首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
光谱匹配分类方法以光谱相似性测度为分类准则,一种相似性测度只对应于光谱曲线的一种特征,用于光谱匹配分类效果并不好;组合不同类型的相似性测度能够有效改善分类效果,但光谱匹配分类往往忽略了相邻像元间的相关性。为了更好地利用空间信息,提高光谱匹配分类精度,首先组合欧氏距离测度和相关系数测度,得到欧氏距离-相关系数测度;其次通过加入空间乘子,得到结合空间信息的欧氏距离-相关系数测度,从而在光谱匹配分类中增加了空间信息约束。采用两组高光谱影像进行实验验证,结果表明,相比于单一相似性测度及组合相似性测度,结合空间信息的欧氏距离-相关系数测度用于光谱匹配分类能够有效改善分类精度。  相似文献   

2.
Composite kernels for hyperspectral image classification   总被引:8,自引:0,他引:8  
This letter presents a framework of composite kernel machines for enhanced classification of hyperspectral images. This novel method exploits the properties of Mercer's kernels to construct a family of composite kernels that easily combine spatial and spectral information. This framework of composite kernels demonstrates: 1) enhanced classification accuracy as compared to traditional approaches that take into account the spectral information only: 2) flexibility to balance between the spatial and spectral information in the classifier; and 3) computational efficiency. In addition, the proposed family of kernel classifiers opens a wide field for future developments in which spatial and spectral information can be easily integrated.  相似文献   

3.
Vegetation mapping is a priority when managing natural protected areas. In this context, very high resolution satellite remote sensing data can be fundamental in providing accurate vegetation cartography at species level. In this work, a complete processing methodology has been developed and validated in a complex vulnerable coastal-dune ecosystem. Specifically, the analysis has been carried out using WorldView-2 imagery, which offers spatial and spectral resolutions. A thorough assessment of 5 atmospheric correction models has been performed using real reflectance measures from a field radiometry campaign. To select the classification methodology, different strategies have been evaluated, including additional spectral (23 vegetation indices) and spatial (4 texture parameters) information to the multispectral bands. Likewise, the application of linear unmixing techniques has been tested and abundance maps of each plant species have been generated using the library of spectral signatures recorded during the campaign. After the analysis conducted, a new methodology has been proposed based on the use of the 6S atmospheric model and the Support Vector Machine classification algorithm applied to a combination of different spectral and spatial input data. Specifically, an overall accuracy of 88,03% was achieved combining the corrected multispectral bands plus a vegetation index (MSAVI2) and texture information (variance of the first principal component). Furthermore, the methodology has been validated by photointerpretation and 3 plant species achieve significant accuracy: Tamarix canariensis (94,9%), Juncus acutus (85,7%) and Launaea arborescens (62,4%). Finally, the classified procedure comparing maps for different seasons has also shown robustness to changes in the phenological state of the vegetation.  相似文献   

4.
In recent years, the significant increase in research on spatial information is observed. Classification or clustering is one of the well-known methods in spatial data analysis. Traditionally, classifiers are generally based on per-pixel approaches and are not utilizing the spatial information within pixel, called mixels which is an important source of information to image classification. There are two foremost reasons behind the existence of mixels: (a) coarse or low spatial resolution of sensor and (b) topographic effects that recorded on optical satellite imagery due to differential terrain illuminations over rugged areas such as Himalayas. In the present study, different classification algorithms have been implemented to drive the impact of topography on them. Among various available, three algorithms for the mapping of snow cover region over north Indian Himalayas (India) are compared: (a) maximum likelihood classification (MLC) as supervised classifier; (b) k-mean clustering as unsupervised classifier; and (c) linear spectral mixing model (LSMM) as soft classifier. These algorithms have been implemented on AWiFS multispectral data, and analysis was carried out. The classification accuracy is estimated by the error matrices, and LSMM achieved higher accuracy (84.5–88.5%) as compared to MLC (81–84%) and k-mean (74–81%). The results highlight that topographically derived classifiers achieved better accuracy in mapping as compared to simple classifiers. The study has many applications in snow hydrology, glaciology and climatology of mountain topography.  相似文献   

5.
高光谱遥感数据具有光谱信息丰富、图谱合一的特点,目前已经广泛地应用在对地观测中。传统的高光谱分类模型大多过分依赖影像光谱信息,没有充分利用空间特征信息,这使得分类精度还有很大的提升空间。条件随机场是一种概率模型,能够较好地融合空间上下文信息,在高光谱影像分类中已经得到越来越多的关注,但大部分条件随机场模型存在超平滑的现象,会导致影像细节丢失。针对该问题,本文提出了一种优化融合影像空-谱信息的高分辨率/高光谱影像分类方法,该方法将影像的纹理信息与原始光谱信息进行融合,利用SVM分类器对其进行预分类,并将各类概率定义为一元势函数,以融合空间特征信息;然后将空间平滑项和局部类别标签成本项加入二元势函数中,以考虑空间背景信息,并保留各类别中的详细信息。最后,通过两组的高分辨率/高光谱影像数据进行试验。结果表明,与SVM算法、传统的条件随机场方法和面向对象的分类方法相比,本文提出的算法在整体分类精度上分别提高了10%、9%和8%以上,同时在保持地物边缘完整性、避免“同谱异物”与“同物异谱”的现象方面有较明显的优势。  相似文献   

6.
In recent years, it has been widely agreed that spatial features derived from textural, structural, and object-based methods are important information sources to complement spectral properties for accurate urban classification of high-resolution imagery. However, the spatial features always refer to a series of parameters, such as scales, directions, and statistical measures, leading to high-dimensional feature space. The high-dimensional space is almost impractical to deal with considering the huge storage and computational cost while processing high-resolution images. To this aim, we propose a novel multi-index learning (MIL) method, where a set of low-dimensional information indices is used to represent the complex geospatial scenes in high-resolution images. Specifically, two categories of indices are proposed in the study: (1) Primitive indices (PI): High-resolution urban scenes are represented using a group of primitives (e.g., building/shadow/vegetation) that are calculated automatically and rapidly; (2) Variation indices (VI): A couple of spectral and spatial variation indices are proposed based on the 3D wavelet transformation in order to describe the local variation in the joint spectral-spatial domains. In this way, urban landscapes can be decomposed into a set of low-dimensional and semantic indices replacing the high-dimensional but low-level features (e.g., textures). The information indices are then learned via the multi-kernel support vector machines. The proposed MIL method is evaluated using various high-resolution images including GeoEye-1, QuickBird, WorldView-2, and ZY-3, as well as an elaborate comparison to the state-of-the-art image classification algorithms such as object-based analysis, and spectral-spatial approaches based on textural and morphological features. It is revealed that the MIL method is able to achieve promising results with a low-dimensional feature space, and, provide a practical strategy for processing large-scale high-resolution images.  相似文献   

7.
高光谱图像类内光谱变化较大,"同物异谱"现象普遍存在。利用原始地物光谱特征进行分类精度较低而且分类结果图中存在"椒盐现象"。为了获得好的分类结果,必须充分利用高光谱图像的光谱信息和空间信息,减少类内的光谱变化,并扩大类别间的光谱差异。为此,提出一种滚动引导递归滤波的高光谱图像光谱—空间分类方法。首先,利用主成分分析对高光谱图像进行降维;然后,利用高斯滤波对输入图像进行模糊化,消除图像中的噪声和小尺度结构;接下来,将模糊化后的图像作为引导图像,对输入图像进行边缘保持递归滤波,输出结果作为新的引导图像,重复迭代这个过程直至大尺度边缘被恢复;最后,利用提取的特征波段和支持向量机对高光谱图像进行分类。在两个真实高光谱数据集上进行了分类实验,结果表明本文方法的分类精度优于其他的高光谱图像分类方法。在训练样本极少的情况下,本文方法也能获得较高的分类精度。  相似文献   

8.
In recent years hyperspectral imaging has proved its significance in the detection and mapping of various objects of interest in a scene. Various methods for object detection in hyperspectral images have been developed with their advantages and limitations. In the present study, a methodology comprising spectral derivative (first order) and spectral information divergence has been investigated for detection of objects in hyperspectral images. The efficacy of the detection scheme has been examined over two different hyperspectral data sets of Hyperion images. Tea plants (Camellia sinensis) and Sal trees (Shorea robusta) (pure pixels) have been detected as the objects of interest in the hyperspectral images independently with reduced false pixels. The proposed methodology may in future be applied for classification of mixed pixels.  相似文献   

9.
Spectroscopic techniques have become attractive to assess soil properties because they are fast, require little labor and may reduce the amount of laboratory waste produced when compared to conventional methods. Imaging spectroscopy (IS) can have further advantages compared to laboratory or field proximal spectroscopic approaches such as providing spatially continuous information with a high density. However, the accuracy of IS derived predictions decreases when the spectral mixture of soil with other targets occurs. This paper evaluates the use of spectral data obtained by an airborne hyperspectral sensor (ProSpecTIR-VS – Aisa dual sensor) for prediction of physical and chemical properties of Brazilian highly weathered soils (i.e., Oxisols). A methodology to assess the soil spectral mixture is adapted and a progressive spectral dataset selection procedure, based on bare soil fractional cover, is proposed and tested. Satisfactory performances are obtained specially for the quantification of clay, sand and CEC using airborne sensor data (R2 of 0.77, 0.79 and 0.54; RPD of 2.14, 2.22 and 1.50, respectively), after spectral data selection is performed; although results obtained for laboratory data are more accurate (R2 of 0.92, 0.85 and 0.75; RPD of 3.52, 2.62 and 2.04, for clay, sand and CEC, respectively). Most importantly, predictions based on airborne-derived spectra for which the bare soil fractional cover is not taken into account show considerable lower accuracy, for example for clay, sand and CEC (RPD of 1.52, 1.64 and 1.16, respectively). Therefore, hyperspectral remotely sensed data can be used to predict topsoil properties of highly weathered soils, although spectral mixture of bare soil with vegetation must be considered in order to achieve an improved prediction accuracy.  相似文献   

10.
In automated remote sensing based image analysis, it is important to consider the multiple features of a certain pixel, such as the spectral signature, morphological property, and shape feature, in both the spatial and spectral domains, to improve the classification accuracy. Therefore, it is essential to consider the complementary properties of the different features and combine them in order to obtain an accurate classification rate. In this paper, we introduce a modified stochastic neighbor embedding (MSNE) algorithm for multiple features dimension reduction (DR) under a probability preserving projection framework. For each feature, a probability distribution is constructed based on t-distributed stochastic neighbor embedding (t-SNE), and we then alternately solve t-SNE and learn the optimal combination coefficients for different features in the proposed multiple features DR optimization. Compared with conventional remote sensing image DR strategies, the suggested algorithm utilizes both the spatial and spectral features of a pixel to achieve a physically meaningful low-dimensional feature representation for the subsequent classification, by automatically learning a combination coefficient for each feature. The classification results using hyperspectral remote sensing images (HSI) show that MSNE can effectively improve RS image classification performance.  相似文献   

11.
面向对象规则和支持向量机的天宫一号高光谱影像分类   总被引:2,自引:2,他引:0  
传统的高光谱分类方法通常基于单一像元的光谱或纹理特征,很少考虑地物空间结构信息与空间相关特征.本文将面向对象规则与基于像元的分类进行融合,利用对象的空间结构特征和光谱特征进行混合分类,旨在克服像元层次分类的不足.本文尝试性的提出了两种混合分类方法:(1)基于分形网络演化的多尺度分割支持向量机分类(2)基于多层分水岭分割的SVM分类,并将这两种方法应用到天宫一号高光谱数据上.结果表明:基于面向对象规则的混合分类方法有效地提高了分类精度,不仅能够改善同谱异物现象,而且解决分类结果中地物破碎的问题.  相似文献   

12.
Modern hyperspectral imaging and non-imaging spectroradiometer has the capability to acquire high-resolution spectral reflectance data required for surface materials identification and mapping. Spectral similarity metrics, due to their mathematical simplicity and insensitiveness to the number of reference labelled spectra, have been increasingly used for material mapping by labelling reflectance spectra in hyperspectral data labelling. For a particular hyperspectral data set, the accuracy of spectral labelling depends considerably upon the degree of unambiguous spectral matching achieved by the spectral similarity metric used. In this work, we propose a new methodology for quantifying spectral similarity for hyperspectral data labelling for surface materials identification. Developed adopting the multiple classifier system architecture, the proposed methodology unifies into a single framework the differential performances of eight different spectral similarity metrics for the quantification of spectral matching for surface materials. The proposed methodology has been implemented on two types of hyperspectral data viz. image (airborne hyperspectral images) and non-image (library spectra) for numerous surface materials identification. Further, the performance of the proposed methodology has been compared with the support vector machines (SVM) approach, and with all the base spectral similarity metrics. The results indicate that, for the hyperspectral images, the performance of the proposed methodology is comparable with that of the SVM. For the library spectra, the proposed methodology shows a consistently higher (increase of about 30% when compared to SVM) classification accuracy. The proposed methodology has the potential to serve as a general library search method for materials identification using hyperspectral data.  相似文献   

13.
Abstract

Environmental data are often utilized to guide interpretation of spectral information based on context, however, these are also important in deriving vegetation maps themselves, especially where ecological information can be mapped spatially. A vegetation classification procedure is presented which combines a classification of spectral data from Landsat‐5 Thematic Mapper (TM) and environmental data based on topography and fire history. These data were combined utilizing fuzzy logic where assignment of each pixel to a single vegetation category was derived comparing the partial membership of each vegetation category within spectral and environmental classes. Partial membership was assigned from canopy cover for forest types measured from field sampling. Initial classification of spectral and ecological data produced map accuracies of less than 50% due to overlap between spectrally similar vegetation and limited spatial precision for predicting local vegetation types solely from the ecological information. Combination of environmental data through fuzzy logic increased overall mapping accuracy (70%) in coniferous forest communities of northwestern Montana, USA.  相似文献   

14.
高光谱图像分类是遥感领域中一个具有挑战性的问题。基于深度学习框架的高光谱图像分类方法,由于其良好的分类性能受到了越来越多的关注。然而,这些方法普遍存在的问题为:模型的训练不仅需要大量的时间,而且还需要大量的标签样本。针对此问题,本文提出了一种基于超像素图卷积网络的高光谱图像分类方法。该方法以超像素作为图的节点,极大地减小了图的规模,从而提高了分类效率;提出的超像素合并技术能有效地融合光谱-空间信息,增强了空间信息在分类中的作用;为了验证该方法的有效性,在Indian Pines、Pavia University两个实际数据集上进行试验,并与一些先进的基于深度学习框架的高光谱图像分类方法进行比较。结果表明,本文方法在分类精度和分类效率上均优于其他方法。  相似文献   

15.
ALOS全色与多光谱影像融合的土地覆盖分类   总被引:1,自引:1,他引:0  
利用Brovey、HighPass Filter和Gram-Schmidt 3种融合方法,对ALOS卫星全色与多光谱影像进行融合,并对融合后影像进行土地覆盖分类研究,从定性分析和比较融合后影像的分类精度2个方面综合评价了3种融合方法的效果。结果表明,3种融合方法都提高了影像的空间分辨率,Gram-Schmidt和HPF融合后影像光谱保持性好,同时3种融合方法不同程度上提高了影像的总体精度和Kappa系数,Gram-Schmidt最高,Brovey次之,HPF最弱,但对于不同地物分类精度又不尽相同,从整体分类结果来看,Gram-Schmidt最优。  相似文献   

16.
Tree species composition of forest stand is an important indicator of forest inventory attributes for assessing ecosystem health, understanding successional processes, and digitally displaying forest biodiversity. In this study, we acquired high spatial resolution multispectral and RGB imagery over a subtropical natural forest in southwest China using a fixed-wing UAV system. Digital aerial photogrammetric (DAP) technique was used to generate multi-spectral and RGB derived point clouds, upon which individual tree crown (ITC) delineation algorithms and a machine learning classifier were used to identify dominant tree species. To do so, the structure-from-motion method was used to generate RGB imagery-based DAP point clouds. Then, three ITC delineation algorithms (i.e., point cloud segmentation (PCS), image-based multiresolution segmentation (IMRS), and advanced multiresolution segmentation (AMRS)) were used and assessed for ITC detection. Finally, tree-level metrics (i.e., multispectral, texture and point cloud metrics) were used as metrics in the random forest classifier used to classify eight dominant tree species. Results indicated that the accuracy of the AMRS ITC segmentation was highest (F1-score = 82.5 %), followed by the segmentation using PCS (F1-score = 79.6 %), the IMRS exhibited the lowest accuracy (F1-score = 78.6 %); forest types classification (coniferous and deciduous) had a higher accuracy than the classification of all eight tree species, and the combination of spectral, texture and structural metrics had the highest classification accuracy (overall accuracy = 80.20 %). In the classification of both eight tree species and two forest types, the classification accuracies were lowest when only using spectral metrics, indicated that the texture metrics and point cloud structural metrics had a positive impact on the classification (the overall accuracy and kappa accuracy increased by 1.49–4.46 % and 2.86–6.84 %, respectively).  相似文献   

17.
Abstract

Three spatial resolutions of airborne remote sensing imagery (60 cm, 1 m, and 2 m) collected over multi‐layer aspen, pine, spruce, and mixedwood forest stands in Alberta on July 18th, 1998 were tested for their ability to provide a statistical stand discrimination based on spatial co‐occurrence texture analysis. As spatial resolution increased, classification accuracies increased. The highest classification accuracy of 86.7% was obtained using the highest image spatial resolution data (60 cm), with spatial co‐occurrence texture and spectral signatures combined, and a thirteen‐class multi‐layer stand stratification. The texture of the highest spatial resolution imagery (60 cm pixel resolution) was interpreted to contain information on the crown architecture of individual trees. In larger windows, the texture was interpreted to contain information on stand structure. Texture of lower spatial resolution imagery (1 m and 2 m pixel resolution) could not detect individual tree crown architecture and was determined to be related primarily to stand structure characteristics. The use of texture channels improved the per‐plot classification accuracies by 15.7%, compared to the use of the spectral data alone.  相似文献   

18.
高光谱影像空-谱协同嵌入的地物分类算法   总被引:4,自引:4,他引:0  
黄鸿  郑新磊 《测绘学报》2016,45(8):964-972
针对传统高光谱影像地物分类算法大多仅考虑光谱信息而忽略空间邻近像元间相关性的问题,提出了一种空-谱协同嵌入(SSCE)降维算法和空-谱协同最近邻(SSCNN)分类器。首先,定义一种空-谱协同距离,并将其应用于近邻选取和低维嵌入;然后,构建空-谱近邻关系图来保持数据中的流形结构,并在权值设置中增大空间近邻点的权重以增强数据间的聚集性,提取鉴别特征;最后使用SSCNN分类器对降维后的数据进行分类。利用PaviaU和Salinas高光谱数据集进行试验验证,结果表明,与传统的光谱分类算法相比,该算法能有效提高高光谱影像的地物分类精度。  相似文献   

19.
面向高光谱图像分类的半监督空谱判别分析   总被引:2,自引:2,他引:0  
侯榜焕  王锟  姚敏立  贾维敏  王榕 《测绘学报》2017,46(9):1098-1106
为充分利用高光谱图像蕴藏的空间信息提升分类精度,提出了面向高光谱图像分类的半监督空谱判别分析(S3 DA)算法。考虑高光谱图像数据集的空间一致性,首先利用少量标记样本定义类内散度矩阵,保存数据集同类像元的光谱近邻结构;再利用无标记样本定义空间近邻像元散度矩阵,揭示像元间的空间近邻结构和地物的空间分布结构信息。S3 DA既保持数据集在光谱域的可分性,又保存了无标记样本蕴藏的空间域近邻结构,增强了同类像元和空间近邻像元在投影子空间的聚集性,从而提升分类性能。在PaviaU和Indian Pines数据集的试验表明,总体分类精度分别达到81.50%和71.77%。与传统的光谱方法比较,该算法能有效提升高光谱图像数据集的地物分类精度。  相似文献   

20.
The present study was undertaken with the objective to check effectiveness of spectral information divergence (SID) to develop spectra from image for crop classes based on spectral similarity with field spectra. In multispectral and hyperspectral remote sensing, classification of pixels is obtained by statistical comparison (by means of spectral similarity) of known field or library spectra to unknown image spectra. Though these algorithms are readily used, little emphasis has been placed on use of various spectral similarity measures to develop crop spectra from the image itself. Hence, in this study methodology suggested to develop spectra for crops based on SID. Absorption features are unique and distinct; hence, validation of the developed spectra is carried out using absorption features by comparing it with field spectra and finding average correlation coefficient r?=?0.982 and computed SID equivalent r?=?0.989. Effectiveness of developed spectra for image classification was computed by probability of spectral discrimination (PSD) and resulted in higher probability for the spectra developed based on SID. Image classification was carried out using field spectra and spectra assigned by SID. Overall classification accuracy of the image classified by field spectra is 78.30% and for the image classified by spectra assigned through SID-based approach is 91.82%. Z test shows that image classification carried out using spectra developed by SID is better than classification carried out using field spectra and significantly different. Validation by absorption features, effectiveness by PSD and higher classification accuracy show possibility of new approach for spectra development based on SID spectral similarity measure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号