首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Little is known about the presence, distribution and size of bubbles in rhyolitic magmas prior to eruption. Using X-ray tomography to study pumice from early-erupted Bishop rhyolite, we discovered a large vesicle with abundant magnetite crystals attached to its walls. Attachment of magnetite crystals to bubble walls under pre-eruptive conditions can explain the cluster of magnetite crystals as a result of bubbles rising and collecting magnetite crystals. Alternatively, bubbles may have nucleated on magnetite crystals and then coalesced to form one large bubble with multiple magnetite crystals attached to it. We argue that the clusters of magnetite crystals could not have formed during or after eruptive decompression, and conclude that this vesicle corresponds to a bubble present prior to eruptive decompression. The inferred presence of pre-eruptive bubbles in the Bishop magma confirms the interpretation that the magma was volatile-saturated prior to eruption. The pre-eruptive size of this bubble is estimated based on three independent approaches: (1) the current size of the vesicle, (2) the total cross-sectional area of the magnetite crystals, and (3) the bubble size required for the aggregate to be neutrally buoyant. These approaches suggest a pre-eruptive bubble 300–850 μm in diameter, with a preferred value of 600–750 μm. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
利用透射电子显微镜(TEM)系统观测了黄铁矿片、板状晶体的微结构,发现在水热条件下生成的黄铁矿片、板状晶体具有正方形、矩形等多种形貌。其中,正方形较多,矩形次之,另可见到一些其他不规则形状。黄铁矿片、板状晶生长完好,未见缺陷。经测定多数四边形片状黄铁矿的两组边分别平行(010)和(100),其生长晶面为(001);个别四边形片状黄铁矿的两组边分别平行(010)和(101),其生长晶面为(101),矩形片状黄铁矿长轴生长方向为001。在水热条件下黄铁矿以多形貌出现,黄铁矿的片、板状晶体多数是沿(001)面生长的结果,(001)为黄铁矿片、板状晶体的主要二维生长面,并沿001方向扩展,构成了二维晶体。  相似文献   

3.
流行火成岩理论中,岩浆被默认为自然熔体,因而火成岩中的矿物晶体都形成于熔体的结晶作用,可称为熔体晶。许多证据表明,火成岩中也可以含有从超临界流体析出的晶体,被称为超临界流体晶(文中简称为流体晶)。根据三个典型实例分析,流体晶既可以从超临界流体直接析出,类似于从热液析出晶体的过程;也可以由超临界流体浓缩产生的熔体结晶形成。不管是哪一种晶出方式,流体晶产生的前提都是岩浆达到流体过饱和态;而满足这一前提的基本条件则是透岩浆流体过程和岩浆快速上升。结合前人关于熔体流体平衡条件的研究进展,以及熔体黏度对挥发分含量和岩浆上升速度对熔体黏度的依赖,发现透岩浆流体过程与岩浆上升过程之间具有耦合关系,这种关系可以用来阐明岩浆系统行为非线性变化的原因。流体晶的研究具有重要意义,可用于:(1)提供一种研究岩浆系统流体条件的新途径;(2)揭示岩浆系统偏离理想态的程度;(3)为反演岩浆系统动力学过程提供新的约束;(4)为识别致矿侵入体和评估侵入体的找矿潜力提供新的矿物学标志;(5)理解火成岩理论中一些长期得不到解决的问题,如岩浆中挥发分溶解度问题、冻结岩浆的活化问题、岩浆成矿专属性问题。  相似文献   

4.
 Optical anomalies (deviations of the symmetry of optical properties from the ideal symmetry of the crystal) occur in many minerals and synthetic compounds and have been under investigation since the last century. An important feature of optically anomalous mixed crystals is a high degree of optical inhomogeneity, whereas the optical patterns of mixed crystals without anomalies are usually rather uniform. This work is devoted to the study of this phenomenon. As a model object we have chosen mixed alum crystals, which were known for their anomalous birefringence and which revealed the following types of optical inhomogeneities: (1) sector zoning; (2) concentric zoning; (3) subsector zoning; (4) stripes normal to growth front. The inhomogeneity of anomalous birefringence of mixed crystals of alums can be explained by superposition of several effects: mismatch strain, strain along dislocations and growth ordering of isomorphous components. Optical inhomogeneities due to the sector zoning of crystals and their dislocation structure arise even under stationary growth conditions and stationary micromorphology of the growing face. Both variable growth conditions and the relief of the growing face strongly intensify the optical inhomogeneity due to three interrelated factors: (1) a significantly inhomogeneous mismatch strain; (2) a variable degree of ordering of isomorphous components due to the compositional inhomogeneities; (3) different degrees of ordering of isomorphous atoms caused by different orientations, heights and velocities of growth steps. These effects lead to the formation of subsector zoning and zoning superimposed on the optical sector zoning. These optical structures are crossed by birefringent stripes arising from dislocations. Received: 29 March 2000 / Accepted: 11 March 2001  相似文献   

5.
The fate of pre-eruptive bubbles depends largely on their buoyancy, which can be strongly modified by the presence of crystals attached to the bubble–melt interface. We define the attachment energy and attachment force as those resulting from the attachment of a crystal to a bubble. The attachment energy is such that (1) attachment of crystals to bubbles is always favored energetically, and (2) oxide minerals attach to bubbles much more strongly than silicates, because the attachment energy is a strong function of the wetting angle. Attaching crystals to bubbles can cause bubble–crystal pairs to become neutrally buoyant. There is a critical bubble radius below which the attachment force will be strong enough to keep the pair together; we show that crystals as large as 1 mm in diameter can form neutrally buoyant pairs. For early erupted Bishop magma, if all magnetite forms neutrally buoyant pairs with gas bubbles, ca. 0.1–0.2 vol% gas can be stored in the magma; 2–3 vol% of gas can be accounted for if all minerals form neutrally buoyant aggregates. These values are an order of magnitude lower than what is inferred from melt inclusions. Hence, both magnetite-free and magnetite-rich bubbles might have existed, but only a very small fraction of them could have been neutrally buoyant. Importantly, an intrinsic association between magnetite crystals and bubbles is expected. However, most magnetite crystals in the early erupted Bishop are free of bubbles; the puzzling conclusion is that nucleation away from crystals is favored over heterogeneous nucleation on crystal substrates. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Raman spectroscopic studies of daughter crystals of hambergite [Be2BO3(OH, F)] in primary melt and secondary fluid inclusions in morganite crystals from the Muiane pegmatite, Mozambique, show that the inclusions have extremely high beryllium concentrations, corresponding to as much as 10.6% (g/g) in melt inclusions and 1.25% (g/g) BeO in fluid inclusions. These melt and fluid inclusions were trapped at about 610°C and 277°C, respectively. We propose two possible mechanisms for the formation of the hambergite crystals: (i) direct crystallization from a boron- and beryllium-rich pegmatite-forming melt or (ii) these are daughter crystals produced by the retrograde reaction of the boron-rich inclusion fluid with the beryl host, after release of boric acid from the primary trapped metastable volatile-rich silicate melt during cooling and recrystallization. Although we favor the second option, either case demonstrate the extent to which Be maybe concentrated in a boron-rich fluid at relatively high temperatures, and in which species of Be maybe transported. One important constraint on the stability of the hambergite paragenesis is temperature; at temperatures of ≥650°C (at 2 kbar) hambergite is not stable and converts to bromellite [BeO].  相似文献   

7.
L. DEJONGHE 《Sedimentology》1990,37(2):303-323
The Chaudfontaine ore deposit is composed mainly of barite and hosted in Frasnian shale and carbonate formations of Belgium. Thirteen sedimentary structures involving barite crystals are described and discussed. Many of these structures appear to have developed under gravity control. The role of mechanical and chemical ore apposition processes are detailed in each case. The study shows that two populations of barite were formed: (1) crystals which grew in brine above the water-sediment interface and (2) crystals which developed in the sediment during early diagenesis. The two modes of formation have specific sizes, habits and structures. Both populations crystallized under the control of the prevailing physico-chemical conditions, and the size and abundance of the barite crystals may be expressed as a function of the degree of barium supersaturation. High-energy currents and unstable sediment caused previously deposited crystals to be reworked. Morphological similarities were found between Chaudfontaine barite and gypsum from evaporites.  相似文献   

8.
Dating of zircon (SHRIMP) from dunite and harzburgite of the Karabash massif was carried out for the first time. Relics of ancient crystals (1940 ± 30 Ma in harzburgite, 1860 ± 16 Ma in dunite) provide evidence for the Paleoproterozoic age of the protolith. The morphological peculiarities of zircon crystals allow us to assume differentiation of the magmatic source 1720 m. y. ago. The major variety of zircons indicates stages of metamorphic evolution in the Neoproterozoic (530–560 Ma) and Early–Late Ordovician (440–480 Ma).  相似文献   

9.
Modern ooids from Joulters Cay, when baked at 500 °C, turn various shades of black depending upon the organic content. Mucus-rich laminae occur at quasi-regular intervals of a few micrometres within the cortex. When mucus is still present, it turns black; when it is absent, there is a gap. The cortex consists of two types of aragonite: (1) 'batons' of circular cross-section capped by a single 0·1-μm (100-nm) ball, which can be interpreted as a single nannobacteria cell that precipitated the baton; (2) elongate crystals made of multiple rows of minute balls of about 0·03 μm (30 nm), which may or may not have been small organisms in the size range of viruses. There are also some crystals that show no evidence of organic precipitation. Hardground cementation begins with the formation of a terminal mucus-rich ring on the ooid that bakes black and is crowded with 0·1-μm (100-nm) balls. Some ooids are then joined by a meniscus also made of mucus with aragonite crystals. The final, most abundant hardground cement forms a fur of inorganic aragonite crystals often shaped like plywood sheets, although some 'organic', elongate crystals composed of ≈0·03 μm (≈30 nm) balls are also found in the later cement. For a century, ooids have been known to be closely associated with organic matter; this paper goes further and proposes that the bulk of the ooid may be precipitated by nannobacterial processes. Hardground formation, in the beginning, may also be a microbiological process, but most cementation is accomplished inorganically.  相似文献   

10.
Helvetic Siliceous Limestone (Lower Cretaceous) is characterized by up to 40% of very fine (1-10 μm), evenly distributed authigenic quartz crystals. Early diagenetic dissolution of opaline sponge spicules led to silica enrichment of interstitial waters, which reprecipitated silica in the overlying horizons, forming tiny quartz crystals in pore spaces.  相似文献   

11.
Experimental data on the etching of diamond crystals in basaltic melt at 1130°C with variable oxygen fugacity in the environment are considered. The oxygen fugacity was set with the HM and NNO buffers. The study was carried out on a 0.6–0.8 mm fraction (powder) of natural diamond crystals. It has been established that, at the same temperature, the rate of diamond etching (oxidation) in silicate melt depends on the oxygen fugacity in the environment. The etching rate decreases with decline in the oxygen fugacity from the case where the melt comes into contact with atmospheric air to the conditions controlled by the HM and NNO buffers. Under the conditions of the HM and NNO buffers, oxidation was accompanied by surface graphitization of diamond crystals.  相似文献   

12.
Fifty diamond crystals of different morphological types (octahedra, dodecahedroids, cubes and single tetrahexahedroid) with differing internal structures were examined using methods of cathodoluminescence (CL), anomalous birefringence and local infrared (IR) analysis. The main objective of the study was to examine the regularities of nitrogen impurity distribution in diamond with differing internal structures. Almost all the analyzed octahedra, as well as dodecahedroids with zonal structures and the blocky dodecahedroids, are characterized either by nearly isothermic growth conditions or by a decrease in formation temperature during the crystallization process. In contrast to zoned octahedra and dodecahedroids, dodecahedroids with zonal–sectorial and sectorial internal structures show a notably different distribution of nitrogen defects, with Ntot generally decreasing from crystal cores to marginal areas, and degree of nitrogen aggregation increasing in the same direction. From this, it would follow that in these crystals, the temperature of diamond formation of the outer crystal zones is approximately 40–50 °C higher than that of the inner zones. The same result (15 to 80 °C) was obtained for diamond crystals with cubic habit, which generally show a fibrous internal structure, reflecting normal mechanisms of growth. The anomalous distribution of nitrogen centres in diamond crystals that grew through the normal mechanism, with a high rate of growth and in an oversaturated medium, might point to non-equilibrium relationships between the concentrations of different nitrogen centres. It is likely that in crystals of this type, the rate of growth is higher than the rate of structural nitrogen aggregation. Thus, it appears that in these peculiar crystals of diamond we deal with non-equilibrium concentrations of nitrogen B centres and, consequently, with anomalous, non-actual diamond formation temperatures.  相似文献   

13.
In order to address the growth of crystals in veins, a multiphase-field model is used to capture the dynamics of crystals precipitating from a super-saturated solution. To gain a detailed understanding of the polycrystal growth phenomena in veins, we investigate the influence of various boundary conditions on crystal growth. In particular, we analyze the formation of vein microstructures resulting from the free growth of crystals as well as crack-sealing processes. We define the crystal symmetry by considering the anisotropy in surface energy to simulate crystals with flat facets and sharp corners. The resulting growth competition of crystals with different orientations is studied to deduce a consistent orientation selection rule in the free-growth regime. Using crack-sealing simulations, we correlate the grain boundary tracking behavior depending on the relative rate of crack opening, opening trajectory, initial grain size, and wall roughness. Further, we illustrate how these parameters induce the microstructural transition between blocky (crystals growing anisotropically) to fibrous morphology (isotropic) and formation of grain boundaries. The phase-field simulations of crystals in the free-growth regime (in 2D and 3D) indicate that the growth or consumption of a crystal is dependent on the orientation difference with neighboring crystals. The crack-sealing simulation results (in 2D and 3D) reveal that crystals grow isotropically and grain boundaries track the opening trajectory if the wall roughness is high, opening increments are small, and crystals touch the wall before the next crack increment starts. Further, we find that within the complete crack-seal regime, anisotropy in surface energy results in the formation of curved/oscillating grain boundaries (instead of straight) when the crack-opening velocity is increased and wall roughness is not sufficiently high. Additionally, the overall capability of phase-field method to simulate large-scale polycrystal growth in veins (in 3D) is demonstrated enumerating the main advantages of adopting the novel approach.  相似文献   

14.
The sizes and morphologies of hexagonal phase ZnO crystals were successfully controlled by a hydrothermal process in the presence of poly (acrylic acid) (PAA). The dosage of NaOH in this reaction system proved to be crucial in the growth process. With the increase of dosage from 0.7 g to 3.0 g, the morphologies of the ZnO crystals changed from nanoplates to microrods. Their optical properties were also investigated.  相似文献   

15.
In freshwater environments such as river and stream bottoms, rocks and submerged vegetation are covered with a biological felt (also called a periphyton, microbial mat, biofilm, etc.) that is susceptible to calcification. Compilation of an extensive bibliography and our own observations have allowed the identification of 44 species of Coccogonophyceae, 122 Hormogonophyceae, 2 Chrysophyceae, 35 Chlorophyceae, 3 Xanthophyceae, 2 diatoms, and 3 Rhodophyceae that grow on calcareous tufa and coat vegetation. Diverse genera include species that are also calcified but impossible to determine because they lack reproductive organs. Crystals have been described from 74 species in the literature and we have observed 53 others. They can be classified into 10 groups: (1) platelets on cell walls (Volvocales, analogues of coccolithophorids) (2) crystals in mucilage (Synechococcus, diatoms, Hydrurus) and calcified stalks (Oocardium) (3) sheaths containing crystals in the form of simple or three-branched needles, dendritic crystals, and crystals with box-work fabric (Geitleria, Scytonema) (4) sheaths containing calcite spherulites (5) stalks intersecting a large crystal (Cymbella) (6) micrite tubes (Phormidium, Schizothrix) (7) isolated rhombohedra (Zygnema, Scytonema), rhombohedra in clusters or chains (Nostoc parmelioides) (8) sparite platelets (Vaucheria) or isodiametric crystals (Scytonema, Chaetophora) (9) large crystals crosscut by many parallel filaments (Rivularia, Batrachospermum), and (10) fan-like crystals (Phormidium). These crystals can be arranged in clusters or form regular laminations. They can transform into isodiametric sparite crystals to form fan-like or radial palisadic structures. Knowledge of primary crystals and their diagenetic transformations is necessary to correctly interpret freshwater stromatolites. The latter always result from intense calcification and are a diagenetic transformation of a biological felt made of many prokaryotic and eukaryotic algal species, small invertebrates, and organic and mineral debris.  相似文献   

16.
Only fine-grained rocks are present in the Luna 20 samples, and coarser grained rocks are represented by fragments of single crystals. A petrologic study has been made of 47 fine-grained crystalline rocks, microbreccias, and glassy aggregates. In addition, a total of 33 single crystals of pyroxene, plagioclase, olivine and spinel, in the size range 125 to 500 μ, have been examined using electron microprobe and single crystal X-ray diffraction techniques.The most abundant fine-grained crystalline rocks in the samples we have examined are recrystallized anorthositic norite and anorthositic troctolite. Gabbroic rocks, anorthosite, and KREEP basalt are present but not common. Most of the single crystals of pyroxene and plagioclase could have been derived from coarser grained noritic, troctolitic and anorthositic rocks. However, three of the 14 pyroxene crystals, and 2 of the 5 olivine crystals have Fe(Fe + Mg) contents greater than 0.45 and are believed to have been derived from mare basalts or related rocks. Two relatively sodic crystals of plagioclase were found. One is a crystal zoned at least over the range An85 to An63, and the second is a homogeneous crystal of albite (~An3).  相似文献   

17.
Microbially induced calcite precipitation (MICP) is used increasingly to improve the engineering properties of granular soils that are unsuitable for construction. This shows MICP technique significant advantages such as low energy consumption and environmentally friendly feature. The objective of the present study is to assess the strength behaviour of bio-cemented sand with varying cementation levels, and to provide an insight into the mechanism of MICP treatment. A series of isotropic consolidated undrained compression tests, calcite mass measurement and scanning electron microscopy tests were conducted. The experimental results show that the strength of bio-cemented sand depends heavily on the cementation level (or calcite content). The variations of strength parameters, i.e. effective friction angle φ′ and effective cohesion c′, with the increase in calcite content can be well evaluated by a linear function and an exponential function, respectively. Based on the precipitation mechanism of calcite crystals, bio-clogging and bio-cementation of calcite crystals are correlated to the amount of total calcite crystals and effective calcite crystals, respectively, and contributed to the improvement in the effective friction angle and effective cohesion of bio-cemented sand, separately.  相似文献   

18.
The process of coupled assimilation and fractional crystallization (AFC) is one of the most popular petrogenetic concepts that explains magmatic differentiation. Conventional geochemical models for this process assume that crystals are removed instantaneously from the magma body as they are produced; however, recent advances in isotopic microanalysis have clarified that the crystals are suspended within the magma body for a certain period, affecting the whole-rock composition in response to the intra-grain isotopic zoning. This study develops a mass balance model for simultaneous assimilation and imperfect fractional crystallization (AIFC) to describe the effects of suspended crystals on the path of magma evolution. The mass balance differential equations for the liquid and suspended crystals are solved simultaneously. The analytical solution of the AIFC equations gives a quantitative account of the evolution paths of trace elements and isotopes within bulk crystals, liquid, and magma (crystals plus liquid). The chemical path of the magma differs markedly from that predicted by the conventional AFC model.  相似文献   

19.
Molecular dynamics (MD) simulations have been used to calculate the structures and bulk moduli of crystals in the system CaO-MgO-Al2O3-SiO2 (CMAS) using an interatomic potential model (CMAS94), which is composed of pairwise additive Coulomb, van der Waals, and repulsive interactions. The crystals studied, total of 27, include oxides, Mg meta- and ortho-silicates, Al garnets, and various Ca or Al bearing silicates, with the coordination number of cations ranging 6 to 12 for Ca, 4 to 12 for Mg, 4 to 6 for Al, and 4 and 6 for Si. In spite of the simplicity of the CMAS94 potential and the diversity of the structural types treated, MD simulations are quite satisfactory in reproducing well the observed structural data, including the crystal symmetries, lattice parameters, and average and individual nearest neighbour Ca-O, Mg-O, Al-O, and Si-O distances. In addition MD simulated bulk moduli of crystals in the CMAS system compare well with the observed values.  相似文献   

20.
Garnet–biotite–(sillimanite) gneiss (~700 °C, 7 kbar) of the Otter Lake area in the Western Grenville Province (Canadian Shield) occurs as granitic gneiss (group 4) that forms a large part of the Otter Complex, and as widely distributed, more heterogenous metasedimentary gneiss (group 2). In one sample of group 4 gneiss (Qtz25 Pl34 Kfs28 Bt10 Grt2.5 Sil1) the true diameter (determined by serial grinding) of subhedral garnet crystals ranges from 0.2 to 3.0 mm, with a mode at 1.0 mm. Nearest‐neighbour measurements in this sample, and in surfaces of nine additional samples (all <5% garnet) confirm that garnet crystals are distributed mainly at random; slight clustering was detected in two samples. In one sample of group 4 gneiss, microprobe analyses on sections through crystal centres (obtained by serial slicing), reveal that small crystals and margins to large crystals contain more Fe and Mn and less Mg than the broad central regions of large crystals. Based on these and previous results, together with theoretical considerations, a crystallization model is proposed, in which, (i) garnet was produced by the continuous reaction, Ms + Bt + Qtz → Grt + Kfs + H2O, (ii) nucleation occurred by the random selection of randomly distributed Ms–Bt–Qtz triple junctions, (iii) the rate of linear growth remained constant, and (iv) as temperature increased, the rate of nucleation first increased slowly, then remained nearly constant, and finally declined. Within‐population compositional homogenization was followed, on cooling, by local Fe–Mg–Mn exchange with biotite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号