首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The study of advancement and recession of the glaciers in the Himalayas is essential due to their contrasting response towards climatic change. In the present study, Survey of India (SOI) topographical maps of 1962, IRS: LISS-III image of 2001 and LANDSAT-5: TM (Thematic Mapper) image of 2009 were used to analyze the glacier fluctuations in a part of Zanskar valley. The analysis carried out on 212 glaciers indicated decrease of 57 km2 (8 %) of glacier area over many glacier which was partly compensated with area increase by 42 km2 (6 %) in other glaciers, resulting an overall glacier area decrease by only 15 km2 (2 %) from 1962–2001. Due to glacier fragmentation the number of glaciers increased from 212 in 1962 to 238 by 2001. Although majority of glaciers (88 %) exhibited retreat (up to 13 my?1), minor advancement (<15 my?1) also took place in few glaciers during this period. Advancement took place mainly in larger glaciers (2–5 km2 and >5 km2) located over wider altitudinal range (700 m–1,000 m) whereas smaller glaciers (<2 km2) with narrow altitudinal range (100 m–500 m) exhibited retreat. The supraglacial debris analysis indicated that percentage of debris cover over glaciers ranges from 1.43 % to 18.15 %. Smaller glaciers (<2 km2) were debris free in comparison to the larger glaciers (>5 km2). During 2001–2009 majority of the glaciers were apparently stable in terms of their area and snout position indicating less impact of climate forcing in parts of Zanskar valley as compared to other parts of the Himalaya.  相似文献   

2.
Dokriani Glacier is regarded as one of the important glaciers of Bhagirathi River basin, which fed river Ganges. The length of the glacier is about 4.6 km, and snout elevation is about 4028 m m.s.l. The mass balance of this glacier was calculated using field-based measurements for few years during 1994 to 2000. However, due to remote and poor accessibility, the field-based measurements could not continue; thus, remote sensing-based methods become useful tool to estimate the long-term mass balance of the glacier. In this study, glacier mass balance has been determined using accumulation area ratio (AAR) method. Remote sensing data sets, e.g. Landsat TM, ETM?+?and OLI, have been used to estimate AAR for different years from 1994 to 2014. An attempt has also been made to develop a mathematical relationship between remote sensing-derived AAR and field-observed mass balance data of the glacier. Further, this relationship has been used to estimate mass balance of the glacier for different years using remote sensing-derived AAR. Estimated mass balance was validated from ground-observed mass balance for few years. The field-observed and remote sensing-derived mass balance data are compared and showed high correlation. It has been observed that AAR for the Dokriani Glacier varies from 0.64 to 0.71. Mass balance of the glacier was observed between ??15.54 cm and ??50.95 cm during the study period. The study highlights the application of remote sensing in mass balance study of the glaciers and impact of climate change in glaciers of Central Indian Himalaya.  相似文献   

3.
An attempt has been made to study variations in the glacier extent over a period of time using digital elevation model (DEM) and orthoimages derived from IRS-1C PAN stereo pairs of 1997–98 and topographical map surveyed during 1962–63. DEM and orthoimages have been generated using integrated software developed for processing of IRSIC/ID panchromatic stereo data using the softcopy photogrammetric workstation. Case studies of two glaciers, i.e. the Janapa garang and Shaune garang glaciers of the Basapa basin, a sub-basin of Satluj River in India, have been presented here. Generation of DEM has been followed by the estimation of its accuracy. PAN images were interpreted for identification of the snout of the glaciers. The geographical locations of the snouts on the images were compared with the location as mapped on the topographical map of the study area. To verify satellite observations, field investigations were carried out at Shaune garang glacier area. The Janapa garang and the Shaune garang are observed to have retreat of 596m and 923 m respectively. Reduction in the thickness of ice in the deglaciated part of the Shaune garang glacier was estimated on the basis of change in the elevations of the glacial surface from 1963 to 1998.  相似文献   

4.
Glaciers are natural reservoirs of fresh water in frozen state and sensitive indicators of climate change. Among all the mountainous glaciated regions, glaciers of Himalayas form one of the largest concentrations of ice outside the Polar Regions. Almost all the major rivers of northern India originate from these glaciers and sustain perennial flow. Therefore, in view of the importance and role of the glaciers in sustaining the life on the Earth, monitoring the health of glaciers is necessary. Glacier??s health is monitored in two ways (i) by mapping the change in extent of glaciers (ii) by finding variation in the annual mass balance. This paper has been discussed the later approach for monitoring the health of glaciers of Warwan and Bhut basins. Mass balance of glaciers of these two basins was determined based on the extraction of snow line at the end of ablation season. A series of satellite images of AWiFS sensor were analysed for extraction of snowline on the glaciers for the period of 2005, 2006 and 2007. The snow line at the end of ablation season is used to compute accumulation area ratio (AAR = Accumulation area/Glacier area) for each glacier of basins. An approach based on relationship of AAR to specific mass balance (computed in field) for glaciers of Basapa basin was employed in the present study. Mean of specific mass balance of individual glacier for the year 2005, 2006 and 2007 of Warwan basin was found to be ?ve 0.19?m, ?ve 0.27?m and ?ve 0.2?m respectively. It is 0.05?m, ?ve 0.11?m and ?ve 0.19?m for Bhut basin. The analysis suggests a loss of 4.3 and 0.83?km3 of glacier in the monitoring period of 3?years for Warwan and Bhut basins respectively. The overall results suggest that the glaciers of Warwan basin and Bhut basins have suffered more loss of ice than gain in the monitoring period of 3?years.  相似文献   

5.
Abstract

This paper presents the first measurement of multi-decadal thickness and volume changes (1969–2000) of the Dongkemadi Ice Field (DIF) in the Tanggula Mountains, central Qinghai-Tibetan Plateau, China, using multi-source remote sensing data. These include the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) acquired in February, 2000, a DEM generated by digitising analogue topographic maps from 1969, and Landsat ETM+ imagery from 2000. Digital glacier outlines and GIS-based processing were used to calculate an elevation difference map to evaluate the relative elevation error of these two DEMs over ice-free areas. This method was also used to identify regions of glacier elevation thinning and thickening corresponding to glacier mass loss and gain. Analysis of 67,520 points on flat grass and rock terrain surrounding the DIF, with a slope less than 25°, showed a mean elevation difference of –0.90 m and a standard deviation of 5.58 m. A thickness change error within ±6 m was estimated. Between 1969 and 2000, 76.51% of the whole DIF area appeared to be thinning while 23.49% showed thickening. The average glacier surface thinning was –12.58 m with a standard deviation of 18.29 m and the estimated volume loss was 1.17 km3. The standard deviation of volume change was 0.0006 km3 over the DIF. A thinning rate up to 0.41±0.194 m a?1 or 0.038 km3 a?1 for the volume loss was observed for the whole ice field, which seems to be evidence for the ongoing retreat of glaciers on the Qinghai-Tibetan Plateau. It was found that the spatial thickness change pattern derived from the remote sensing method was consistent with the thickness change results of the Small Dongkemadi Glacier (SDG) from field measurements. The estimated error of the annual thickness change rate was on the order of 5%. The relationship between elevation change and absolute glacier elevation over typical glaciers was also analysed, showing considerable variability. These changes have possibly resulted from increased temperature and decreased precipitation in this region.  相似文献   

6.
针对青藏高原冰川高程变化研究较少的问题,该文提出一种大范围区域的冰川高程变化监测方法。基于ICESat激光高度计数据,联合利用SRTM DEM数据,计算念青唐古拉山脉冰川的高程变化,进而反演冰川的冰量变化。结果显示,念青唐古拉山冰川高程在2003—2009年间平均减薄速率为(0.53±0.47)(m·a~(-1)),估算得到冰量年均减少(0.32±0.28)km~3,总体呈逐年减少趋势,证明冰川一直处于消融状态。拉萨和当雄气象站的资料表明,冰川消融主要是由于当地气温升高。  相似文献   

7.
To account for the variable response of the Himalayan glaciers towards climatic warming during the recent past, an attempt has been made in the present study to evaluate the changes in glacier area and shift in glacier snout position of selected glaciers in a part of the Greater Himalayan Range (GHR), Jammu & Kashmir (J&K), India. Multi-temporal satellite images of different years viz. 1975, 1989, 1992, 2001 and 2007 were used for mapping the boundaries of glaciers. Among the three observation periods (1975–1989/1992, 1989/1992–2001 and 2001–2007), during 1989/1992–2001 the majority of the glaciers exhibited considerable decrease in area. In contrast during 2001–2007, some glaciers exhibited increase in area indicating comparatively cooler climatic conditions as compared to the previous period. With reference to snout retreat, all the glaciers had a fluctuating trend of retreat during the observation periods although the retreat rate was higher during 1989/1992–2001 in some glaciers.  相似文献   

8.
冰川面积是监测冰川变化信息的重要参数。本文以各拉丹东地区为例,根据冰川区域特有的纹理特征,选取时间间隔为35天的ENVISAT ASAR干涉对,利用灰度共生矩阵提取纹理特征,通过波段组合进行监督分类,进而提取研究区冰川面积。同时以Landsat TM光学影像为依据,评价利用纹理特征提取结果的精度。研究表明:基于纹理特征并利用SAR影像提取冰川面积的方法是可行的,为提取冰川信息提供了又一可靠手段。  相似文献   

9.
Snow physical properties, snow cover and glacier facies are important parameters which are used to quantify snowpack characteristics, glacier mass balance and seasonal snow and glacier melt. This study has been done using C-band synthetic aperture radar (SAR) data of Indian radar imaging satellite, radar imaging satellite-1 (RISAT)-1, to estimate the seasonal snow cover and retrieve snow physical properties (snow wetness and snow density), and glacier radar zones or facies classification in parts of North West Himalaya (NWH), India. Additional SAR data used are of Radarsat-2 (RS-2) satellite, which was used for glacier facies classification of Smudra Tapu glacier in Himachal Pradesh. RISAT-1 based snow cover area (SCA) mapping, snow wetness and snow density retrieval and glacier facies classification have been done for the first time in NWH region. SAR-based inversion models were used for finding out wet and dry snow dielectric constant, dry and wet SCA, snow wetness and snow density. RISAT-1 medium resolution scan-SAR mode (MRS) in HV polarization was used for first time in NWH for deriving time series of SCA maps in Beas and Bhagirathi river basins for years 2013–2014. The SAR-based inversion models were implemented separately for RISAT-1 quad pol. FRS2, for wet snow and dry snow permittivity retrieval. Masks for layover and shadow were considered in estimating final snow parameters. The overall accuracy in terms of R2 value comes out to be 0.74 for snow wetness and 0.72 for snow density based on the limited ground truth data for subset area of Manali sub-basin of Beas River up to Manali for winter of 2014. Accuracy for SCA was estimated to be 95 % when compared with optical remote sensing based SCA maps with error of ±10 %. The time series data of RISAT-1 MRS and hybrid data in RH/RV mode based decompositions were also used for glacier radar zones classification for Gangotri and Samudra Tapu glaciers. The various glaciers radar zones or facies such as debris covered glacier ice, clean or bare glacier ice radar zone, percolation/refreeze radar zone and wet snow, ice wall etc., were identified. The accuracy of classified maps was estimated using ground truth data collected during 2013 and 2014 glacier field work to Samudra Tapu and Gangotri glaciers and overall accuracy was found to be in range of 82–90 %. This information of various glacier radar zones can be utilized in marking firn line of glaciers, which can be helpful for glacier mass balance studies.  相似文献   

10.
Accurate representations of the Earth’s surface in the form of digital elevation models (DEMs) are essential for a variety of applications in glaciological and remote-sensing research. In the present study area change and thickness variation over Pensilungpa glacier was attempted using remote sensing approach. It can be remarked that a net loss of 9.23 sq. km. which is 38% of the glacier area mapped in 1962 indicate a drastic change over the glacier area during 1962–2007. Estimation of glacier thickness change on Pensilungpa glacier based on ASTER DEM (2003) and Survey of India (SOI) contour based DEM (1962) indicated increase in the glacier elevation in the accumulation zone mainly by 30 to 90 m and similar reduction by 30 to 90 m in the ablation zone.  相似文献   

11.
Glaciers are widely recognized as key indicators of climate change, and melt water obtained from them is an important source of fresh water and for hydropower generation. Regular monitoring of a large number of Himalayan glaciers is important for improving our knowledge of glacier response to climate change. In the present study, Survey of India topographical maps (1966) and Landsat datasets as ETM+ (2000, 2006) and TM (2011) have been used to study glacier fluctuations in Tirungkhad basin. A deglaciation of 26.1% (29.1?km2) in terms of area from 1966 to 2011 was observed. Lower altitude small glaciers (area?<?1?km2) lost more ice (34%), while glaciers with an area <10?km2 lost less (20%). The percentage of change in glacier length was 26% (31.9?km) from 1966 to 2011. The south-facing glaciers showed high percentages of loss. From 2000 to 2011, debris cover has increased by 1.34%. The analysis of the trend in meteorological data collected from Kalpa and Purbani stations was carried out by Mann Kendall non-parametric method. During the last two decades, the mean annual temperature (Tmax and Tmin) has increased significantly, accompanied with a fall in snow water equivalent (SWE) and rainfall. The increasing trend in temperature and decreasing trend in SWE were significant at 95% confidence level. This observation shows that the warming of the climate is probably one of the major reasons for the glacier change in the basin.  相似文献   

12.
The importance of mass wasting in glacier environments and its impacts on glacier dynamics is not fully understood. This is the first occurrence of a debris avalanche event onto a Himalayan glacier through satellite data analysis. The analysis of various factors indicates the slide was a climate-driven hill-slope event activated in 2009 masking the Miyar glacier surface up to ~1.5% including its both lateral moraines and medial moraines. Due to this addition the glacier had neither advance nor retreat from 2009 to 2014. Eventually the debris will contribute to the supraglacial and englacial debris of the glacier. This showcases the way of mass wasting an important contribution to the debris budget of the Himalayan glaciers.  相似文献   

13.
Tons basin has the maximum share of glaciers, more than 50 glaciers, as well as glacierised area in Uttarakhand and Himachal Pradesh and the majority of the glaciers are of valley type. One of the important features of the glaciers of Tons valley is the presence of a thick mantle of supraglaciers moraine cover which can be attributed to the terrain characteristics, besides, the avalanche fed nature of the glaciers. The present study is the extraction of Glacio-geomorphological unit of Tons River basin based on the visual interpretation of remote sensing data. It was very much difficult in field, to extract all glacio-geomorphological units in glaciated area, but based on the remote sensing data, it becomes easy to identify. With the help of glacio-geomorphological map it has been found that four most important glaciers which fed the Tons River are Bandarpunch Glacier, Jaundar Bamak glacier, Jhajju Bamak and Tilku glacier. The tributaries of Tons River i.e. Harkidun Gad, Rupin Nadi and Supin Nadi are mainly fed by the mountain glaciers, valley glaciers and glacier lakes. The erosional terraces, glacio-fluvial terraces, open ??U?? shaped valleys, proglacial lake, lateral moraines, terminal moraines, palaeo-cirque and debris/talus cones are well developed in this glaciated regions. Glacio-geomorphic features are very much significant for palaeo-climatic reconstruction, showing variations, temporally and spatially. At the same time, these landforms, which are also altered by processes prevailing during interglacial period, helps in the geo-environment studies and glacier related problems like avalanches, global warming and cloudburst etc.  相似文献   

14.
The Himalayas has one of the largest concentrations of glaciers outside the Polar Regions. Various reports suggest that significant number of mountain glaciers is shrinking due to climatic variations. Monitoring of these glaciers is important to assess future availability of water resources in the Himalayan region. However, Himalayan glaciers are normally difficult to monitor due to the rugged, mountainous terrain. Therefore, images of Indian Remote Sensing Satellite were used to monitor glaciers in the Baspa basin. Investigations have shown the presence of 30 glaciers in the basin, with areal extent of 167 km2. Out of these, 19 glaciers, with areal extent of 140 km2 were selected to estimate retreat. Investigation suggests that almost all glaciers are retreating in the study basin and overall 19% deglaciation has been observed from 1962 to 2001. In general, altitude distribution appears to have significant influence on glacial retreat. Glaciers located around 5000 m altitude range are showing 24% loss as compared to 14% by glaciers located in altitude range higher than 5400 m. In addition, mean altitude of glacier terminus is shifted upward by 88 m, i.e. from 4482 to 4570 m in last 39 years. The glacial volumes were estimated using regression relationship between area and depth. The investigations have suggested that 19.10 km3 of glacial water stored in the 19 glaciers in 1962, has been reduced to 14.71 km3 in 2001, respectively, an overall loss of 23 percent in a period between 1962 and 2001. These investigations suggest that all glaciers in the Baspa Basin are reducing and in long term, such reducing trend can create scarcity of water in the region.  相似文献   

15.
冰川表面流速是反映冰川动态变化的重要指标,能够为冰川物质平衡提供重要信息.利用2016年的13景Sentinel-1A影像和合成孔径雷达(synthetic aperture radar,SAR)偏移量追踪法测定岗纳楼冰川表面流速场,并根据地表温度是否大于0℃将其分为冰封期(10月—次年3月)和消融期(4月—9月).其...  相似文献   

16.
Himalayas possess one of the largest resources of snow, ice and glaciers that act as a huge freshwater reservoir. Monitoring the glaciers is important to assess the overall reservoir health of the Himalayas. Samudra Tapu is one of the largest glaciers in Chandra basin of district Lahaul and Spiti, Himachal Pradesh. Based on the field investigations and the remote sensing techniques. features such as accumulation area, ablation area snowline/equilibrium line, moraine-dammed lakes and permanent snowfields were mapped. The glacial terminus was identified using moraine-dammed lake, as lake is located at down streamside of the terminus. The total recession of glacier during the period of 38 years (1962–2000) is about 742 m with an average rate of 19.5 m/yr. In addition, glacial extent is reduced from 73 to 65 km2 between 1962 and 2000. suggesting overall deglaciation of 11%. During field investigation. three stages of glaciation using terminal moraine were identified. These moraines were mapped by merging LISS-II1 and PAN data. At the peak of glaciation. the glacial terminus was extended 3.18 km downstream of terminus position in year 2000. Total area during peak of glaciation period has been observed to be 77.67 km2, which is 12.67 km2 higher than the present glacier extent.  相似文献   

17.
Using Landsat data at decadal interval (1980–2013), the glacier fluctuations (glacier area, equilibrium line altitude and specific mass balance) of nine benchmark glaciers in Kashmir Himalaya were estimated. The observed changes were related to topographic and climatic variables in order to understand their influence. From the data analysis, it was observed that the glaciers have shrunk by 17%, ELA has shifted upwards (80–300 m) and SMB shows variation in glacier mass loss from ?0.77 to ?0.16 m.w.e. Annual air temperature showed a significant increasing trend, and a slight but insignificant decrease in precipitation was observed during the period. It is evident that in the same climatic regime, varying topography plays a key role in determining the glacier changes. It is believed that the observed changes in the glacier geometry and dynamics, if continued, shall have adverse effect on the streamflows, water supplies and other dependent sectors in the region.  相似文献   

18.
金姗姗  付姣 《北京测绘》2013,(1):20-23,10
采用遥感及地理信息系统技术,利用多时相Landsat TM/ETM影像和数字高程模型(SRTMDEM),结合中国冰川目录,获得阿尼玛卿山地区不同年份的冰川范围,进行冰川变化监测。综合分析该冰川的变化情况,计算冰川进退变化速率,并对其中4个变化较大的冰川进行详细的分析统计。结果表明:从1991年至2009年,阿尼玛卿山地区既有退缩冰川也有前进冰川,其中冰川退缩面积为15.30km2,前进面积为4.46km2。总体面积持续退缩,其中退缩最大的冰川长度缩短了900m,其它冰川也存在不同程度的变化。  相似文献   

19.
Parkachik Glacier is located in the Suru sub-basin of the Upper Indus River, Zanskar Himalaya. The Glacier has been analysed using Corona KH-4B (1971), Landsat-TM (1999), field survey (2015), Google EarthTM (2015) and ASTER GDEM (2015) for frontal recession and area changes. Overall, from 1971 to 2015, the Glacier has retreated by 127 ± 0.09 m i.e. (0.75 ± 0.07%) at a rate of 2.9 ± 0.004 ma?1 with a simultaneous decrease in area from 49.5 to 48.8 km2 i.e. 740 ± 0.7 m2 (1.5 ± 0.09%) at a rate of 74 ± 0.7 m2a?1. However, during recent decade (1999–2015), the rate of glacier recession of 3.9 ± 0.004 ma?1 with a corresponding area loss of 500 ± 0.74m2 (1 ± 0.1%) was higher than the retreat rate of 2.3 ± 0.001 ma?1 and an area loss of 240 ± 0.02m2 (0.48 ± 0.08%) during 1971–1999. In the field, the evidences of glacier recession are present in the form of separated dead ice blocks from the main Glacier, recessional dumps/moraines, active ice calving activity and a small proglacial pond/lake at the terminus/snout of the Glacier. However, the recession over the studied period has been very slow and is controlled by its topographic configuration, particularly the large altitudinal range (6030–3620 m), almost northerly aspect and steep slope (average ~ 30°).  相似文献   

20.
A total of 125 glaciers covering an area of 1896 sq. km. were mapped on 1:250,000 scale in Himachal Pradesh using satellite images. The areal extent obtained from satellite images was found to be comparable with that from field estimates for eight glaciers for which data are available. This suggests that remote sensing can provide glacial areal extent similar to ground-based methods. Depth of an individual glacier was inferred indirectly by using its relationship with areal extent and geomorphological characteristics, as suggested by Muller (1970). These characteristics were estimated by using satellite images. The analysis suggests that the water equivalent of the glaciers in Himachal Pradesh is about 165 cu km. It is seventeen times more than the storage capacity of the Govind Sagar. This estimate will get revised when other snow/ice features as permanent snow field, ice apron, hanging glaciers and rocky glaciers are mapped. Mapping on larger scale, say 1:50,000, will lead to a further revision as many smaller glaciers and other features will get mapped.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号