首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The depth to the top of magnetic dykes can be estimated from total field aeromagnetic data using the relation between the depth to magnetic sources and the autocorrelation function of magnetic data. By using synthetic anomalies we show that in the ideal case, depth can be determined to an accuracy of 10% or better, when the anomaly sources are two-dimensional dykes. However, the estimated depths depend on the width of the dykes. The estimated depth is about 0.6 times the actual depth to the top of thin dykes, and around the true depth for thick dykes having width-to-depth ratio around 3. The depth is considerably overestimated for very thick dykes (e.g., contacts, which is a special case of the thick dyke). Thus, the autocorrelation method requires that the width-to-depth ratio of the dyke is estimated independently to correctly estimate the depths. Alternatively, it must be assumed that the width-to-depth ratio for the two-dimensional source body is between 1.5 and 4.  相似文献   

2.
A new method for the calculation of the depth, location, and dip of thin dykes from pole‐reduced magnetic data is introduced. The depth can be obtained by measuring the distance between chosen values of a tilt angle that is based upon the ratio of the magnetic field and its Hilbert transform over the dyke. Alternatively, it can be obtained from the horizontal derivative of the ratio of the Hilbert transform of the field to the field itself, over the dyke. The latter method also allows the dip of the dyke to be estimated from the gradient of the depth estimates.  相似文献   

3.
Summary An entirely new procedure is proposed in this paper for interpreting anomalies of dykes. This reduces the ambiguity in magnetic interpretation. Measurements of the first vertical derivative simplifies the problem of interpretation and also supplies additional information concerning the parameters of a dyke. The first vertical derivative profile cuts the distance axis at two points whose separation is related to the depth and direction of magnetisation of a dyke.  相似文献   

4.
Eruptions from the top of a dyke containing two layers of magma can selectively withdraw the upper layer, leaving the dense lower layer undisturbed. Alternatively, if the upper layer is thinner than some critical depth, d, then both layers will be tapped simultaneously. Laboratory experiments yield an equation giving the draw-up depth, d, as a function of dyke geometry, eruption rate, and magma properties. This equation is valid for low to moderate Reynolds numbers and applies to dykes which are much longer than the draw-up depth. Short dykes will yield larger draw-up depths than are predicted by the equation. A large draw-up depth is favoured when the eruption rate, upper layer magma viscosity, or dyke length/breadth ratio is large or the density difference is small. Calculations show that rhyolite-capped dykes can contain several hundred metres thickness of rhyolite when a lower layer is first tapped. Draw-up depths in a dyke are as much as an order of magnitude greater than those for an identical eruption from a large cylindrical chamber tapped by a central vent. Nonetheless, for low effusion rate eruptions from small dykes, as at Inyo Domes, California, relatively small draw-up heights are calculated (e.g. 70 m). This is compatible with the small amounts of mixed magmas found at the transition between the two rhyolite magmas erupted there [11].  相似文献   

5.
岩墙磁组构能反映岩浆的侵位方式.中国东部嵊泗岛广泛发育了晚白垩世辉绿岩岩墙群.我们对其中8条不同走向岩墙进行了采样,沿岩墙两边部及横跨岩墙剖面获得共273个独立定向岩芯样品.岩石磁学分析表明辉绿岩的主要携磁矿物为多畴贫钛磁铁矿,可能含少量磁赤铁矿.各条岩墙的磁组构均具有低的各向异性度Pj<1.2,且主轴的空间方位各不相...  相似文献   

6.
Emplacement and arrest of sheets and dykes in central volcanoes   总被引:1,自引:0,他引:1  
Sheet intrusions are of two main types: local inclined (cone) sheets and regional dykes. In Iceland, the inclined sheets form dense swarms of (mostly) basaltic, 0.5–1 m thick sheets, dipping either at 20–50° or at 75–90° towards the central volcano to which they belong. The regional dykes are (mostly) basaltic, 4–6 m thick, subvertical, subparallel and form swarms, less dense than those of the sheets but tens of kilometres long, in the parts of the volcanic systems that are outside the central volcanoes. In both types of swarms, the intrusion intensity decreases with altitude in the lava pile. Theoretical models generally indicate very high crack-tip stresses for propagating dykes and sheets. Nevertheless, most of these intrusions become arrested at various crustal depths and never reach the surface to supply magma to volcanic eruptions. Two principal mechanisms are proposed to explain arrest of dykes and sheets. One is the generation of stress barriers, that is, layers with local stresses unfavourable for the intrusion propagation. The other is mechanical anisotropy whereby sheet intrusions become arrested at discontinuities. Stress barriers may develop in several ways. First, analytical solutions for a homogeneous and isotropic crust show that the intensity of the tensile stress associated with a pressured magma chamber falls off rapidly with distance from the chamber. Thus, while dyke and sheet injection in the vicinity of a chamber may be favoured, dyke and sheet arrest is encouraged in layers (stress barriers) at a certain distance from the chamber. Second, boundary-element models for magma chambers in a mechanically layered crust indicate abrupt changes in tensile stresses between layers of contrasting Young’s moduli (stiffnesses). Thus, where soft pyroclastic layers alternate with stiff lava flows, as in many volcanoes, sheet and dyke arrest is encouraged. Abrupt changes in stiffness between layers are commonly associated with weak and partly open contacts and other discontinuities. It follows that stress barriers and discontinuities commonly operate together as mechanisms of dyke and sheet arrest in central volcanoes.  相似文献   

7.
The Generalised Derivative Operator is an image‐processing tool for the enhancement of potential field data. It produces an amplitude‐balanced image of the derivative of a potential field in any direction in three‐dimensional space. This paper shows how, by using the correct inclination angle ?, the Generalised Derivative Operator can be used to produce images where its maxima/minima lie directly over dipping contacts and thin dykes with arbitrary magnetisation vectors. The dip of contacts and dykes can be found by varying ? until a symmetrical result is obtained (in the absence of unknown remanent magnetisation). Furthermore, the width of the peak of the Generalised Derivative Operator can then be used to determine the depth of the contact or dyke.  相似文献   

8.
The amplitude of the horizontal magnetic field in the ground between two parallel wires, both carrying an alternating current in the same direction, is likely to have a saddle point if the separation between the wires is small and the frequency is low. The amplitude has a maximum in the vertical direction and a minimum in the horizontal. Rectangular geological structures in the ground which are centered between the wires have a varying effect on the magnetic fields at the surface. In general, the vertical magnetic field “crosses over” at the center of the structure. A shallow and flat lying conductor displays a broad flat type of profile when the horizontal magnetic field between the wires is measured. Changing the structure to a narrower but more conducting one at depth will provide a more pointed but still broad profile. The phase of the horizontal field is also increased. When the structure is a thin vertical dyke, the amplitude of the horizontal magnetic field anomaly due to the dyke rapidly decreases as the depth of the dyke is increased. The phase of the horizontal field is less sensitive to changes in depth of the dyke but is more sensitive to the conductivity ratio of the dyke and the half-space. The amplitude of the vertical magnetic field anomaly due to the dyke is only slightly influenced by conductivity contrast or the depth of the dyke. The phase of the vertical magnetic field, however, is strongly influenced by the conductivity contrast, particularly if the conductivity frequency product is greater than hundred. In essence, the field behaves like that of the conventional vertical loop source, but the fields are uniform over much larger areas. This suggests the possibility of using dip angle measurements for rapid reconnaissance.  相似文献   

9.
Flood basalts, such as the Deccan Traps of India, represent huge, typically fissure-fed volcanic provinces. We discuss the structural attributes and emplacement mechanics of a large, linear, tholeiitic dyke swarm exposed in the Nandurbar–Dhule area of the Deccan province. The swarm contains 210 dykes of dolerite and basalt >1 km in length, exposed over an area of 14,500 km2. The dykes intrude an exclusively basaltic lava pile, largely composed of highly weathered and zeolitized compound pahoehoe flows. The dykes range in length from <1 km to 79 km, and in thickness from 3 to 62 m. Almost all dykes are vertical, with the others nearly so. They show a strong preferred orientation, with a mean strike of N88°. Because they are not emplaced along faults or fractures, they indicate the regional minimum horizontal compressive stress (σ 3) to have been aligned ~N–S during swarm emplacement. The dykes have a negative power law length distribution but an irregular thickness distribution; the latter is uncommon among the other dyke swarms described worldwide. Dyke length is not correlated with dyke width. Using the aspect ratios (length/thickness) of several dykes, we calculate magmatic overpressures required for dyke emplacement, and depths to source magma chambers that are consistent with results of previous petrological and gravity modelling. The anomalously high source depths calculated for a few dykes may be an artifact of underestimated aspect ratios due to incomplete along-strike exposure. However, thermal erosion is a mechanism that can also explain this. Whereas several of the Nandurbar–Dhule dykes may be vertically injected dykes from shallow magma chambers, others, particularly the long ones, must have been formed by lateral injection from such chambers. The larger dykes could well have fed substantial (≥1,000 km3) and quickly emplaced (a few years) flood basalt lava flows. This work highlights some interesting and significant similarities, and contrasts, between the Nandurbar–Dhule dyke swarm and regional tholeiitic dyke swarms in Iceland, Sudan, and elsewhere. Editorial responsibility: J. White  相似文献   

10.
Groundwater constitutes the main source of freshwater in Shalatein, on the western coast of the Red Sea, in Egypt. The fresh aquifer of Shalatein is intensively dissected by shallow and deep faults associated with the occurrence of dykes and/or dyke swarms. In this context, synthesis of electrical resistivity, ground magnetics, and borehole data was implemented to investigate the freshwater aquifer condition, locate the intrusive dykes and/or dyke swarms, and demarcate the potential freshwater zones. Nine Schlumberger VES’s with maximum current electrode half-spacing (AB/2) of 682 m were conducted. The subsurface was successfully delineated by general four layers. The fresh aquifer of the Quaternary and Pre-Quaternary alluvium sediments was effectively demarcated with true resistivities ranged from 30 to 105 Ωm and thickness ranged between 20 and 60 m. A ground magnetic survey comprised 35 magnetic profiles, each 7 km in length. Magnetic data interpretation of the vertical derivatives (first and second order), downward continuation (100 m), apparent susceptibility (depth of 100 m), and wavelength filters (Butterworth high-pass of wavelengths <100 m and Band-Pass of wavelengths 30–100 m) successfully distinguished the near surface structure with five major clusters of dyke swarms, whereas filters of the upward continuation (300 m) and Butterworth low-pass (wavelengths >300 m) clearly reflected the deep-seated structure. The computed depth by the 3D Euler deconvolution for geological contacts and faults (SI = 0) ranged from 14 to 545 m, whereas for dyke and sill (SI = 1), it ranged from 10 to 1,095 m. The western part of the study area is recommended as a potential freshwater zone as it is characterized by depths >100 m to the top of the dykes, higher thickness of the fresh aquifer (45–60 m), depths to the top of the fresh aquifer ranging from 25 to 40 m, and higher resistivities reflecting better freshwater quality (70–105 Ωm).  相似文献   

11.
Many theoretical models predict that arrested dykes may generate major grabens at rift-zone surfaces. Arrested dyke tips in eroded rift zones, however, are normally not associated with major grabens or normal faults that could be generated by dyke-induced stresses ahead of the tips, and normal faults and grabens tend to be less common in those parts of eroded rift zones where dykes are comparatively abundant. Similarly, there are feeder dykes, as well as dykes arrested a few metres below the surface, that do not generate faults or grabens at the surface. Here I propose that this discrepancy between theoretical models and field observations may be explained by the mechanical layering of the crust. Numerical models presented here show that abrupt changes in Young's moduli, layers with high dyke-normal compressive stresses (stress barriers), and weak, horizontal contacts have large effects on the dyke-induced stress fields. For the models considered, the surface tensile stresses induced by arrested dykes are normally too small to lead to significant fault or graben formation at the rift-zone surface. The only significant dyke-induced surface tensile stresses (2 MPa) in these models are for a dyke tip arrested at 1 km depth below the surface of a rift zone with a weak contact at 400 m depth and subject to extension. That tensile stress, however, peaks above the ends of the weak horizontal contact, which, in the model considered, occur at distances of 4 km to either side of the dyke, and shows no simple relation to the depth to the dyke tip. Thus, for a layered crust with weak contacts, straightforward inversion of surface geodetic data to infer dyke geometries may result in unreliable results.Editorial responsibility: A. Woods  相似文献   

12.
The coastal dyke swarm and associated flexure, plutonic intrusions and volcanics are the products of a short episode of rifting between normal and thinned continental crust during initial opening of the Atlantic Ocean between Greenland and the Rockall Plateau 56–52 m.y. ago. They constitute a continental rift zone which provides deeply eroded onshore examples of phenomena which probably lie buried beneath the sea along major rifted continental margins.The dyke swarm occurs in a series of zones arranged en echelon, similar to dyke and fissure swarms in Iceland. Most dykes were intruded vertically before flexuring rather than as a fan during flexuring as postulated by Wager and Deer [1]. Layered gabbro plutons and basic cone sheets were emplaced during early stages of flexuring. Magma was tapped westwards along the upper limb of the developing flexure to form the Skaergaard and Kap Edvard Holm intrusions, but intrusions such as Imilik and Kap Gustav Holm in the steep limb show more complex histories of synplutonic tilting, slumping and deformation. Most flexuring occurred after consolidation of the gabbros and was followed by the intrusion of linear and radial swarms of intermediate dykes and ring dykes associated with the emplacement of syenite and granite plutons by cauldron subsidence.  相似文献   

13.
The 2730-Ma-old Hunter Mine Group (HMG), a dominantly felsic subaqueous volcanic sequence, was formed during early arc construction in the Abitibi greenstone belt (Quebec, Canada). The western part of the HMG contains a felsic dyke swarm up to 1.5 km wide and traceable up-section for 2.5 km. Five distinct generations were identified: (1) aphanitic to feldspar-phyric dykes; (2) quartz-feldspar-phyric dykes with < 5% quartz phenocrysts; (3) quartz-feldspar-phyric dykes with 10–25% quartz phenocrysts; (4) dacitic feldspar-phyric dykes; and (5) mafic dykes. The felsic dykes collectively constitute more than 90% of the dyke swarm. Geochemically, they resemble modern calc-alkaline dacites and rhyolites. Their mantle-normalized incompatible trace-element patterns display a moderate enrichment of Th and light REE relative to HFSE and heavy REE as well as negative Nb, Ta, Eu and Ti anomalies. Most of the major- and trace-element abundance variations in these rocks can be explained by crystallization of feldspars. Geochemical data including depleted mantle-like Nd values suggest that an older sialic substrate was not involved in their genesis. We infer that the felsic rocks were generated by melting of mafic oceanic crust. The swarm was emplaced during nascent oceanic island-arc development and was related to rifting of the arc. The conformably overlying MORB-like basalts and basaltic komatiites of the Stoughton-Roquemaure Group used the same conduits and further indicate splitting of the arc. HMG and associated parts of the Abitibi greenstone belts bear a strong resemblance to modern rifted intraoceanic arcs of the western Pacific.  相似文献   

14.
The distributions and alignments of over 200 prehistoric dykes exposed in the walls of the Valle del Bove caldera on Mount Etna have been plotted, and samples collected from some 10% of those occurring in the southern wall. Important tectonic trends are reflected by the dykes, along which magma movement was facilitated prior to the formation of the caldera. Close directional relations between the dyke trends and the orientations of historic fissures on the volcano, point to the existence of a plexus of interconnecting subsurface fissures immediately to the south-east of the summit. A model is envisaged within which magma enters this «clearing house» from depth, and is distributed via fissures to other parts of the volcano including the summit region. Here, the interaction of fissures with the conduits of the summit craters is put forward as a mechanism to explain the behaviour of recent activity.  相似文献   

15.
To determine the magma flow direction of the giant, 179 Ma Okavango dyke swarm of northern Botswana, we measured the anisotropy of magnetic susceptibility (AMS) of 23 dykes. Dykes are located in two sections (Shashe and Thune Rivers), which are about 300 km and 400 km from the presumed magma source respectively; the Nuanetsi triple point. We collected samples from the margins of the dykes in order to use the imbrication of magnetic foliation to determine magma flow direction. About half of the magnetic fabric in the dykes is inverse, i.e. with the magnetic foliation perpendicular to the dyke plane. Lateral flow to the west and vertical flow is in evidence in the Shashe section. However, the overall analysis of normal and inverse magnetic fabric data supports that lateral flow to the west was dominant in the Shashe section. Across the Thune section, a poorly defined imbricated magnetic foliation also suggests lateral flow to the west.  相似文献   

16.
The effects of dyke intrusion on the magnetic properties of host sedimentary rocks are still poorly understood. Therefore, we have evaluated bulk magnetic parameters of standard palaeomagnetic samples collected along several sections across the sediments hosting the Foum Zguid dyke in southern Morocco. The study has been completed with the evaluation of the magnetic fabric after laboratory application of sequential heating experiments.The present study shows that: (1) close to Foum Zguid dykes, the variations of the bulk magnetic parameters and of the magnetic fabric is strongly related with re-crystallization and Fe-metasomatism intensity. (2) The thermal experiments on AMS of samples collected farther from the dyke and, thus, less affected by heating during dyke emplacement, indicate that 300–400 °C is the minimum experimental temperature necessary to trigger appreciable transformations of the pre-existing magnetic fabrics. For temperatures higher than ca. 580 °C, the magnetic fabric transformations are fully realized, with complete transposition of the initial fabric to a fabric similar to that of samples collected close to the dyke. Therefore, measured variations of the magnetic fabric can be used to evaluate re-crystallization temperatures experienced by the host sedimentary rock during dyke emplacement. The distinct magnetic behaviour observed along the cross-sections strongly suggests that samples collected farther from the dyke margins did not experience thermal episodes with temperatures higher than 300 °C after dyke emplacement. (3) AMS data shows a gradual variation of the magnetic fabric with distance from the dyke margin, from sub-horizontal K3 away from the dyke to vertical K3 close to the dyke. Experimental heating shows that heat alone can be responsible for this strong variation. Therefore, such orientation changes should not be unequivocally interpreted as the result of a stress field (resulting from the emplacement of the dyke, for instance). (4) Magnetic studies prove to be a very sensitive tool to assess rock magnetic transformations, thermally and chemically induced by dyke intrusion in hosting sediments.  相似文献   

17.
Continental flood basalts consist of vast quantities of lava, sills and giant dyke swarms that are associated with continental break-up. The commonly radiating geometry of dyke swarms in these provinces is generally interpreted as the result of the stress regime that affected the lithosphere during the initial stage of continental break-up or as the result of plume impact. On the other hand, structures in the basement may also control dyke orientations, though such control has not previously been documented. In order to test the role of pre-dyke structures, we investigated four major putative Karoo-aged dyke swarms that taken together represent a giant radiating dyke swarm (the so-called “triple-junction”) ascribed to the Jurassic Karoo continental flood basalt (> 3 × 106 km2; southern Africa). One of the best tests to discriminate between neoformed and inherited dyke orientation is to detect Precambrian dykes in the Jurassic swarms. Accordingly, we efficiently distinguished between Jurassic and Precambrian dykes using abbreviated low resolution, 40Ar/39Ar incremental heating schedules.Save-Limpopo dyke swarm samples (n = 19) yield either apparent Proterozoic (728–1683 Ma) or Mesozoic (131–179 Ma) integrated ages; the Olifants River swarm (n = 20) includes only Proterozoic (851–1731 Ma) and Archaean (2470–2872 Ma) dykes. The single age obtained on one N–S striking dyke (1464 Ma) suggests that the Lebombo dyke swarm includes Proterozoic dykes in the basement as well. These dates demonstrate the existence of pre-Karoo dykes in these swarms as previously hypothesized without supporting age data. In addition, aeromagnetic and air-photo interpretations indicate that: (1) dyke emplacement was largely controlled by major discontinuities such as the Zimbabwe and Kaapvaal craton boundaries, the orientation of the Limpopo mobile belt, and other pre-dyke structures including shear zones and (2) considering its polygenetic, pre-Mesozoic origin, the Olif ants River dyke swarm cannot be considered part of the Karoo magmatic event.This study, along with previous results obtained on the Okavango dyke swarm, shows that the apparent “triple junction” formed by radiating dyke swarms is not a Jurassic structure; rather, it reflects weakened lithospheric pathways that have controlled dyke orientations over hundreds of millions of years. One consequence is that the “triple-junction” geometry can no longer be unambiguously used as a mantle plume marker as previously proposed, although it does not preclude the possible existence of a mantle plume. More generally, we suggest that most Phanerozoic dyke swarms (including triple junctions) related to continental flood basalts were probably controlled in part by pre-existing lithospheric discontinuities.  相似文献   

18.
The general expression for gravity and magnetic anomalies over thin sheets and sloping contacts may be expressed as a polynomial of the formFx 2+C1Fx+C2F+C3x3+C4x2+C5x+C6. The initial parameters of the source are obtained from the coefficientsC 1, C2,..., C6 which may be solved by inverting a 6×6 matrix. The initial parameters are modified by successive iteration process using the difference formula until the root mean square error between the observed and calculated anomalies is a minimum. The regional background which may be in the form of a polynomial is estimated by the computer itself. This method is applied on a number of field anomalies and is found to yield reliable estimates of depth and other parameters of the source.  相似文献   

19.
An extensive rhyolitic dyke swarm has intruded subaqueous pyroclastic deposits, iron-formations, hyaloclastite breccias and lava flows of the 2730 Ma Hunter Mine Group (HMG) in the south-central part of the Archean Abitibi belt, Quebec. The dyke swarm has a minimum width of 500 m and can be traced perpendicular to the section for 2.4 km. Based on crosscutting relationships, chilled margins, quartz content and colour, five distinct dyke generations have been established. Each dyke generation has several magmatic pulses as indicated by parallel rows of columnar joints. Absence of brecciation between parallel rows suggests extremely brief intervals between magma pulses. The central parts of most dykes display inverted V-shaped patterns of columnar-joint convergence, inferred to indicate differential cooling during the late stages of dyke propagation. The dykes commonly display delicate spherulites suggesting rapid cooling, solidification temperatures between 400 and 600°C and penecontemporaneous devitrification. Quartz-feldspar aggregates in the groundmass have locally developed microgranophyric textures. Large spherulites near the chilled margins probably formed at temperatures below 400°C. Percolation of abundant water throughout the dyke complex is suggested by ubiquitous prominent chilled dyke margins. Development of a chilled margin 500 m along one dyke suggests that water percolated at least 500 m below the water/rock interface. Because the dykes intruded subaqueous pyroclastic deposits of similar composition, dyke emplacement below the sea floor is inferred. Interstratification of pillowed flows and brecciated pillowed flows containing rhyolite fragments at the top of the 4–5-km-thick sequence indicates that the central felsic complex probably never emerged during its evolutionary history, supporting the contention that the felsic dyke complex was emplaced beneath the Archean sea floor.  相似文献   

20.
Consistent age relationships between oppositely magnetized dykes of the 2.45 Ga Matachewan dyke swarm suggest that only a single magnetic field reversal occurred during the period of igneous activity. The magnetic field throughout most of this time was characterized by a SSW declination and shallow negative inclination but reversed toward the waning stages of magmatism. The new paleomagnetic data provide the oldest known magnetic reversal for which the relative reversal sense is known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号