首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Quantifying impervious surfaces in urban and suburban areas is a key step toward a sustainable urban planning and management strategy. With the availability of fine-scale remote sensing imagery, automated mapping of impervious surfaces has attracted growing attention. However, the vast majority of existing studies have selected pixel-based and object-based methods for impervious surface mapping, with few adopting sub-pixel analysis of high spatial resolution imagery. This research makes use of a vegetation-bright impervious-dark impervious linear spectral mixture model to characterize urban and suburban surface components. A WorldView-3 image acquired on May 9th, 2015 is analyzed for its potential in automated unmixing of meaningful surface materials for two urban subsets and one suburban subset in Toronto, ON, Canada. Given the wide distribution of shadows in urban areas, the linear spectral unmixing is implemented in non-shadowed and shadowed areas separately for the two urban subsets. The results indicate that the accuracy of impervious surface mapping in suburban areas reaches up to 86.99%, much higher than the accuracies in urban areas (80.03% and 79.67%). Despite its merits in mapping accuracy and automation, the application of our proposed vegetation-bright impervious-dark impervious model to map impervious surfaces is limited due to the absence of soil component. To further extend the operational transferability of our proposed method, especially for the areas where plenty of bare soils exist during urbanization or reclamation, it is still of great necessity to mask out bare soils by automated classification prior to the implementation of linear spectral unmixing.  相似文献   

2.
The monitoring of urban sprawl in agricultural and natural areas requires the frequent acquisition of information relative to land cover changes. The loss of high capability agricultural lands is a major problem. The sound management of resources requires the knowledge of the nature and orientation of the urban dynamics.

Remote sensing is a useful tool for highlighting areas where changes have occured,for determining the type of change and for quantifying these changes. A spatial‐temporal analysis of the urban processes is carried out for the urban area of Montreal, Canada. Different sources of information are used: three Landsat MSS satellite images acquired in 1972, 1979 and 1982, planimetric data from the Department of Municipal Affairs of Quebec and statistics compiled by Environment Canada.

The satellite data shows a sharp increase, in the order of 65%, in urban areas during the period under consideration. These results are compared with governmental data derived from classical photo‐interpretation techniques.

On one hand, we observe that the results obtained by automatic classification of the satellite data are superior in the order of between 5% to 30%, depending on the year and the different governmental sources. On the other hand, we discuss problems of homogeneity in the use of terms related to land cover between the various governmental organizations.  相似文献   

3.
Abstract

A methodology is presented for estimating percent coverage of impervious surface (IS) and forest cover (FC) within Landsat thematic mapper (TM) pixels of urban areas. High-resolution multi-spectral images from Quickbird (QB) play a key role in the sub-pixel mapping process by providing information on the spatial distributions of ISs and FCs at 2.4 m ground sampling intervals. Thematic classifications, also derived from the Landsat imagery, have then been employed to define relationships between 30 m Landsat-derived greenness values and percent IS and FC. By also utilizing land cover/land use classification derived from Landsat and defining unique relationships for urban sub-classes (i.e. residential, commercial/industrial, open land), confusion between impervious and fallow agricultural lands has been overcome. Test results are presented for Ottawa-Gatineau, an urban area that encompasses many aspects typical of the North American urban landscape. Multiple QB scenes have been acquired for this urban centre, thereby allowing us to undertake an in-depth study of the error budgets associated with the fractional inference process.  相似文献   

4.
Shadows commonly exist in high resolution satellite imagery, particularly in urban areas, which is a combined effect of low sun elevation, off-nadir viewing angle, and high-rise buildings. The presence of shadows can negatively affect image processing, including land cover classification, mapping, and object recognition due to the reduction or even total loss of spectral information in shadows. The compensation of spectral information in shadows is thus one of the most important preprocessing steps for the interpretation and exploitation of high resolution satellite imagery in urban areas. In this study, we propose a new approach for global shadow compensation through the utilization of fully constrained linear spectral unmixing. The basic assumption of the proposed method is that the construction of the spectral scatter plot in shadows is analogues to that in non-shadow areas within a two-dimension spectral mixing space. In order to ensure the continuity of land covers, a smooth operator is further used to refine the restored shadow pixels on the edge of non-shadow and shadow areas. The proposed method is validated using the WorldView-2 multispectral imagery collected from downtown Toronto, Ontario, Canada. In comparison with the existing linear-correlation correction method, the proposed method produced the compensated shadows with higher quality.  相似文献   

5.
Abstract

Landsat Thematic Mapper (TM) data have been used to monitor land cover types and to estimate biophysical parameters. However, studies examining the spatial relationships between land cover change and biophysical parameters are generally lacking. With the integration of remote sensing and Geographic Information Systems (GIS), these relationships can be better explored. The research reported in this paper applies this integrated approach for detecting urban growth and assessing its impact on vegetative greenness in the Zhujiang Delta, China. Multi‐temporal Landsat TM data were utilized to map urban growth and to extract and identify changes in vegetative greenness. GIS analyses were conducted to examine the changing spatial patterns of urban growth and greenness change. Statistical analyses were then used to examine the impact of urban growth on vegetative greenness. The results revealed that there was a notably uneven urban growth pattern in the delta, and urban development had reduced the scaled Normalized Difference Vegetation Index (NDVI) value by 30% in the urbanized area.  相似文献   

6.
This study focuses on the spatiotemporal dynamics of agricultural lands and differences in rapidly developing urban and declining rural counties in Iowa, USA between 1984 and 2000. The study presents an analysis of land-cover maps derived from Landsat TM and ETM+ satellite imagery and different landscape metrics using FRAGSTATS and IDRISI software. The study provides evidence of both loss of croplands and change in fragmentation between 1984 and 2000. Fragmentation in agriculture-dominated areas increased with the development of urban centres and diversification of land uses. Fragmentation of landscapes, including agricultural land, was found to be higher in the urbanized counties, but was stable or even declined over time in these counties. In contrast, in the context of remote rural areas, agricultural landscapes experienced rapid increase in fragmentation and farmland loss. The urban–rural gradient analysis used in this study showed that the highest fragmentation occurred on the city edges. These findings suggest that farmland fragmentation is a complex process associated with socio-economic trends at regional and local scales. In addition, socio-economic determinants of landscape fragmentation differ between areas with diverging development trajectories. Intensive cropland fragmentation in remote agricultural regions, detected by this research, should be further studied and its possible effects on both agricultural productivity and biodiversity should be carefully considered.  相似文献   

7.
ABSTRACT

The presence of green spaces within city centres has been recognized as a valuable component of the city landscape. Vegetation provides a variety of benefits including energy saving, improved air quality, reduced noise pollution, decreased ambient temperature and psychological restoration. Evidence also shows that the amount of vegetation, known as ‘greenness’, in densely populated areas, can also be an indicator of the relative wealth of a neighbourhood. The ‘grey-green divide’, the contrast between built-up areas with a dominant grey colour and green spaces, is taken as a proxy indicator of sustainable management of cities and planning of urban growth. Consistent and continuous assessment of greenness in cities is therefore essential for monitoring progress towards the United Nations Sustainable Development Goal 11. The availability of multi-temporal greenness information from Landsat data archives together with data derived from the city centres database of the Global Human Settlement Layer (GHSL) initiative, offers a unique perspective to quantify and analyse changes in greenness across 10,323 urban centres all around the globe. In this research, we assess differences between greenness within and outside the built-up area for all the urban centres described by the city centres database of the GHSL. We also analyse changes in the amount of green space over time considering changes in the built-up areas in the periods 1990, 2000 and 2014. The results show an overall trend of increased greenness between 1990 and 2014 in most cities. The effect of greening is observed also for most of the 32 world megacities. We conclude that using simple yet effective approaches exploiting open and free global data it is possible to provide quantitative information on the greenness of cities and its changes over time. This information is of direct interest for urban planners and decision-makers to mitigate urban related environmental and social impacts.  相似文献   

8.
Visual interpretation of Landsat Thematic Mapper data coupled with ground checking has been used to extract information for urban areas. The emphasis has been given on development of land use/land cover scheme and image interpretation keys for interpretation and delineation purposes using satellite remote sensing data. Lucknow city and its surroundings have been studied to evaluate the usefulness and potentiality of satellite data particularly Landsat Thematic Mapper for urban area studies. This study has demonstrated that remote sensing can provide a valuable tool for urban data acquisition.  相似文献   

9.
Quantification of the urban composition is important in urban planning and management. Previous research has primarily focused on unmixing medium-spatial resolution multispectral imagery using spectral mixture analysis (SMA) in order to estimate the abundance of urban components. For this study an object-based multiple endmember spectral mixture analysis (MESMA) approach was applied to unmix the 30-m Earth Observing-1 (EO-1)/Hyperion hyperspectral imagery. The abundance of two physical urban components (vegetation and impervious surface) was estimated and mapped at multiple scales and two defined geographic zones. The estimation results were validated by a reference dataset generated from fine spatial resolution aerial photography. The object-based MESMA approach was compared with its corresponding pixel-based one, and EO-1/Hyperion hyperspectral data was compared with the simulated EO-1/Advanced Land Imager (ALI) multispectral data in the unmixing modeling. The pros and cons of the object-based MESMA were evaluated. The result illustrates that the object-based MESMA is promising for unmixing the medium-spatial resolution hyperspectral imagery to quantify the urban composition, and it is an attractive alternative to the traditional pixel-based mixture analysis for various applications.  相似文献   

10.
ABSTRACT

White mold of soybeans is one of the most important fungal diseases that affect soybean production in South Dakota. However, there is a lack of information on the spatial characteristics of the disease and relationship with soybean yield. This relationship can be explored with the Normalized Difference Vegetation Index (NDVI) derived from Landsat 8 and a fusion of Landsat 8 and the Moderate Resolution Imaging Spectroradiometer (MODIS) images. This study investigated the patterns of yield in two soybean fields infected with white mold between 2016 and 2017, and estimated yield loss caused by white mold. Results show evidence of clustering in the spatial distribution of yield (Moran’s I = 0.38; p < 0.05 in 2016 and Moran’s I = 0.45; p < 0.05 in 2017) that can be explained by the spatial distribution of white mold in the observed fields. Yield loss caused by white mold was estimated at 36% in 2016 and 56% in 2017 for the worse disease pixels, with the most accurate period for estimating this loss on 21 August and 8 September for 2016 field and 2017 field, respectively. This study shows the potential of free remotely sensed satellite data in estimating yield loss caused by white mold.  相似文献   

11.
An image dataset from the Landsat OLI spaceborne sensor is compared with the Landsat TM in order to evaluate the excellence of the new imagery in urban landcover classification. Widely known pixel-based and object-based image analysis methods have been implemented in this work like Maximum Likelihood, Support Vector Machine, k-Nearest Neighbor, Feature Analyst and Sub-pixel. Classification results from Landsat OLI provide more accurate results comparing to the Landsat TM. Object-based classifications produced a more uniform result, but suffer from the absorption of small rare classes into large homogenous areas, as a consequence of the segmentation, merging and the spatial parameters in the spatial resolution (30 m) of Landsat images. Based exclusively on the overall accuracy reports, the SVM pixel-based classification from Landsat 8 proved to be the most accurate for the purpose of mapping urban land cover, using medium spatial resolution imagery.  相似文献   

12.
Urbanization and the associated change in land cover has been intensifying across the globe in recent decades. Regional studies on the rate and amount of urban expansion are critical for understanding how patterns of change differ within and among cities with varying structure and development characteristics. Yet spatially consistent and timely information on urban development is difficult to access particularly across international jurisdictions. Remote sensing based technologies offer a unique perspective on urban land cover with the data offering significant potential to urban studies due to its consistent and ubiquitous nature. In this research we applied a pixel-based image composite technique to generate annual gap-free surface reflectance Landsat composites from 1984 to 2012 for 25 urban environments across 12 countries in the Pacific Rim. Using time series composites, spectral indices were calculated and compared using a hexagonal grid ring model to assess changes in vegetative and urban patterns. Trajectories were then clustered to further investigate the spatio-temporal dynamics and relationships among the 25 cities. Performance of the clustering analyses varied depended on the temporal and spatial metrics however overall clustering results indicated relatively strong spatio-temporal similarities among a number of key cities. Three pairs of cities—Melbourne and Sydney; Tianjin and Manila; and Singapore City and Kuala Lumpur were found to be highly similar in their urban and vegetation dynamics temporally and spatially. In contrast Vancouver and Las Vegas had no similar analogous. This work demonstrates the value of utilising annual Landsat time series composites for assessing urban vegetation and urban dynamics at regional scales and potential use in sustainable urban planning, resources allocation, and policy making.  相似文献   

13.
Land-use/land-cover information constitutes an important component in the calibration of many urban growth models. Typically, the model building involves a process of historic calibration based on time series of land-use maps. Medium-resolution satellite imagery is an interesting source for obtaining data on land-use change, yet inferring information on the use of urbanised spaces from these images is a challenging task that is subject to different types of uncertainty. Quantifying and reducing the uncertainties in land-use mapping and land-use change model parameter assessment are therefore crucial to improve the reliability of urban growth models relying on these data. In this paper, a remote sensing-based land-use mapping approach is adopted, consisting of two stages: (i) estimating impervious surface cover at sub-pixel level through linear regression unmixing and (ii) inferring urban land use from urban form using metrics describing the spatial structure of the built-up area, together with address data. The focus lies on quantifying the uncertainty involved in this approach. Both stages of the land-use mapping process are subjected to Monte Carlo simulation to assess their relative contribution to and their combined impact on the uncertainty in the derived land-use maps. The robustness to uncertainty of the land-use mapping strategy is addressed by comparing the most likely land-use maps obtained from the simulation with the original land-use map, obtained without taking uncertainty into account. The approach was applied on the Brussels-Capital Region and the central part of the Flanders region (Belgium), covering the city of Antwerp, using a time series of SPOT data for 1996, 2005 and 2012. Although the most likely land-use map obtained from the simulation is very similar to the original land-use map – indicating absence of bias in the mapping process – it is shown that the errors related to the impervious surface sub-pixel fraction estimation have a strong impact on the land-use map's uncertainty. Hence, uncertainties observed in the derived land-use maps should be taken into account when using these maps as an input for modelling of urban growth.  相似文献   

14.
ABSTRACT

We propose a method for spatial downscaling of Landsat 8-derived LST maps from 100(30?m) resolution down to 2–4?m with the use of the Multiple Adaptive Regression Splines (MARS) models coupled with very high resolution auxiliary data derived from hyperspectral aerial imagery and large-scale topographic maps. We applied the method to four Landsat 8 scenes, two collected in summer and two in winter, for three British towns collectively representing a variety of urban form. We used several spectral indices as well as fractional coverage of water and paved surfaces as LST predictors, and applied a novel method for the correction of temporal mismatch between spectral indices derived from aerial and satellite imagery captured at different dates, allowing for the application of the downscaling method for multiple dates without the need for repeating the aerial survey. Our results suggest that the method performed well for the summer dates, achieving RMSE of 1.40–1.83?K prior to and 0.76–1.21?K after correction for residuals. We conclude that the MARS models, by addressing the non-linear relationship of LST at coarse and fine spatial resolutions, can be successfully applied to produce high resolution LST maps suitable for studies of urban thermal environment at local scales.  相似文献   

15.
Urban areas are of paramount significance to both the individuals and communities at local and regional scales. However, the rapid growth of urban areas exerts effects on climate, biodiversity, hydrology, and natural ecosystems worldwide. Therefore, regular and up-to-date information related to urban extent is necessary to monitor the impacts of urban areas at local, regional, and potentially global scales. This study presents a new urban map of Eurasia at 500 m resolution using multi-source geospatial data, including Moderate Resolution Imaging Spectroradiometer (MODIS) data of 2013, population density of 2012, the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) nighttime lights of 2012, and constructed Impervious Surface Area (ISA) data of 2010. The Eurasian urban map was created using the threshold method for these data, combined with references of fine resolution Landsat and Google Earth imagery. The resultant map was compared with nine global urban maps and was validated using random sampling method. Results of the accuracy assessment showed high overall accuracy of the new urban map of 94%. This urban map is one product of the 20 land cover classes of the next version of Global Land Cover by National Mapping Organizations.  相似文献   

16.
The growing importance of urbanization in Canada highlights the need for nationally consistent information on major cities to support effective policy development. A spatially-explicit database, the Canadian Urban Land-Use Survey (CUrLUS), is described. It is a comprehensive source of integrated contemporary land-cover/land-use, demographic and socio-economic information as well as historic land use characterizations from earlier federal initiatives. Satellite remote sensing plays a key role in the form of provision of Landsat-based thematic classifications. The utilization of CUrLUS is illustrated in the quantification of transportation-related energy sustainability indicators, namely, density, urban compactness and land-use mix. The latter shows the greatest promise, being significantly correlated to both work-related median travel distance and percent private vehicle use. Urban transportation is complex and it is argued that indicators based solely on statistical and spatial analysis methodologies are limited in abilities to directly address specific components of this issue, for example, energy consumption. It is recommended that more sophisticated, model-enhanced indicators be developed. We also demonstrate that the land-use/urban-form information of CUrLUS will be a cornerstone in this endeavour.  相似文献   

17.
有效监测人工水产养殖水面的分布变化对于海洋资源管理、生态环境保护、防灾减灾具有重要意义。本文以Landsat 5、SPOT 5和GF-1卫星影像为数据源,选择广东省北莉岛为研究区,使用线性光谱解混方法获取中等空间分辨率卫星影像的人工水产养殖水面面积,通过面向对象多尺度分割的方法结合支持向量机分类算法提取高空间分辨率卫星影像的人工水产养殖水面分布。研究结果表明,与单一卫星影像相比,综合多源中高空间分辨率卫星数据延长了人工水产养殖水面变化分析可追溯的时间跨度,提高了监测精度;联合光谱解混和面向对象分类方法开展人工水产养殖长时序遥感监测是可行的。近20多年来,北莉岛人工水产养殖水面的面积经历了先增加后缓慢减少的变化过程,1995—2000年平均增速为23.39 hm2/a,2000—2006年平均增速为23.95 hm2/a,2006—2019年平均减少速度为1.96 hm2/a。  相似文献   

18.
Changes in landscape composition and configuration patterns of Sancaktepe Municipal District in the Asian side of Istanbul Metropolitan City of Turkey were analysed using landscape metrics. Class-level and landscape-level metrics were calculated from the land cover/land use data using Patch Analyst, an extension in the Arc View GIS. The land cover/land use data were derived from classified satellite images of Landsat Thematic Mapper of 2002 and 2009 for Sancaktepe District. There was evidence of increase in agglomeration process of built-up patches as indicated by the increases in mean patch size, decrease in total edge and number of patches between 2002 and 2009. The urban expansion pattern experienced overall was not fragmented but concentrated due to infilling around existing patches. Changes in Area-Weighted Mean Shape Index and Area-Weighted Patch Fractal Dimension Index indicated that the physical shapes within built-up, forest and bareland areas were relatively complex and irregular. A conclusion is made in this study that spatial metrics are useful tools to describe the urban landscape composition and configuration in its various aspects and certain decisions whether to approve a specific development in urban planning could, for example, be based on some measures of urban growth form or pattern in terms of uniformity and irregularity, attributable to the dynamic processes of agglomeration and fragmentation of land cover/land use patches caused by urban expansion.  相似文献   

19.
ABSTRACT

This paper provides a study of the changes in land use in urban environments in two cities, Wuhan, China and western Sydney in Australia. Since mixed pixels are a characteristic of medium resolution images such as Landsat, when used for the classification of urban areas, due to changes in urban ground cover within a pixel, Multiple Endmember Spectral Mixture Analysis (MESMA) together with Super-Resolution Mapping (SRM) are employed to derive class fractions to generate classification maps at a higher spatial resolution using an Artificial Neural Network (ANN) predicted Wavelet method. Landsat images over the two cities for a 30-year period, are classified in terms of vegetation, buildings, soil and water. The classifications are then processed using Indifrag software to assess the levels of fragmentation caused by changes in the areas of buildings, vegetation, water and soil over the 30 years. The extents of fragmentation of vegetation, buildings, water and soil for the two cities are compared, while the percentages of vegetation are compared with recommended percentages of green space for urban areas for the benefit of health and well-being of inhabitants. Changes in Ecosystem Service Values (ESVs) resulting from the urbanization have been assessed for Wuhan and Sydney. The UN Sustainable Development Goals (SDG) for urban areas are being assessed by researchers to better understand how to achieve the sustainability of cities.  相似文献   

20.
A global and consistent characterization of land use and land change in urban and suburban environments is crucial for many fundamental social and natural science studies and applications. Presented here is a dense sampling method (DSM) that uses satellite scatterometer data to delineate urban and intraurban areas at a posting scale of about 1 km. DSM results are analyzed together with information on population and housing censuses, with Landsat Enhanced Thematic Mapper Plus (ETM+) imagery, and with Defense Meteorological Satellite Program (DMSP) night-light data. The analyses include Dallas-Fort Worth and Phoenix in the United States, Bogotá in Colombia, Dhaka in Bangladesh, Guangzhou in China, and Quito in Ecuador. Results show that scatterometer signatures correspond to buildings and infrastructures in urban and suburban environments. City extents detected by scatterometer data are significantly smaller than city light extents, but not all urban areas are detectable by the current SeaWinds scatterometer on the QuikSCAT satellite. Core commercial and industrial areas with high buildings and large factories are identified as high-backscatter centers. Data from DSM backscatter and DMSP nighttime lights have a good correlation with population density. However, the correlation relations from the two satellite datasets are different for different cities indicating that they contain complementary information. Together with night-light and census data, DSM and satellite scatterometer data provide new observations to study global urban and suburban environments and their changes. Furthermore, the capability of DSM to identify hydrological channels on the Greenland ice sheet and ecological biomes in central Africa demonstrates that DSM can be used to observe persistent structures in natural environments at a km scale, providing contemporaneous data to study human impacts beyond urban and suburban areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号