首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several reworked tephra layers in gravity-flow deposits are present in lacustrine core sediments collected from Hotel and Rudy Lakes on King George Island, South Shetland Islands, maritime sub-Antarctica. This study tests the values of tephra for establishing regional tephrochronologies for lakes in ice-covered landscapes in the vicinity of volcanoes. The tephra record is more abundant in a long Hotel Lake core (515 cm long). This study uses volcanic glass samples from five tephra layers of Hotel Lake and from one tephra layer of Rudy Lake. Morphologically, tephras are mixtures of basaltic and pumice shards, both having various degrees of vesicularity. Major element analyses of glass shards reveal that the majority of the glass fragments belong to basic glass (<60 wt% SiO2), compositionally ranging from basalt to low-silica andesite and subalkaline series medium-K tholeiites, probably sourced from Deception Island located 130 km southwest of King George Island. Less than 20% of tephra belongs to silicic glass and occurs in three tephra horizons E of Hotel Lake. However, source volcano(es) for about 10% of basic tephra and silicic tephra are not readily identified from nearby volcanic centers. Except for the studied tephra in Rudy Lake, all tephra samples in Hotel Lake are not ashfall deposits but reworked and redeposited pyroclasts derived from retreating ice sheet, resulting in the occurrence of geochemically equivalent tephra samples in different tephra horizons. The dating of the studied tephra horizons represents the timing of deglaciation rather than that of volcanic eruptions. The result of this study implies that combined with sedimentological information more chemical criterion is necessary to study tephrochronology and regional correlation and to understand paleoenvironmental changes using tephra.  相似文献   

2.
Catastrophic floods from glacial Lake Missoula entered the Pasco Basin in south-central Washington and backflooded its marginal valleys. Badger Coulee, one such valley, contains beds of fine-grained slackwater sediment deposited by these floods. The slackwater sediment contains two ash layers of the Mount St. Helens set S tephra, about 13,000 yr old. The ash was deposited on a ground surface developed atop slackwater sediment deposited during preash flooding. Evidence of the former ground surface includes the reworked ash, inferred trace fossils, stream and debris-flow deposits, slopewash and/or eolian sediment, and colluvium at the ash horizon. These features and the ash were buried by slackwater sediment deposited during postash flooding. Nonflood, subaerial deposits are not present atop other beds. Instead, beds commonly are reversely graded across “contacts,” suggesting that multiple beds were continuously deposited. The exposed beds thus record at least two late-Wisconsin floods, one preash, the other postash. The pre- and postash floods may be correlative with earlier-reported floods thought to have occurred 17,500-14,000 and 14,000–13,000 yr B.P., respectively.  相似文献   

3.
Nine tephra layers in marine sediment cores (MD99‐2271 and MD99‐2275) from the North Icelandic shelf, spanning the Late Glacial and the Holocene, have been investigated to evaluate the effectiveness of methods to detect tephra layers in marine environments, to pinpoint the stratigraphic level of the time signal the tephra layers provide, and to discriminate between primary and reworked tephra layers in a marine environment. These nine tephra layers are the Borrobol‐like tephra, Vedde Ash, Askja S tephra, Saksunarvatn ash, and Hekla 5, Hekla 4, Hekla 3, Hekla 1104 and V1477 tephras. The methods used were visual inspection, magnetic susceptibility, X‐ray photography, mineralogical counts, grain size and morphological measurements, and microprobe analysis. The results demonstrate that grain size measurements and mineralogical counts are the most effective methods to detect tephra layers in this environment, revealing all nine tephra layers in question. Definition of the tephra layers revealed a 2–3 cm diffuse upper boundary in eight of the nine tephra layers and 2–3 cm diffuse lower boundary in two tephra layers. Using a multi‐parameter approach the stratigraphic position of a tephra layer was determined where the rate of change of the parameters tested was the greatest compared with background values below the tephra. The first attempt to use grain morphology to distinguish between primary and reworked tephra in a marine environment suggests that this method can be effective in verifying whether a tephra layer is primary or reworked. Morphological measurements and microprobe analyses in combination with other methods can be used to identify primary tephra layers securely. The study shows that there is a need to apply a combination of methods to detect, define (the time signal) and discriminate between primary and reworked tephra in marine environments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Landslides are common throughout the Ecuadorian Andes, but their causal and controlling factors and their roles in landform development have not yet been systematically investigated. This paper reports observations and hypotheses arising from a reconnaissance study of the Tandayapa Valley in the Cordillera Occidental, approximately 30 km west of Quito. This study area is characterised by high local relief (ca. 800 m) associated with dissected mountainous terrain, high annual rainfall (>2,000 mm), and secondary-succession wet montane ‘cloud forest’. Regolith cover is extremely thin on the very steep (45 to >60°) upper main valley slopes, but there are thick accumulations of tephra on the slope crests and ridgetops. These deposits show periods of soil development separated by deposition events. Natural landslides in this environment comprise rare large deep-seated bedrock failures and occasional shallow failures on the steep upper slopes where potentially unstable thicknesses of tephra have accumulated. Landslides associated with construction of roads and forest trails are more common. Back-analysis of one road-cut landslide, using field and laboratory data to characterise the in situ weathered material where possible, indicated that natural shallow failures are unlikely in the absence of a surficial cover of tephra. By analogy with another mountainous tropical landscape, it is suggested that long-term landform development can be explained in terms of channel incision, driven by uplift, producing steep lower valley slopes that eventually exceed bedrock failure thresholds. Therefore, large deep-seated landslides appear to control valley slope form development, whilst the shallow landslides contribute to general denudation.  相似文献   

5.
The mid-Holocene eruption of Aniakchak volcano (Aniakchak II) in southwest Alaska was among the largest eruptions globally in the last 10,000 years (VEI-6). Despite evidence for possible impacts on global climate, the precise age of the eruption is not well-constrained and little is known about regional environmental impacts. A closely spaced sequence of radiocarbon dates at a peatland site over 1000 km from the volcano show that peat accumulation was greatly reduced with a hiatus of approximately 90–120 yr following tephra deposition. During this inferred hiatus no paleoenvironmental data are available but once vegetation returned the flora changed from a Cyperaceae-dominated assemblage to a Poaceae-dominated vegetation cover, suggesting a drier and/or more nutrient-rich ecosystem. Oribatid mites are extremely abundant in the peat at the depth of the ash, and show a longer-term, increasingly wet peat surface across the tephra layer. The radiocarbon sample immediately below the tephra gave a date of 1636–1446 cal yr BC suggesting that the eruption might be younger than previously thought. Our findings suggest that the eruption may have led to a widespread reduction in peatland carbon sequestration and that the impacts on ecosystem functioning were profound and long-lasting.  相似文献   

6.
A tephra record is presented for a sediment core from Llyn Llech Owain, south Wales, spanning the early- to mid-Holocene. Seven cryptotephra deposits are discovered with three thought to correlate with known eruptions and the remaining four considered to represent previously undocumented events. One deposit is suggested to correlate with the ~6.9 cal ka bp Lairg A tephra from Iceland, whereas more distant sources are proposed as the origin for two of the tephra deposits. A peak of colourless shards in early-Holocene sediments is thought to tentatively correlate with the ~9.6 cal ka bp Fondi di Baia tephra (Campi Flegrei) and a second cryptotephra is tentatively correlated with the ~3.6 cal ka bp Aniakchak (CFE) II tephra (Alaska). The Fondi di Baia tephra has never been recorded beyond proximal sites and its discovery in south Wales significantly extends the geographical distribution of ash from this eruption. The remaining four cryptotephra deposits are yet to be correlated with known eruptions, demonstrating that our current understanding of widespread tephra deposits is incomplete. This new tephra record highlights the potential for sites at more southerly and westerly locations in northwest Europe to act as repositories for ash from several volcanic regions.  相似文献   

7.
Rodent middens from ice-rich loess deposits are important new paleoenvironmental archives for Eastern Beringia. Plant macrofossils recovered from three middens associated with Dawson tephra (ca. 24,000 14C yr B.P.) at two sites in Yukon Territory include diverse graminoids, forbs, and mosses. These data suggest substantial local scale floristic and habitat diversity in valley settings, including steppe-tundra on well-drained soils, moist streamside meadows, and hydric habitats. Fossil arctic ground squirrel burrows and nesting sites indicate that permafrost active layers were thicker during Pleistocene glacial periods than at present on north-facing slopes.  相似文献   

8.
In the south-eastern depocentre of the Val d’Agri basin (Southern Apennines), a volcanic ash layer crops out interbedded within poorly structured alluvial fan deposits of Late Pleistocene age. Textural, depositional and pedological features of this weathered layer suggest a primary deposition from a pyroclastic fall-out of volcanic ash. Chemical analyses of feldspars show an alkali trachytic composition and accessory minerals association allow to correlate this tephra layer with the regionally dispersed Y-7 marine tephra layer (Tufo Verde Epomeo eruption, Ischia volcano), dated at 56 ± 4 ka. The Val d’Agri tephra here described for the first time was deposited during MIS Stage 3. Its recovery and characterization permit to contribute to regional correlation of the Mediterranean climatic and volcanic events from marine to continental successions and to describe landscape evolution of the Southern Apennines during glacial–interglacial cycles.  相似文献   

9.
Clearly defined distal tephras are rare in rockshelter sediment records. Crvena Stijena, a Palaeolithic site in Montenegro, contains one of the longest (> 20 m) rockshelter sediment records in Europe with deposits ranging in age from Middle Pleistocene to mid-Holocene. A distinctive tephra is clearly exposed within the well stratified record approximately 6.5 m below the present land surface. We present geochemical data to confirm that this tephra is a distal equivalent of the Campanian Ignimbrite deposits and a product of the largest Late Pleistocene eruption in Europe. Originating in the Campanian volcanic province of southwest Italy, this tephra has been independently dated to 39.3 ka. It is a highly significant chronostratigraphic marker for southern Europe. Macrostratigraphic and microstratigraphic observations, allied with detailed particle size data, show that the tephra layer is in a primary depositional context and was transported into the rockshelter by aeolian processes. This site is unique because the tephra forms an abrupt boundary between the Middle and Upper Palaeolithic records. Before they can be used as chronostratigraphic markers in rockshelter and cave-mouth environments, it is essential to establish the stratigraphic integrity of distal tephras and the mechanisms and pathways involved in their transport and deposition.  相似文献   

10.
Developing continuous chronologies of paleoenvironmental change in northern areas of the Far East using 14C can be problematic because of the low organic content in lake sediments. However, Holocene age-models can be supplemented by widespread tephra deposits reported in the Magadan region. The best documented of these tephras has been correlated to the KO tephra from southern Kamchatka dated to 7600 BP. Although a key chronostratigraphic marker, no detailed compendium of the distribution of this tephra and its associated 14C dates has been available from sites in the northern Far East. We provide such a summary. Known locally as the Elikchan tephra, lake cores indicate an ash fall that extended ~1800 km north of the Kamchatkan caldera with a ~500 km wide trajectory in the Magadan region. Other Holocene tephras preserved in lake sediments have poorer age control and possibly date to ~2500 BP, ~2700 BP and ~6000 BP. These ashes seem to be restricted to coastal or near-coastal sites. A single record of a ~25,000 BP tephra has also been documented ~100 km to the northeast of Magadan.  相似文献   

11.
The Ilchulbong tuff cone, Cheju Island, South Korea   总被引:3,自引:0,他引:3  
The Ilchulbong mount of Cheju Island, South Korea, is an emergent tuff cone of middle Pleistocene age formed by eruption of a vesiculating basaltic magma into shallow seawater. A sedimentological study reveals that the cone sequence can be represented by nine sedimentary facies that are grouped into four facies associations. Facies association I represents steep strata near the crater rim composed mostly of crudely and evenly bedded lapilli tuff and minor inversely graded lapilli tuff. These facies suggest fall-out from tephra finger jets and occasional grain flows, respectively. Facies association II represents flank or base-of-slope deposits composed of lenticular and hummocky beds of massive or backset-stacked deposits intercalated between crudely to thinly stratified lapilli tuffs. They suggest occasional resedimentation of tephra by debris flows and slides during the eruption. Facies association III comprises thin, gently dipping marginal strata, composed of thinly stratified lapilli tuff and tuff. This association results from pyroclastic surges and cosurge falls associated with occasional large-scale jets. Facies association IV comprises a reworked sequence of massive, inversely graded and cross-bedded (gravelly) sandstones. These facies represent post-eruptive reworking of tephra by debris and stream flows. The facies associations suggest that the Ilchulbong tuff cone grew by an alternation of vertical and lateral accumulation. The vertical buildup was accomplished by plastering of wet tephra finger jets. This resulted in oversteepening and periodic failure of the deposits, in which resedimentation contributed to the lateral growth. After the eruption ceased, the cone underwent subaerial erosion and faulting of intracrater deposits. A volcaniclastic apron accumulated with erosion of the original tuff cone; the faulting was caused by subsidence of the subvolcanic basement within the crater.  相似文献   

12.
A hitherto unknown distal volcanic ash layer has been detected in a sediment core recovered from the southeastern Levantine Sea (Eastern Mediterranean Sea). Radiometric, stratigraphic and sedimentological data show that the tephra, here termed as S1 tephra, was deposited between 8970 and 8690 cal yr BP. The high-silica rhyolitic composition excludes an origin from any known eruptions of the Italian, Aegean or Arabian volcanic provinces but suggests a prevailing Central Anatolian provenance. We compare the S1 tephra with proximal to medial-distal tephra deposits from well-known Mediterranean ash layers and ash fall deposits from the Central Anatolian volcanic field using electron probe microanalyses on volcanic glass shards and morphological analyses on ash particles. We postulate a correlation with the Early Holocene ‘Dikkart?n’ dome eruption of Erciyes Da? volcano (Cappadocia, Turkey). So far, no tephra of the Central Anatolian volcanic province has been detected in marine sediment archives in the Eastern Mediterranean region. The occurrence of the S1 tephra in the south-eastern part of the Levantine Sea indicates a wide dispersal of pyroclastic material from Erciyes Da? more than 600 km to the south and is therefore an important tephrostratigraphical marker in sediments of the easternmost Mediterranean Sea and the adjacent hinterland.  相似文献   

13.
Volcanic ash preserved in marine sediment sequences is key for independent synchronization of palaeoclimate records within and across different climate archives. Here we present a continuous tephrostratigraphic record from the Labrador Sea, spanning the last 65–5 ka, an area and time period that has not been investigated in detail within the established North Atlantic tephra framework. We investigated marine sediment core GS16-204-22CC for increased tephra occurrences and geochemically analysed the major element composition of tephra shards to identify their source volcano(es). In total we observed eight tephra zones, of which five concentration peaks show isochronous features that can be used as independent tie-points in future studies. The main transport mechanism of tephra shards to the site was near-instantaneous deposition by drifting of sea ice along the East Greenland Current. Our results show that the Icelandic Veidivötn volcanic system was the dominant source of tephra material, especially between late Marine Isotope Stage (MIS) 4 and early MIS 3. The Veidivötn system generated volcanic eruptions in cycles of ca. 3–5 ka. We speculate that the quantity of tephra delivered to the Labrador Sea was a result of variable Icelandic ice volume and/or changes in the transportation pathway towards the Labrador Sea.  相似文献   

14.
The Late Pleistocene and Holocene loess deposits of the SE Buenos Aires province are composed of four allostratigraphic units that represent four episodes of loess deposition. The first and the second episodes occurred in Late Pleistocene times. The second episode was followed by a soil forming interval (Early Holocene to Mid-Holocene times). The third episode took place at about 5000 yr BP, after the Holocene sea-level maximum when marine regression began. The fourth episode constitutes a historical event of only local significance.Loess shows a fairly constant granulometric and mineralogical composition. The modal fraction consists of very fine sand and coarse silt (3 to 5 phi). They are classified as sandy silts or silty sands. Three grain-size subpopulations are differentiated: coarse, medium and fine. The medium-size subpopulation, which is the most important, consists of most of the very fine sand and coarse silt. It is thought to be transported by modified saltation and short-term suspension during local dust-storms.The mineralogical composition of loess consists of a volcaniclastic assemblage derived mainly from reworked pyroclastic deposits, primary tephras and volcaniclastic sediments. The source area of these materials was located in the lower Colorado river valley about 400 km SW of the studied area. There was also a direct supply by volcanic ash falls.  相似文献   

15.
The Ebisutoge–Fukuda tephra (Plio‐Pleistocene boundary, central Japan) has a well‐recorded eruptive style, history, magnitude and resedimentation styles, despite the absence of a correlative volcanic edifice. This tephra was ejected by an extremely large‐magnitude and complex volcanic eruption producing more than 400 km3 total volume of volcanic materials (volcanic explosivity index=7), which extended more than 300 km away from the probable eruption centre. Remobilization of these ejecta occurred progressively after the completion of a series of eruptions, resulting in thick resedimented volcaniclastic deposits in spatially separated fluvial basins, more than 100 km from the source. Facies analysis of resedimented volcaniclastic deposits was carried out in distal fluvial basins. The distal tephra (≈100–300 km from the source) comprises two different lithofacies, primary pyroclastic‐fall deposits and reworked volcaniclastic deposits. The resedimented volcaniclastic succession shows five distinct sedimentary facies, interpreted as debris‐flow deposits (facies A), hyperconcentrated flow deposits (facies B), channel‐fill deposits (facies C), floodplain deposits with abundant flood‐flow deposits (facies D) and floodplain deposits with rare flood deposits (facies E). Resedimented volcaniclastic materials at distal locations originated from unconsolidated deposits of a climactic, large ignimbrite‐forming eruption. Factors controlling inter‐ and intrabasinal facies changes are (1) temporal change of introduced volcaniclastic materials into the basin; (2) proximal–distal relationship; and (3) distribution pattern of pyroclastic‐flow deposits relative to drainage basins. Thus, studies of the Ebisutoge–Fukuda tephra have led to a depositional model of volcaniclastic resedimentation in distal areas after extremely large‐magnitude eruptions, an aspect of volcaniclastic deposits that has often been ignored or poorly understood.  相似文献   

16.
A cryptotephra layer from the eruption of Hekla in 1947 has recently been discovered in Irish peatlands. This tephra layer represents the most recent deposition of volcanic ash in the UK prior to the eruption of Eyjafjallajökull in 2010. Here we examine the concentration and geochemistry of the Hekla 1947 tephra in 14 peat profiles from across Northern Ireland. Electron probe microanalysis of individual tephra shards (n = 91) reveals that the tephra is of dacitic–andesitic geochemistry and is highly similar to the Hekla 1510 tephra, although spheroidal carbonaceous particle profiles can be used for successful discrimination of the two layers. The highest concentrations of Hekla 1947 are found in western sites, probably reflecting the pathway of the ash fall event due to the prevailing wind direction. Comparable tephra concentrations from two cores (1 km apart) from a single bog and from nearby sites may suggest that tephra shard concentrations in peat profiles reflect ash fallout densities across a specific region, rather than site‐specific factors associated with peatlands. This paper firmly establishes Hekla 1947 as a useful chronostratigraphic marker for the twentieth century, although within a restricted zone. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Two widespread tephra deposits constrain the age of the Delta Glaciation in central Alaska. The Old Crow tephra (ca. 140,000 ± 10,000 yr), identified by electron microprobe and ion microprobe analyses of individual glass shards, overlies an outwash terrace coeval with the Delta glaciation. The Sheep Creek tephra (ca. 190,000 yr) is reworked in alluvium of Delta age. The upper and lower limiting tephra dates indicate that the Delta glaciation occurred during marine oxygen isotope stage 6. We hypothesize that glaciers in the Delta River Valley reached their maximum Pleistocene extent during this cold interval because of significant mid-Pleistocene tectonic uplift of the east-central Alaska Range.  相似文献   

18.
Building reliable chronologies from lake sediments, peat and other paleoenvironmental archives can be challenging, especially for historical times where radiocarbon is unreliable. Nineteenth- and 20th-century eruptions from Mount St. Helens (MSH) provide important chronostratigraphic markers for regional paleoenvironmental studies within this time frame, but are constrained by poorly geochemically characterized tephra and/or limited published data. Here, we present glass geochemistry from the most significant eruptions from this time. This includes proximal, medial and distal deposits of the 18 May 1980 MSH eruption, layer T ( ad 1799/1800), a new tephra that we argue represents the ad 1842 eruption, and the 22 July 1980 eruption that had reported ashfall in Canada. Our results indicate that most tephras ejected during these eruptions, within a time frame of ~200 years, have distinct glass geochemical characteristics that can be used to identify distal deposits for tephrochronological studies. Layer T is on trend with analyses of the 1980 eruption but has a distinct dacitic glass population. The 1980 and ad 1842 eruptions are similar, both having rhyolitic glass compositions, but the ad 1842 event can be differentiated by a more constrained SiO2 range in the main geochemical population, and the presence of a unique SiO2 sub-population.  相似文献   

19.
The age of the Sheep Creek tephra (SCt), a widespread marker ash bed in eastern Alaska and western Yukon Territory, has been ambiguous and controversial. We have obtained three reliable thermoluminescence age estimates from bracketing loess near Fairbanks that imply a deposition age of about 190,000 ± 20,000 yr for SCt. Three of six loess samples near and closely bracketing the SCt beds near Fairbanks yielded younger age estimates (∼117,000 and ∼135,000 yr), most likely (based on field aspects) because of reworking and contamination by translocated grains. The new, reliable age assignment of 190,000 yr confirms independent stratigraphic evidence of a pre-last interglaciation age, and stratigraphic evidence from one site (Upper Eva Creek) that SCt is older than the more-widespread 140,000-yr-old Old Crow tephra. The SCt age also has implications for regional correlations of glacial and nonglacial deposits. In particular, it supports the stratigraphic and geomorphic interpretation that the Delta Glaciation in the east-central Alaska Range and the Reid Glaciation in western Yukon Territory are older than the last interglaciation (isotope substage 5e).  相似文献   

20.
A newly identified tephra in stratified deposits in southwestern Utah, dated 14,000 14C yr B.P., may aid in correlating late Pleistocene deposits across parts of the southern Great Basin and west-central Colorado Plateau. Geochemical analyses of the ash suggest the tephra originated from Mono Craters, California, and most probably correlates with Wilson Creek ash #3. Because the ash is 2 mm thick 550 km from its source, the event may have been larger than others correlated to Mono Craters eruptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号