York, USA. This simulation methodology was applied to compute bay water levels for two major coastal storms taking into account contributions from storm surge, waves, wind, and barrier island overwash and breaching. Simulation results for breaching and bay flooding compare well to historically documented barrier island morphological change and bay high water marks.  相似文献   

9.
本文应用丁氏圆形台风模式,建立了太湖台风风暴流场的准三维数值模式,模型考虑了垂向涡粘系数沿水深变化和动量方程的修正,在对9711号(Winnie)台风影响下太湖各站水位验证的基础上,对太湖台风风暴流场进行了模拟计算。结果表明,该模式可对湖泊的台风风暴流进行复演和预测计算。从预测研究的角度看,基于台风模式的湖泊台风风暴流计算模式更有价值。  相似文献   

10.
左浩  高抒 《海洋通报》2005,24(1):8-17
采用一个包括陆地淡水径流和风暴潮影响的模型计算了海南省博鳌港的洪水水位。模型中的外海潮汐考虑K^1和O^1分潮,风暴增水和河流流量的变化过程采用峰值函数的形式模拟,取得了与实测结果相近的计算结果。模拟实验表明,洪水水位峰值与河流洪峰流量,风暴增水峰值,系统的过水断面形状以及洪水历时的长短等因素有关。对于博鳌港口门通航条件整治,采用复合的梯形过水断面最为合适,因为相对于天然的口门过水断面,复合梯形断面能使湾内的最高洪水水位下降约20%。  相似文献   

11.
东南沿海台风风暴潮特点及其变化规律   总被引:5,自引:0,他引:5  
本文收集了1949-1990年的台风及相应验潮站的实测潮位资料,计算分析了连云港至汕头之间沿海港口的热带气旋增水,得出了东南沿海各港口的增水特征。该海域风暴潮强度较大,易形成特大潮灾,各港口最大增水出现时间不一,有的在热带气旋登陆前,有的在热带气旋登陆后,多数在热带气旋登陆前后0-6h。台风及风暴潮易造成舰船、码头等损坪,形成非战斗力减员。  相似文献   

12.
Modeling of storm-induced coastal flooding for emergency management   总被引:3,自引:0,他引:3  
This paper describes a model package that simulates coastal flooding resulting from storm surge and waves generated by tropical cyclones. The package consists of four component models implemented at three levels of nested geographic regions, namely, ocean, coastal, and nearshore. The operation is automated through a preprocessor that prepares the computational grids and input atmospheric conditions and manages the data transfer between components. The third generation spectral wave model WAM and a nonlinear long-wave model calculate respectively the wave conditions and storm surge over the ocean region. The simulation results define the water levels and boundary conditions for the model SWAN to transform the storm waves in coastal regions. The storm surge and local tides define the water level in each nearshore region, where a Boussinesq model uses the wave spectra output from SWAN to simulate the surf-zone processes and runup along the coastline. The package is applied to hindcast the coastal flooding caused by Hurricanes Iwa and Iniki, which hit the Hawaiian Island of Kauai in 1982 and 1992, respectively. The model results indicate good agreement with the storm-water levels and overwash debris lines recorded during and after the events, demonstrating the capability of the model package as a forecast tool for emergency management.  相似文献   

13.
文章选取对温岭市最不利的台风路径,采用SWAN和MIKE21模型计算台风风暴潮淹没深度,对淹没深度进行分类并划分危险性等级;根据温岭市土地利用类型进行脆弱性等级划分;建立台风风暴潮和承灾体致灾因子指标体系,得出风险水平等级区划。结果表明,温岭市台风风暴潮灾害风险最大的区域在东部产业聚集区、松门镇沿海、乐清湾温峤镇西南角和坞根镇西北角,其次在隘顽湾顶部分区域,再次在滨海镇和松门镇部分区域,其他地区风险相对较小。  相似文献   

14.
风暴潮可能给沿海城市造成巨大破坏, 而深圳位于易受台风影响的南海北部沿岸, 经济和人口总量巨大, 但有关深圳近海风暴潮的研究工作却十分匮乏。本文基于区域海洋模式系统(regional ocean model system, ROMS)建立了一个以深圳近海为中心的三层嵌套模型, 用于研究深圳近海台风所致风暴潮的影响因素。首先对2018年台风“山竹”过境深圳导致的风暴潮进行模拟, 模拟结果与观测结果较为一致。在此基础上, 进行一系列参数调整试验, 研究台风登陆地点、登陆角度、台风尺度、台风强度以及移动速度的改变对风暴潮及其分布的影响。结果表明, 在深圳西边登陆的台风, 比在深圳东边登陆的台风产生的最大增水高1.5m左右。由东往西移动并登陆深圳的台风, 比由南向北移动的台风产生的最大增水高1.0m左右。台风最大风速半径增加15%, 最大增水上升0.2m左右。台风强度增强15%, 最大增水上升0.4m左右。台风移动速度总体上对风暴潮影响不大, 但不同登陆地点存在明显差异。当台风在深圳西边或者东边登陆时, 台风移动速度增加30%, 深圳沿海各海湾的最大增水反而上升0.2~0.6m。当台风从深圳中部登陆时, 台风移动速度增加30%, 珠江口的最大增水降低0.1m左右, 大鹏湾和大亚湾的最大增水却相反地上升0.2m左右, 不同海湾对台风移动速度呈现不同的变化特征, 与各海湾水体重新分布到稳定状态时间和台风作用时间有关。  相似文献   

15.
随着滨海核电厂址的开发利用日趋饱和,选取海岛作为核电厂址成为一种新思路。针对海岛厂址易受台风灾害影响的问题,本文通过对天文高潮位、海平面上升、可能最大风暴潮增水和最大台风浪四个增水因子的研究来确定厂址的设计基准洪水位。结果表明:该区域10%超越概率的天文高潮位为3.14 m,未来80 a海平面上升幅度为0.31 m。基于MIKE21数值模型,以可能最大热带气旋参数为基础构建了多种假想台风路径,发现:当台风移动方向为NW向,距离厂址中心左侧0.5R(R为台风最大风速半径)时,风暴潮增水达到最大,增水最大值为2.99 m;当台风移动方向为W向,且距离厂址左侧R处时,台风浪波高达到最大,厂址前沿H1/100波高最大值达到了8.02 m;岛屿东侧遭受的风暴潮和波浪威胁较其他方向更为严重。各水位影响因子组合叠加后海岛核电厂址设计基准洪水位可达11.25 m。相对于其他滨海厂址,海岛厂址的风暴潮增水相对偏小,但受波浪的影响更为显著。  相似文献   

16.
Open coast storm surge water levels consist of a wind shear forcing component generally referred to as wind setup; a wave setup component caused by wind-induced waves transferring momentum to the water column; an atmospheric pressure head component due to the atmospheric pressure deficit over the spatial extent of the storm system; a Coriolis-forced component due to effects of the rotation of the earth acting on the wind-driven alongshore current at the coast; and, if astronomical tides are present, an astronomical tide component. Astronomical tide is considered to be predictable and, therefore, not a meteorological driven component of storm surge although there may be interaction between the tide and meteorological driven water levels. Typically the most important component of storm surge on the US East Coast and Gulf of Mexico shorelines is the wind setup component. The importance of inland flooding due to the wind setup component of storm surge is considered herein with special reference to the effect of subaerial slope on inland flooding where three different linear slopes are considered and storm surge is calculated for the region above still water level, using an analytic solution. The present study findings show that the inland storm surge from the wind setup component can be of considerable importance and lead to significantly higher storm surges than found for storm surge at the still water level intersection of the beach/land. It is shown that mild slopes can lead to very high water levels at the land–water interface (i.e. above the still water level intersection of the beach).  相似文献   

17.
《Coastal Engineering》2004,51(4):277-296
A cyclone induced storm surge and flood forecasting system that has been developed for the northern Bay of Bengal is presented. The developed system includes a cyclone forecasting model that uses statistical models for forecasting of the cyclone track and maximum wind speed, and an analytical cyclone model for generation of cyclone wind and pressure fields. A data assimilation system has been developed that allows updating of the cyclone parameters based on air pressure and wind speed observations from surface meteorological stations. The forecasted air pressure and wind fields are used as input in a 2D hydrodynamic model for forecasting storm surge levels and associated flooding. An efficient uncertainty prediction procedure based on Harr's point estimation method has been implemented as part of the forecasting system for prediction of the uncertainties of the forecasted storm surge levels and inundation areas caused by the uncertainties in the cyclone track and wind speed forecasts. The developed system is applied on a severe cyclone that hit Bangladesh in April 1991. The simulated storm surge and associated flooding are highly sensitive to the cyclone data. The cyclone data assimilation system provides a more accurate cyclone track when the cyclone approaches the coastline, which results in a significant improvement of the storm surge and flood predictions. Application of the uncertainty prediction procedure shows that the large uncertainties of the cyclone track and intensity forecasts result in large uncertainties of the forecasted storm surge levels and flood extend. The forecasting system shows very good forecasting capabilities up to 24 h before the actual landfall.  相似文献   

18.
全球变暖引发的海平面上升将加剧风暴潮增水,进而危及沿海经济发展与社会安全保障。本文基于模型耦合与模型嵌套技术构建北部湾台风风暴潮数值模拟系统,以2012年台风"山神"为天气背景,通过设计7组情景模拟研究未来不同海平面上升背景下北部湾风暴潮增水变化。结果表明:风暴潮期间水位从南向北沿北部湾逐渐涌高,最高水位发生在广西沿岸,达2.4 m以上。天文潮和台风风场拖曳力是形成高水位的主要驱动力,其中天文大潮和最大风场拖曳力对最高水位的贡献率分别约占70%和30%。海平面上升对风暴潮增水的影响具有时空非线性和非均一性特征。其中,潮位波动和波-流耦合效应会改变实际最大增水发生时间,导致钦州湾附近高潮位大致提前1天半,海平面上升1.1 m使得最大风暴潮增水大致提前30 min;未来海平面上升0.66~1.1 m将导致北部湾大部分海域风暴潮增水幅度放大6%~10%,广西沿岸钦州湾和大风江河口出现负增加效应,可能与溺谷海湾地形特征有关。研究结果可为未来北部湾沿岸防御风暴潮灾害提供理论依据。  相似文献   

19.
A storm surge is an abnormal sharp rise or fall in the seawater level produced by the strong wind and low pressure field of an approaching storm system.A storm tide is a water level rise or fall caused by the combined effect of the storm surge and an astronomical tide.The storm surge depends on many factors,such as the tracks of typhoon movement,the intensity of typhoon,the topography of sea area,the amplitude of tidal wave,the period during which the storm surge couples with the tidal wave.When coupling with different parts of a tidal wave,the storm surges caused by a typhoon vary widely.The variation of the storm surges is studied.An once-in-a-century storm surge was caused by Typhoon 7203 at Huludao Port in the north of the Liaodong Bay from July 26th to 27th,1972.The maximum storm surge is about 1.90 m.The wind field and pressure field used in numerical simulations in the research were derived from the historical data of the Typhoon 7203 from July 23rd to 28th,1972.DHI Mike21 is used as the software tools.The whole Bohai Sea is defined as the computational domain.The numerical simulation models are forced with sea levels at water boundaries,that is the tide along the Bohai Straits from July 18th to 29th(2012).The tide wave and the storm tides caused by the wind field and pressure field mentioned above are calculated in the numerical simulations.The coupling processes of storm surges and tidal waves are simulated in the following way.The first simulation start date and time are 00:00 July 18th,2012; the second simulation start date and time are 03:00 July 18th,2012.There is a three-hour lag between the start date and time of the simulation and that of the former one,the last simulation start date and time are 00:00 July 25th,2012.All the simulations have a same duration of 5 days,which is same as the time length of typhoon data.With the first day and the second day simulation output,which is affected by the initial field,being ignored,only the 3rd to 5th day simulation results are used to study the rules of the storm surges in the north of the Liaodong Bay.In total,57 cases are calculated and analyzed,including the coupling effects between the storm surge and a tidal wave during different tidal durations and on different tidal levels.Based on the results of the 57 numerical examples,the following conclusions are obtained:For the same location,the maximum storm surges are determined by the primary vibration(the storm tide keeps rising quickly) duration and tidal duration.If the primary vibration duration is a part of the flood tidal duration,the maximum storm surge is lower(1.01,1.05 and 1.37 m at the Huludao Port,the Daling Estuary and the Liaohe Estuary respectively).If the primary vibration duration is a part of the ebb tidal duration,the maximum storm surge is higher(1.92,2.05 and 2.80 m at the Huludao Port,the Daling Estuary and the Liaohe Estuary respectively).In the mean time,the sea level restrains the growth of storm surges.The hour of the highest storm tide has a margin of error of plus or minus 80 min,comparing the high water hour of the astronomical tide,in the north of the Liaodong Bay.  相似文献   

20.
基于多种神经网络的风暴潮增水预测方法的比较分析   总被引:1,自引:0,他引:1  
简要介绍了利用BP神经网络、小波神经网络、递归神经网络进行风暴潮增水值预测的原理。选取广东省珠江口以南的阳江站2017年风暴潮增水数据进行测试。结果表明,三种神经网络方法针对阳江地区风暴潮增水的预测均具有可靠性和实用性。以当前增水值为输入量的单因子模型更能反映真实风暴潮增水趋势,而从增水极值预测的准确性来看,以台风风力、气压、风向等相关参数为输入量的多因子模型优于单因子模型。BP神经网络更适用于多因子长时间预测,小波神经网络在单因子短时间预测上准确性更高,递归神经网络预测值与实测值相关性更强。在工程运用中,需根据地域时空特点、数据资料的丰富度与预测值评估指标选择合适的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号