首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Gondwana Research》2014,25(2):561-584
The aim of this paper is to review the main features of the Meso-Neoarchaean Belomorian eclogite province (BEP) in the northeastern Fennoscandian Shield, including regional and local geology, geochemistry, petrology and geochronology and to compare the Belomorian eclogites with Precambrian eclogites elsewhere. Two eclogite associations have been recognized within Belomorian TTG gneisses: (1) the subduction-type Salma association and (2) Gridino eclogitized mafic dykes. Protoliths of the Salma eclogites represent a sequence comprising gabbro, Fe–Ti gabbro and troctolites, formed at ~ 2.9 Ga in a slow-spreading ridge setting (like the Southwest Indian Ridge). The main subduction and eclogite-facies events occurred between ~ 2.87 and ~ 2.82 Ga. Injection of mafic magma into an active continental margin setting, recorded by the Gridino dyke swarm, is attributed to subduction of a mid-ocean ridge, commencing at 2.87 Ga. Crustal delamination of the active margin and subsequent involvement of the lower crust in subduction between 2.87 and 2.82 Ga ago caused high-pressure metamorphism of the Gridino dykes, culminating in eclogite-facies conditions between 2.82 and 2.78 Ga and accompanying amalgamation of the Karelia, Kola and Khetolamba blocks and formation of the Mesoarchaean Belomorian accretionary–collisional orogen. The clockwise PT paths of the Salma and Gridino associations cross the granulite-facies PT field. Detailed metamorphic studies indicate a complicated post-eclogite history with thermal events and fluid infiltration, related to plume activity at 2.72–2.70, ~ 2.4 and ~ 1.9 Ga. The eclogite assemblages were exhumed to mid-to-lower crustal depths at ~ 1.7 Ga, while erosion or younger tectonic events were responsible for final exhumation to the surface. Comparison of PTt paths and data for peak metamorphic parameters demonstrates the general similarity of the Archaean and Palaeoproterozoic eclogites worldwide and their association with anomalously “hot” environments. The occurrence of high-T conditions during eclogite-facies metamorphism can be attributed to either subduction of a mid-ocean ridge (Archaean, BEP) or to interaction with mantle plumes (Proterozoic).  相似文献   

2.
《Gondwana Research》2016,29(4):1482-1499
The Lhasa terrane, the main tectonic component of the Himalayan–Tibetan orogen, has received much attention as it records the entire history of the orogeny. The occurrence of Permian to Triassic high-pressure eclogites has a significant bearing on the understanding of the Paleo-Tethys subduction and plate suturing processes in this area. An eclogite from the Bailang, eastern Lhasa terrane, was investigated with a combined metamorphic PT and U–Pb, Lu–Hf, Sm–Nd and Ar–Ar multichronometric approach. Pseudosection modeling combined with thermobarometric calculations indicate that the Bailang eclogite equilibrated at peak PT conditions of ~ 2.6 GPa and 465–503 °C, which is much lower than those of Sumdo and Jilang eclogites in this area. Garnet–whole rock–omphacite Lu–Hf and Sm–Nd ages of 238.1 ± 3.6 Ma and 230.0 ± 4.7 Ma were obtained on the same sample, which are largely consistent with the corresponding U–Pb age of 227.4 ± 6.4 Ma for the metamorphic zircons within uncertainty. The peak metamorphic temperature of the sample is lower than the Lu–Hf and Sm–Nd closure temperatures in garnet. This, combined with the core-to-rim decrease in Mn and HREE concentrations, the slightly U-shaped Sm zonation across garnet and the exclusive occurrence of omphacite inclusion in garnet rim, are consistent with the Lu–Hf system skewing to the age of the garnet core and the Sm–Nd system favoring the rim age. The Sm–Nd age was thus interpreted as the age of eclogite-facies metamorphism and the Lu–Hf age likely pre-dated the eclogite-facies metamorphism. 40Ar/39Ar dating of hornblende from the eclogite yielded ages about 200 Ma, which is interpreted as a cooling age and is probably indicative of the time of exhumation to the middle crust. The difference of peak eclogite-facies metamorphic conditions and the distinct metamorphic ages for the Bailang eclogite (~ 2.6 GPa and ~ 480 °C; ca. 230 Ma), the Sumdo eclogite (~ 3.4 GPa and ~ 650 °C; ca. 262 Ma) and Jiang eclogite (~ 3.6 GPa and ~ 750 °C; ca. 261 Ma) in the same (ultra)-high-pressure belt indicate that this region likely comprises different slices that had distinct PT histories and underwent (U)HP metamorphism at different times. The initiation of the opening the Paleo-Tethys Ocean in the Lhasa terrane could trace back to the early Permian. The ultimate closure of the Paleo-Tethys Ocean in the Lhasa terrane was no earlier than ca. 230 Ma.  相似文献   

3.
《Gondwana Research》2015,28(4):1487-1493
Receiver function imaging along a temporary seismic array (ANTILOPE-2) reveals detailed information of the underthrusting of the Indian crust in southern Tibet. The Moho dips northward from ~ 50 km to 80 km beneath the Himalaya terrane, and locally reaches ~ 85 km beneath the Indus–Yalung suture. It remains at ~ 80 km depth across the Lhasa terrane, and shallows to ~ 70 km depth under the Qiangtang terrane. An intra-crustal interface at ~ 60 km beneath the Lhasa terrane can be clearly followed southward through the Main Himalaya Thrust and connects the Main Boundary Thrust at the surface, which represents the border of the Indian crust that is underthrusting until south of the Bangong–Nujiang Suture. A mid-crustal low velocity zone is observed at depths of 14–30 km beneath the Lhasa and Himalaya terranes probably formed by partial melt and/or aqueous fluids.  相似文献   

4.
Mafic granulite and spinel lherzolite xenoliths from Cenozoic alkaline basalts near Al-Ashkhara, eastern Oman, have been selected for a systematic mineralogical, geochemical and Sr–Nd–Pb isotopic study. This is the only place in E Arabia where samples of both lower crust and upper mantle can be examined. Lower crustal xenoliths consist of two mineralogically and chemically distinct groups: gabbronorite (subequal abundances of ortho- and clino-pyroxene and plagioclase) and plagioclase pyroxenite (dominant pyroxene and subordinate plagioclase). Temperature estimates for lower crustal xenoliths using the two pyroxene geothermometer (T-Wells) yield 810–865 °C. The mineral assemblage (spinel–pyroxene–plagioclase) and Al content in pyroxene indicate that plagioclase-bearing xenoliths equilibrated at 5–8 kbar (13 and 30 km depth) in the lower crust. εNd and 87Sr/86Sr calculated at 700 Ma for Al-Ashkhara lower crustal xenoliths (+ 6.4 to + 6.6; 87Sr/86Sr = 0.7028 to 0.7039) are consistent with the interpretation that juvenile, mafic melts were added to the lower crust during Neoproterozoic time and that there was no discernible contribution from pre-Neoproterozoic crust. Upper mantle xenoliths consist of both dry and hydrous (phlogopite-bearing) lherzolites. These peridotites are more Fe-rich than expected for primitive mantle or melt residues and probably formed by pervasive circulation of melts that have refertilized pre-existing mantle peridotites. Mineral equilibration temperatures range from 990 to 1070 °C. Isotopic compositions calculated at 700 Ma are εNd = + 6.8 to + 7.8 and 87Sr/86Sr = 0.7016 to 0.7025, indicating depleted upper mantle. Pb isotopic compositions indicate that the metasomatism was relatively recent, perhaps related to Paleogene tectonics and basanite igneous activity. Nd model ages for the spinel peridotite xenoliths range between 0.59 and 0.65 Ga. The xenolith data suggest that eastern Arabian lower crust is of hotspot origin, in contrast to western Arabian lower crust, which mostly formed at a convergent plate margin. Geochemical and isotopic differences between lower crust and upper mantle indicate that these are unrelated, possibly because delamination replaced the E Arabian mantle root in Neoproterozoic time.  相似文献   

5.
《Gondwana Research》2014,25(3):1202-1215
The South China Block, consisting of the Yangtze and the Cathaysia blocks, is one of the largest Precambrian blocks in eastern Asia. However, the early history of the Cathaysia Block is poorly understood due largely to intensive and extensive reworking by Phanerozoic polyphase orogenesis and magmatism which strongly overprinted and obscured much of the Precambrian geological record. In this paper, we use the detrital zircon U–Pb age and Hf isotope datasets as an alternative approach to delineate the early history of the Cathaysia Block. Compilation of published 4041 Precambrian detrital zircon ages from a number of (meta)sedimentary samples and river sands exhibits a broad age spectrum, with three major peaks at ~ 2485 Ma, ~ 1853 Ma and ~ 970 Ma (counting for ~ 10%, ~ 16% and ~ 24% of all analyses, respectively), and four subordinate peaks at ~ 1426 Ma, ~ 1074 Ma, ~ 780 Ma and ~ 588 Ma. Five of seven detrital zircon age peaks are broadly coincident with the crystallisation ages of ~ 1.89–1.83 Ga, ~ 1.43 Ga, ~ 1.0–0.98 Ga and ~ 0.82–0.72 Ga for known igneous rocks exposed in Cathaysia, whereas, igneous rocks with ages of ~ 2.49 Ga and ~ 0.59 Ga have not yet been found. The Hf isotopic data from 1085 detrital zircons yield Hf model ages (TDMC) between ~ 4.19 Ga and ~ 0.81 Ga, and the calculated εHf(t) values between − 40.2 and 14.4. The Archean detrital zircons are exclusively oval in shape with complicated internal textures, indicating that they were sourced by long distance transportations and strong abrasion from an exotic Archean continent. In contrast, the majority of detrital zircons in age between ~ 1.9 and ~ 0.8 Ga are euhedral to subhedral crystals, indicative of local derivation by short distance transportations from their sources. The oldest crustal basement rocks in Cathaysia were most likely formed by generation of juvenile crust and reworking of recycled Archean components in Late Paleoproterozoic at ~ 1.9–1.8 Ga, rather than in the Archean as previously speculated. Reworking and recycling of the continental crust are likely the dominant processes for the crustal evolution of Cathaysia during the Mesoproterozoic to Neoproterozoic time, with an intervenient period of significant generation of juvenile crust at ~ 1.0 Ga.Precambrian crustal evolutions of the Cathaysia Block are genetically related to the supercontinent cycles. By comparing detrital zircon data from Cathaysia with those for other continents, and integrating multiple lines of geological evidence, we interpret the Cathaysia Block as an orogenic belt located between East Antarctica, Laurentia and Australia during the assembly of supercontinent Columbia/Nuna at ~ 1.9–1.8 Ga. The Cathaysia Block amalgamated with the Yangtze Block to form the united South China Block during the Sibao Orogeny at ~ 1.0–0.89 Ga. The Laurentia–Cathaysia–Yangtze–Australia–East Antarctica connection gives the best solution to the paleo-position of Cathaysia in supercontinent Rodinia. The significant amount of ~ 0.6–0.55 Ga detrital zircons in Cathaysia and West Yangtze have exclusively high crustal incubation time of > 300 Ma, indicating crystallisation from magmas generated dominantly by crustal reworking. This detrital zircon population compares well with the similar-aged zircon populations from a number of Gondwana-derived terranes including Tethyan Himalaya, High Himalaya, Qiangtang and Indochina. The united South China–Indochina continent was likely once an integral part of Gondwanaland, connected to northern India by a “Pan-African” collisional orogen.  相似文献   

6.
The Qinling Orogenic Belt marks the link between the South China and North China Blocks and is an important region to understand the geological evolution of the Chinese mainland as well as the Asian tectonic collage. However, the tectonic affinity and geodynamic evolution of the South Qinling Tectonic Belt (SQTB), a main unit of the Qinling Orogenic Belt, remains debated. Here we present detailed geological, geochemical and zircon U–Pb–Hf isotopic studies on the Zhangjiaba, Xinyuan, Jiangjiaping, Guangtoushan and Huoshaodian plutons from the Guangtoushan granitoid suite (GGS) in the western segment of the SQTB. Combining geology, geochronology and whole-rock geochemistry, we identify four distinct episodes of magmatism as: (1) ~ 230–228 Ma quartz diorites and granodiorites, (2) ~ 224 Ma fine-grained granodiorites and monzogranites, (3) ~ 218 Ma porphyritic monzogranites and (4) ~ 215 Ma high-Mg# quartz diorites and granodiorites as well as coeval muscovite monzogranites. The ~ 230–228 Ma quartz diorites and granodiorites were generated by magma mixing between a mafic melt from mantle source and a granodioritic melt derived from partial melting of Neoproterozoic rocks in the lower continental crust related to a continental arc regime. The ~ 224 Ma fine-grained granodiorites and monzogranites were formed through partial melting of a transitional source with interlayers of basaltic rocks and greywackes in the deep zones of the continental arc. The ~ 218 Ma porphyritic monzogranites originated from partial melting of metamorphosed greywackes in lower crustal levels, suggesting underthrusting of middle or upper crustal materials into lower crustal depths. The ~ 215 Ma high-Mg# quartz diorites and granodiorites (with Mg# values higher than 60) were derived from an enriched mantle altered by sediment-derived melts. Injection of hot mantle-derived magmas led to the emergence of the ~ 215 Ma S-type granites at the final stage.Integrating our studies with previous data, we propose that the Mianlue oceanic crust was still subducting beneath the SQTB during ~ 248–224 Ma, and final closure of the Mianlue oceanic basin occurred between ~ 223 Ma and ~ 218 Ma. After continental collision between the South China Block and the SQTB, slab break-off occurred, following which the SQTB transformed into post-collisional extension setting.  相似文献   

7.
In this paper we present new zircon U–Pb ages, Hf isotope data, and whole-rock major and trace element data for Early Mesozoic intrusive rocks in the Erguna Massif of NE China, and we use these data to constrain the history of southward subduction of the Mongol–Okhotsk oceanic plate, and its influence on NE China as a whole. The zircon U–Pb dating indicates that Early Mesozoic magmatic activity in the Erguna Massif can be subdivided into four stages at ~ 246 Ma, ~ 225 Ma, ~ 205 Ma, and ~ 185 Ma. The ~ 246 Ma intrusive rocks comprise a suite of high-K calc-alkaline diorites, quartz diorites, granodiorites, monzogranites, and syenogranites, with I-type affinities. The ~ 225 Ma intrusive rocks consist of gabbro–diorites and granitoids, and they constitute a bimodal igneous association. The ~ 205 Ma intrusive rocks are dominated by calc-alkaline I-type granitoids that are accompanied by subordinate intermediate–mafic rocks. The ~ 185 Ma intrusive rocks are dominated by I-type granitoids, accompanied by minor amounts of A-types. These Early Mesozoic granitoids mainly originated by partial melting of a depleted and heterogeneous lower crust, whereas the coeval mafic rocks were probably derived from partial melting of a depleted mantle modified by subduction-related fluids. The rock associations and their geochemical features indicate that the ~ 246 Ma, ~ 205 Ma, and ~ 185 Ma intrusive rocks formed in an active continental margin setting related to the southward subduction of the Mongol–Okhotsk oceanic plate. The ~ 225 Ma bimodal igneous rock association formed within an extensional environment in a pause during the subduction process of the Mongol–Okhotsk oceanic plate. Every magmatic stage has its own corresponding set of porphyry deposits in the southeast of the Mongol–Okhotsk suture belt. Taking all this into account, we conclude the following: (1) during the Early Mesozoic, the Mongol–Okhotsk oceanic plate was subducted towards the south beneath the Erguna Massif, but with a pause in subduction at ~ 225 Ma; and (2) the southward subduction of the Mongol–Okhotsk oceanic plate not only caused the intense magmatic activity, but was also favorable to the formation of porphyry deposits.  相似文献   

8.
Relict omphacite inclusions have been discovered in mafic granulite at Dinggye of China, confirming the existence of eclogite in central Himalayan orogenic belt. Detailed petrological studies show that relict omphacite occur as inclusions in both garnets and zircons, and the peak mineral assemblage of eclogite-facies should be garnet, omphacite, rutile, muscovite and quartz which was strongly overprinted by granulite-facies minerals during the exhumation. Phase equilibria modeling and associated geothermometer predict that the minimum P–T conditions for peak eclogite-facies stage are 720–760 °C and 20–21 kbar, and those of overprinted granulite-facies are 750 °C and 7–9 kbar in water-undersaturated condition. Thus, a near isothermal decompression P–T path for central Himalayan eclogite has been obtained. Zircon SHRIMP U–Pb dating of two studied eclogite samples at Dinggye yields the peak metamorphic ages of 13.9 ± 1.2 Ma and 14.9 ± 0.7 Ma, respectively, which indicates that the Dinggye eclogite should be the youngest eclogite in Himalayan orogenic belt. Geochemical characteristics and zircon analyses show that the protoliths of eclogite in Dinggye are predicted to be continental rift-related basaltic rocks. The eclogite at Dinggye in central Himalaya should be formed by the crustal thickening during the long-lasting continental overthrusting by Indian plate beneath Euro-Asian continent, and its exhumation process may be related with channel flow and orogen-parallel extension. In the middle Miocene (~ 14 Ma), Indian continental crust had reached at least ~ 65 km depth in southern Tibet.  相似文献   

9.
Retrograde eclogite from the central part of the Qinling Complex, Zhaigen area of the North Qinling Belt, was studied using integrated petrology, mineral chemistry, pseudosection modeling, and geochronology. Microstructures and mineral relationships reveal five metamorphic stages and associated mineral assemblages as follows: (1) pre-peak stage M1, which is recorded by the inner cores of garnets together with mineral inclusions of clinopyroxene (Cpx1) + amphibole (Am1) + plagioclase (Pl1) ± quartz ± rutile, occurred under conditions of 760–770 °C and 11.4–14.0 kbar; (2) eclogite-facies stage M2, recorded by garnet cores + relic omphacite (with a high jadeite content up to 31%) + rutile + quartz under conditions of > 16.7 kbar and 679–765 °C; (3) high-pressure granulite-facies stage M3, characterized by clinopyroxene (Cpx2) + plagioclase (Pl2) symplectites under conditions of 14.5–15.6 kbar and 800–850 °C; (4) medium-pressure granulite-facies stage M4, characterized by the growth of plagioclase + orthopyroxene coronas around garnet under conditions of 8.3–10 kbar and 795–855 °C; and (5) retrogressive amphibolite-facies stage M5, which is represented by amphibole (Am3) + plagioclase (Pl3) kelyphitic rims around garnet at conditions of < 4 kbar and < 620 °C. Based on Laser Raman analysis of mineral inclusions, cathodoluminescence images, in situ trace element concentrations from different domains within zircon grains, and LA-ICP-MS and SHRIMP U–Pb dating, the protolith age of the Zhaigen retrograde eclogite is suggested at 786 ± 10 Ma and the eclogite-facies metamorphic age recorded by metamorphic zircon cores is limited within 501–497 Ma. The retrograde zircon rims display ages of 476–447 Ma and 425 Ma that probably reflect the timing of two stages of retrograde metamorphism, respectively. The mineral assemblages, PT conditions, and zircon U–Pb data define a clockwise PTt path for the retrograde eclogite, suggesting that the Neoproterozoic protolith of the retrograde eclogite might evolved into continental subduction and eclogite-facies metamorphism during 501–497 Ma before undergoing retrograde metamorphism during an initial stage of exhumation to middle–upper crust level at 474–447 Ma and subsequent exhumation to shallow upper crust at ~ 420 Ma.  相似文献   

10.
We have used geodetic techniques to improve constraints on the crustal motion of the Pamir Plateau. Three campaigns of Global Position System data acquisition between 2011 and 2015 demonstrate that, in association with the India–Asia collision, a complex pattern of crustal motion exists in the Pamir Plateau. In a north–south direction from the Indian Plate to the Hazak Block, the crust has absorbed ~ 35 mm/yr of shortening, of which ~ 35% is distributed around the Hindu Kush region (~ 12 mm/yr), and another ~ 35% is taken up around the Alai Valley (also ~ 12 mm/yr). Global Position System measurements also show ~ 5 mm/yr of shortening between the Pamir Plateau and the Tajik Basin, whereas between the Pamir and the Tarim Basin, an ~ 10 mm/yr extension rate is observed. With respect to the stable Eurasian Plate, the Pamir rotates counterclockwise at a rate of ~ 1.822°Myr 1, with an Euler pole positioned about the west end of the Tajik Basin (37.03 ± 0.74°N, 65.89 ± 0.12°E). The strain rate field calculated from Global Position System velocities reveals that the crustal motion is consistent with localized deformation around the Hindu Kush and the Alai Valley, the latter representing a zone with strong shallow seismic activity.  相似文献   

11.
《Gondwana Research》2014,25(3-4):969-983
The Ediacaran–Cambrian Petermann Orogeny, central Australia, is an exceptional example of intraplate orogenesis. It involved sub-eclogite facies metamorphism and extreme basin inversion during the exhumation of Musgrave Province basement from beneath the formerly contiguous Centralian Superbasin. Sensitive High Resolution Ion Microprobe (SHRIMP) U–Pb geochronology of zircon, titanite and rutile, along with Ti-in-zircon thermometry from meta-igneous samples, have been used to determine the timing and duration of high-pressure metamorphism and subsequent cooling associated with this orogenic event. Peak metamorphic temperatures of 720–760 °C were attained at 544 ± 7 Ma (U–Pb zircon). Subsequent cooling to 600–660 °C by ~ 521 Ma occurred at a rate of ~ 2.6–7.0 °C Myr 1, as recorded by the closure of Pb diffusion in titanite. Further cooling to 585–560 °C by 498–472 Ma occurred at a rate of 0.9–4.8 °C Myr 1, as recorded by Pb closure in rutile. The duration of tectonism was long-lived (> 40 Myr) across the central and western parts of the orogenic system, and deformation occurred in a comparatively warm and weak portion of crust, characterised by regional thermal gradients of 17–26 °C km 1. This proposed duration of tectonism is much longer than that permitted by a shear heating mechanism, which requires an exceptionally short duration of tectonism, and additionally, an overall cold lithosphere characterised by geothermal gradients of ~ 9 °C km 1.  相似文献   

12.
《Gondwana Research》2013,24(4):1378-1401
The Qilian Orogen at the northern margin of the Tibetan Plateau is a type suture zone that recorded a complete history from continental breakup to ocean basin evolution, and to the ultimate continental collision in the time period from the Neoproterozoic to the Paleozoic. The Qilian Ocean, often interpreted as representing the “Proto-Tethyan Ocean”, may actually be an eastern branch of the worldwide “Iapetus Ocean” between the two continents of Baltica and Laurentia, opened at ≥ 710 Ma as a consequence of breakup of supercontinent Rodinia.Initiation of the subduction in the Qilian Ocean probably occurred at ~ 520 Ma with the development of an Andean-type active continental margin represented by infant arc magmatism of ~ 517–490 Ma. In the beginning of Ordovician (~ 490 Ma), part of the active margin was split from the continental Alashan block and the Andean-type active margin had thus evolved to western Pacific-type trench–arc–back-arc system represented by the MORB-like crust (i.e., SSZ-type ophiolite belt) formed in a back-arc basin setting in the time period of ~ 490–445 Ma. During this time, the subducting oceanic lithosphere underwent LT-HP metamorphism along a cold geotherm of ~ 6–7 °C/km.The Qilian Ocean was closed at the end of the Ordovician (~ 445 Ma). Continental blocks started to collide and the northern edge of the Qilian–Qaidam block was underthrust/dragged beneath the Alashan block by the downgoing oceanic lithosphere to depths of ~ 100–200 km at about 435–420 Ma. Intensive orogenic activities occurred in the late Silurian and early Devonian in response to the exhumation of the subducted crustal materials.Briefly, the Qilian Orogen is conceptually a type example of the workings of plate tectonics from continental breakup to the development and evolution of an ocean basin, to the initiation of oceanic subduction and formation of arc and back-arc system, and to the final continental collision/subduction and exhumation.  相似文献   

13.
The Hengshan massif is an exhumed, mid-crustal, plutonic–metamorphic dome formed during Cretaceous crustal extension in the Jiangnan orogenic belt, central South China. Multiple thermochronometers (mica 40Ar/39Ar, apatite fission track and zircon (U–Th)/He) are applied to its footwall along a slip-parallel transect to quantify its thermal history and cooling rate, and the slip magnitude, rate, initial geometry and kinematic evolution of the low-angle Hengshan detachment fault. Our thermochronological data, in conjunction with previous ages, indicate that (1) footwall rocks cooled from ~ 700 °C to ~ 60 °C in less than 60 Myr (136–80 Ma) at variable rates ranging from ~ 50 °C/Myr to ~ 13 °C/Myr, (2) the Hengshan detachment fault accommodated ~ 8–12 km of total slip at variable slip rates from 0.14 to 1 mm/yr during tectonic exhumation, (3) the footwall has been tilted ~ 26°–50° to the east since slip began, indicating that the low-angle Hengshan detachment fault initiated at a steep dip and was passively rotated to a more gentle orientation during subsequent normal slip. This study provides compelling evidence supporting that the low-angle detachment fault in the extensional dome can be generated by the reactivation and passive rotation of an initially steep reverse fault during normal slip. In addition, our thermochronological data constrain the time of extension in the Hengshan dome between 136 and 80 Ma, which implies that the back-arc extension within South China associated with the rollback of the Paleo-Pacific slab might have lasted until at least 80 Ma.  相似文献   

14.
The Palaeozoic to Mesozoic igneous and metamorphic basement rocks exposed in the Mérida Andes of Venezuela and the Santander Massif of Colombia are generally considered to define allochthonous terranes that accreted to the margin of Gondwana during the Ordovician and the Carboniferous. However, terrane sutures have not been identified and there are no published isotopic data that support the existence of separate crustal domains. A general paucity of geochronological data led to published tectonic reconstructions for the evolution of the northwestern corner of Gondwana that do not account for the magmatic and metamorphic histories of the basement rocks of the Mérida Andes and the Santander Massif. We present new zircon U–Pb (ICP-MS) data from 52 igneous and metamorphic rocks, which we combine with whole rock geochemical and Pb isotopic data to constrain the tectonic history of the Precambrian to Mesozoic basement of the Mérida Andes and the Santander Massif. These data show that the basement rocks of these massifs are autochthonous to Gondwana and share a similar tectono-magmatic history with the Gondwanan margin of Peru, Chile and Argentina, which evolved during the subduction of oceanic lithosphere of the Iapetus Ocean. The oldest Palaeozoic arc magmatism is recorded at ~ 500 Ma, and was followed shortly by Barrovian metamorphism. Peak metamorphic conditions at upper amphibolite facies are recorded by anatexis at ~ 477 Ma and the intrusion of synkinematic granitoids until ~ 472 Ma. Subsequent retrogression resulted from localised back-arc or intra-arc extension at ~ 453 Ma, when volcanic tuffs and interfingered sedimentary rocks were deposited over the amphibolite facies basement. Continental arc magmatism dwindled after ~ 430 Ma and terminated at ~ 415 Ma, coevally with most of the western margin of Gondwana. After Pangaea amalgamation in the Late Carboniferous to Early Permian, a magmatic arc developed on its western margin at ~ 294 Ma as a result of subduction of oceanic crust of the palaeo-Pacific ocean. Intermittent arc magmatism recorded between ~ 294 and ~ 225 Ma was followed by the onset of the Andean subduction cycle at ~ 213 Ma, in an extensional regime. Extension was accompanied by slab roll-back which led to the migration of the arc axis into the Central Cordillera of Colombia in the Early Jurassic.  相似文献   

15.
J.D.A. Piper 《Tectonophysics》2009,463(1-4):185-207
The ~ 1100 Ma Sveconorwegian orogenic belt comprises allochthonous terranes juxtaposed by major fault zones and emplaced against, and onto, the south-western margin of the Fennoscandian Shield. To resolve the magnetic signature acquired during post-orogenic uplift and cooling and evaluate wider correlations with the contemporaneous Grenville belt of North America, this study reports a regional palaeomagnetic study on a range of rock types from sectors of the medium-high metamorphic grade Bamble terrane (48 sites and 390 cores) and the adjoining medium-low grade Telemark terrane (33 and 240 cores) juxtaposed by an orogen-parallel (Porsgrunn- Kristiansand) fault zone with major vertical displacement. Magnetite and ilmeno-hematites are magnetic carriers with the latter more significant in the higher metamorphic grades. Magnetic intensities are stronger in the higher-grade terrane presumably due to the growth of metamorphic ferromagnets, but are an order lower than values predicted for the lower continental crust and indicate that an additional mechanism is responsible for high magnetisations in deep crust. Anisotropy of magnetic susceptibility (AMS) largely reflects the NE–SW tectonic grain of the last stage of Sveconorwegian ductile deformation. The magnetisation record is filtered by excluding magnetisations possibly acquired during regional Mesozoic dyke emplacement, development of the Permo-Carboniferous Oslo Rift and Late Proterozoic magmatism. The remaining record is a dual polarity signature summarised by mean poles at 31.9°N, 50.9°E, (N = 191 components) in the Bamble terrane and at 34.2°N, 58.9°E (N = 151 components) in the Telemark terrane. However these means are non-Fisherian and embrace arcuate distributions of magnetic components acquired during protracted exhumation cooling of the orogen with the best-defined parts comprising clockwise trajectories correlating with each another but indicating that cooling in Telemark was more protracted; in each case directions of more shallow NW-direction tend to be derived from lower unblocking temperature components. The geochronological evidence indicates that regional temperatures had fallen to permit acquisition of magnetisation by ~ 950–900 Ma and the two swathes define the younger limb of a clockwise (Grenville-Sveconorwegian) APW loop embracing the approximate interval 940–850 Ma; the outward path of this loop (~ 1020–940 Ma) is probably at present recorded only in dyke swarms from the Finnish sector of the shield. Correlation of APW between Laurentia and Fennoscandia confirms that the two shields broke apart shortly after culmination of the Sveconorwegian orogeny when Fennoscandia rotated rapidly clockwise into a secondary configuration adjacent to the eastern margin of Laurentia; the Grenville and Sveconorwegian orogenic frontal zones formed in alignment were reoriented at a high angle to one another in a coupling that appears to have persisted during most of the remainder of Neoproterozoic times.  相似文献   

16.
《Gondwana Research》2014,26(4):1484-1500
The southern Rheinisches Schiefergebirge, which is part of the Rhenohercynian zone of the Central European Variscides, exhibits several allochthonous units: the Gießen-, and the Hörre nappe, and parts of the Frankenbach imbrication zone. These units were thrust over autochthonous and par-autochthonous volcano-sedimentary complexes of the Lahn and Dill–Eder synclines. This paper reports a representative data set of U–Pb LA–SF–ICP–MS ages of 1067 detrital zircon grains from Devonian and Lower Carboniferous siliciclastic sediments of the autochthonous and the allochthonous areas, respectively. The cluster of U–Pb ages from the allochthonous units points to a provenance in the Saxothuringian zone. Zircon populations from the Saxothuringian zone are representative of a Gondwanan hinterland and are characterized by age clusters of ~ 530–700 Ma, ~ 1.8–2.2 Ga, ~ 2.5–2.7 Ga, and ~ 3.0–3.4 Ga. Further samples were taken from the autochthonous and par-autochthonous units of the Lahn–Dill and Kellerwald areas. A Lower Devonian sandstone sample from the Siegen anticline provides a reference for siliciclastic sediments derived from the Old Red Continent. These samples show a provenance representative of Laurussia with debris primarily derived from Baltica and Avalonia. U–Pb zircon age clusters occur at ~ 400–450 Ma, 540–650 Ma, 1.0–1.2 Ga, ~ 1.4–1.5 Ga, ~ 1.7–2.2 Ga, and 2.3–2.9 Ga. Provenance analysis and geochemical data of the Rhenohercynian zone provide new information on the evolution of magmatic arcs in the Mid-Paleozoic. The data set constrains top-SE and top-NW directed subduction of the oceanic crust of the Rheic Ocean. Subduction-related volcanism lasted from the Early Devonian to the Early Carboniferous and thus confirms the existence of the Rheic Ocean until the Early Carboniferous. The tectonic model outlined for the Rhenohercynian zone suggests a wide Rheic Ocean.  相似文献   

17.
《Gondwana Research》2014,25(2):585-613
The Belomorian eclogite province was repeatedly affected by multiple deformation episodes and metamorphism under moderate to high pressure. Within the Gridino area, high pressure processes developed in a continental crust of tonalite–trondhjemite–granodiorite (TTG) affinity that contains mafic pods and dykes, in which products of these processes are most clearly evident. New petrological, geochemical and geochronological data on mafic and felsic rocks, including PT-estimates, mineral chemistry, bulk rock chemistries, REE composition of the rocks and zircons and U–Pb and Lu–Hf geochronology presented in the paper make it possible to reproduce the magmatic and high-grade metamorphic evolution in the study area. In the framework of the extremely long-lasting geologic history recorded in the Belomorian province (3–1.7 Ga), new geochronological data enabled us to define the succession of events that includes mafic dyke emplacement between 2.87 and 2.82 Ga and eclogite facies metamorphism of the mafic dykes between ~ 2.82 and ~ 2.72 Ga (most probably in the time span of 2.79–2.73 Ga). The clockwise PT path of the Gridino association crosses the granulite- and amphibolite-facies PT fields during the time period of 2.72 Ga to 2.64 Ga. A special aspect of this work concerns the superposed subisobaric heating (thermal impact) with an increase in the temperature to granulite facies conditions at 2.4 Ga. Later amphibolite facies metamorphism occurred at 2.0–1.9 Ga. Our detailed geochronological and petrological studies reveal a complicated Mesoarchaean–Palaeoproterozoic history that involved deep subduction of the continental crust and a succession of plume-related events.  相似文献   

18.
Paleomagnetism has played an important role in quantifying the Mesozoic evolution of “Proto-Tibet”. In this paper, we present new paleomagnetic data from five Middle-Upper Jurassic sedimentary sequences (Quemo Co, Buqu, Xiali, Suowa and Xueshan Fms.) of the eastern North Qiangtang Terrane (QT) at Yanshiping (33.6°N, 92.1°E). The new paleomagnetic results form a large dataset (99 sites, 1702 samples) and reveal a paleopole at 79.1°N/306.9°E (dp = 3.9°, dm = 6.3°) for the Quemo Co Fm., at 68.9°N/313.8°E (dp = 2.1°, dm = 3.7°) for the Buqu Fm., at 66.1°N/332.1°E (dp = 2.7°, dm = 4.6°) for the Xiali Fm., at 72.4°N/318.6°E (dp = 3.9°, dm = 6.7°) for the Suowa Fm., and at 76.9°N/301.1°E (dp = 7.9°, dm = 13.2°) for the Xueshan Fm. These results indicate clockwise (CW) rotations of ~ 19.8 ± 9.4° between ~ 171.2 and 161.7 Ma and counterclockwise (CCW) rotations of ~ 15.4 ± 13.4° between ~ 161.7 and < 157.2 Ma for Yanshiping. We attribute the change in rotation sense at approximately ~ 161.7 Ma to the initial collision of the Lhasa and Qiangtang terranes. Using this and other paleomagnetic data from the Lhasa, Qiangtang and Tarim terranes, as well as other geological evidence (e.g., tectonism-related sedimentary sequences, volcanism, and HP metamorphism), we propose a new conceptual evolution model for the Mesozoic QT and Tethyan Oceans. The Longmo Co-Shuanghu oceanic slab was subducted before 248 Ma, followed by continental collision of the North-South Qiangtang subterranes between ~ 245 and 237 Ma. The Qiangtang Terrane experienced post-collisional exhumation between ~ 237 and 230 Ma during subduction of the Jinsha oceanic slab. The collision of the Qiangtang and Songpan-Ganzi terranes occurred between ~ 230 and 225 Ma. The QT experienced post-collisional relaxation from ~ 225 to ~ 200 Ma, followed by subsidence and extension-related exhumation between ~ 200 and 162 Ma in association with subduction of the Bangong-Nujiang oceanic slab. Finally, these events were followed by the scissor-like diachronous collisions of the Lhasa and Qiangtang terranes between ~ 162 Ma and the mid-Cretaceous.  相似文献   

19.
High-precision 40Ar/39Ar dating of lamprophyre dike swarms in the Western Province of New Zealand reveals that these dikes were emplaced into continental crust prior to, during and after opening of the Tasman Sea between Australia and New Zealand. Dike ages form distinct clusters concentrated in different areas. The oldest magmatism, 102–100 Ma, is concentrated in the South Westland region that represents the furthest inboard portion of New Zealand in a Gondwana setting. A later pulse of magmatism from ~ 92 Ma to ~ 84 Ma, concentrated in North Westland, ended when the first oceanic crust formed at the inception of opening of the Tasman Sea. Magmatic quiescence followed until ~ 72–68 Ma, when another swarm of dikes was emplaced. The composition of the dikes reveals a dramatic change in primary melt sources while continental extension and lithospheric thinning were ongoing. The 102–100 Ma South Westland dikes represent the last mafic calc-alkaline magmatism associated with a long-lived history of the area as Gondwana's active margin. The 92–84 Ma North and 72–68 Ma Central Westland dike swarms on the other hand have strongly alkaline compositions interpreted as melts from an intraplate source. These dikes represent the oldest Western Province representatives of alkaline magmatism in the greater New Zealand region that peaked in activity during the Cenozoic and has remained active up to the present day. Cretaceous alkaline dikes were emplaced parallel to predicted normal faults associated with dextral shear along the Alpine Fault. Furthermore, they temporally correspond to polyphase Cretaceous metamorphism of the once distal Alpine Schist. Dike emplacement and distal metamorphism could have been linked by a precursor to the Alpine Fault. Dike emplacement in the Western Province coupled to metamorphism of the Alpine Schist at 72–68 Ma indicates a period of possible reactivation of this proto Alpine Fault before it served as a zone of weakness during the opening of the oceanic Emerald Basin (at ~ 45 Ma) and eventually the formation of the present-day plate boundary (~ 25 Ma–recent).  相似文献   

20.
《Gondwana Research》2014,25(2):797-819
A suite of Paleozoic granitoids in Central Tianshan was studied for both geochemistry and geochronology in an effort to constrain their origin and tectonic setting. We combined LA-ICP-MS dating of zircon, standard geochemical analyses and Hf-isotopic studies of zircon to develop our tectonic model. Based on our analysis, the granitoids formed in three distinctive stages: ~ 450–400 Ma, ~ 370–350 Ma and ca. 340 Ma. The first stage (450–400 Ma) granitoids exhibit metaluminous, magnesian, high-K to shoshonitic characteristics of I-type granitoids (arc-setting), that are enriched in LREE relative to HREE with high (La/Yb)CN values, show negative Eu anomaly and are depleted in Nb, Ta and Ti. This phase of granitoid emplacement was most likely related to the southward subduction of the Paleo-Tianshan Ocean beneath the Tarim block and the subsequent Central Tianshan arc. In contrast, the second stage granitoids (370–350 Ma) are distinctly different and are classified as calc-alkaline or shoshonitic plutons with a weak positive Eu anomaly. Within the second stage granitoids, it appears that the earlier (~ 365 Ma) granitoids fit within the A-type field whereas the younger (~ 352 Ma) granitoids plot within the post-collisional potassic field. These granitoids formed during collisions between Central Tianshan and the Tuha terrane that occurred along the northern margin of Central Tianshan. Lastly, the ca. 340 Ma granitoids are typical of volcanic arc granitoids again that probably formed during the northward subduction of the South Tianshan Ocean beneath the Central Tianshan landmass or the subsequent southward subduction of the residual Paleo-Tianshan Ocean.The Hf isotopic data of zircons from all the studied granitoids were pooled and yielded three prominent Hf TDMC model age populations: ca. 2400 Ma, ca. 1400 Ma and ca. 1100 Ma. The Hf-data shows a significant input of juvenile crust in addition to crustal recycling. We interpret these three phases of juvenile crustal addition to phases of global growth of continental crust (~ 2400 Ma), the addition of juvenile crust during the breakup of the Columbia supercontinent (~ 1400 Ma) and the assembly of Rodinia (~ 1100 Ma).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号