首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Albert Rango 《水文研究》1993,7(2):121-138
In the last 20 years remote sensing research has led to significant progress in monitoring and measuring certain snow hydrology processes. Snow distribution in a drainage basin can be adequately assessed by visible sensors. Although there are still some interpretation problems, the NOAA-AVHRR sensor can provide frequent views of the areal snow cover in a basin, and snow cover maps are produced operationally by the National Weather Service on about 3000 drainage basins in North America. Measurement of snow accumulation or snow water equivalent with microwave remote sensing has great potential because of the capabilities for depth penetration, all-weather observation and night-time viewing. Several critical areas of research remain, namely, the acquisition of snow grain size information for input to microwave models and improvement in passive microwave resolution from space. Methods that combine both airborne gamma ray and visible satellite remote sensing of the snowpack with field measurements also hold promise for determining areal snow water equivalent. Some remote sensing techniques can also be used to detect different stages of snow metamorphism. Various aspects of snowpack ripening can be detected using microwave and thermal infra-red capabilities. The capabilities for measurement of snow albedo and surface temperature have direct application in both snow metamorphism and snowpack energy balance studies. The potentially most profitable research area here is the study of the bidirectional reflectance distribution function to improve snow albedo measurements. Most of the remote sensing capabilities in snow hydrology have been developed for improving snowmelt-run-off forecasting. Most applications have used the input of snow cover extent to deterministic models, both of the degree day and energy balance types. Snowmelt-run-off forecasts using satellite derived snow cover depletion curves and the models have been successfully made. As the extraction of additional snow cover characteristics becomes possible, remote sensing will have an even greater impact on snow hydrology. Important remote sensing capabilities will become available in the next 20 years through space platform observing systems that will improve our capability to observe the snowpack on an operational basis.  相似文献   

2.
Snow provides large seasonal storage of freshwater, and information about the distribution of snow mass as snow water equivalent (SWE) is important for hydrological planning and detecting climate change impacts. Large regional disagreements remain between estimates from reanalyses, remote sensing and modelling. Assimilating passive microwave information improves SWE estimates in many regions, but the assimilation must account for how microwave scattering depends on snow stratigraphy. Physical snow models can estimate snow stratigraphy, but users must consider the computational expense of model complexity versus acceptable errors. Using data from the National Aeronautics and Space Administration Cold Land Processes Experiment and the Helsinki University of Technology microwave emission model of layered snowpacks, it is shown that simulations of the brightness temperature difference between 19 and 37 GHz vertically polarised microwaves are consistent with advanced microwave scanning radiometer-earth observing system and special sensor microwave imager retrievals once known stratigraphic information is used. Simulated brightness temperature differences for an individual snow profile depend on the provided stratigraphic detail. Relative to a profile defined at the 10-cm resolution of density and temperature measurements, the error introduced by simplification to a single layer of average properties increases approximately linearly with snow mass. If this brightness temperature error is converted into SWE using a traditional retrieval method, then it is equivalent to ±13 mm SWE (7 % of total) at a depth of 100 cm. This error is reduced to ±5.6 mm SWE (3 % of total) for a two-layer model.  相似文献   

3.
Deserts,which have high surface albedo and wide area,are important components of the earth system.It is very important for the research of surface radiation and energy balance to understand the anisotropic scattering of desert areas.The emergence and development of multi-angle remote sensing made possible the inversion of the anisotropic scattering of desert areas at the regional or global scale.Firstly,this paper explored the accuracy of the inversion of asymmetry factor using the Hapke model and the simul...  相似文献   

4.
Although remote sensing data are often plentiful, they do not usually satisfy the users’ needs directly. Data assimilation is required to extract information about geophysical fields of interest from the remote sensing observations and to make the data more accessible to users. Remote sensing may provide, for example, measurements of surface soil moisture, snow water equivalent, snow cover, or land surface (skin) temperature. Data assimilation can then be used to estimate variables that are not directly observed from space but are needed for applications, for instance root zone soil moisture or land surface fluxes. The paper provides a brief introduction to modern data assimilation methods in the Earth sciences, their applications, and pertinent research questions. Our general overview is readily accessible to hydrologic remote sensing scientists. Within the general context of Earth science data assimilation, we point to examples of the assimilation of remotely sensed observations in land surface hydrology.  相似文献   

5.
湖冰光谱特征是湖冰遥感反演的物理基础,是研究湖冰光学特性和空间分布的理论依据。本文以查干湖为例,使用ASD Field Spec 4便携式地物光谱仪采集冰封期不同类型湖冰、积雪和水体光谱,利用Savitzky-Golay滤波法和包络线去除法分析白冰、灰冰、黑冰、雪冰、积雪和水体的反射光谱特征,探索气泡对湖冰反射光谱特征的影响。积雪和雪冰、白冰和灰冰、黑冰和水体的反射特征随着波长的变化特征基本一致,冰的反射率介于积雪和水体之间,其中白冰的反射率高于灰冰和黑冰,在包络线去除结果中,黑冰和水体在440 nm吸收谷处的吸收面积为5.184和10.878、吸收深度为0.052和0.106,雪、雪冰、白冰、灰冰在800和1030 nm吸收谷处的吸收面积和吸收深度的变化表现为雪<雪冰<灰冰<白冰。气泡是影响湖冰光谱特征的重要因素,气泡使白冰反射率减小和黑冰反射率增大,并且气泡使得白冰在800/1030nm和黑冰在440 nm处的吸收面积和吸收深度减小,其中气泡大小和疏密程度的不同会导致湖冰反射率的影响程度存在差异。同时,本文选取时间同步的Landsat 8 OLI遥感影像,在完成辐...  相似文献   

6.
湖泊水情遥感研究进展   总被引:1,自引:0,他引:1  
宋春桥  詹鹏飞  马荣华 《湖泊科学》2020,32(5):1406-1420
湖泊作为最直接的淡水资源之一,在人类的生产、生活各方面都占据至关重要的地位.受到全球气候变化与人类活动的影响,湖泊正在发生急剧变化,因而有必要对其进行快速、准确的时空变化监测,从而为水资源管理与保护、未来气候变化预警提供依据.遥感技术的产生与发展为大范围、实时动态的湖泊变化监测提供了难得的契机,它克服了人类对湖泊实地考察的局限性.本文对现有国内外湖泊水情遥感监测技术与方法进行了综合梳理,主要综述了国内外在湖泊水域范围提取、湖泊水位提取、湖泊水量估算、流域水文过程等方面的遥感研究进展情况,重点总结了该领域近年来提出的新方法和新技术.最后,结合当前遥感技术的发展,对未来遥感在湖泊动态变化监测中的应用潜力和趋势进行了简要论述,并对多源遥感数据融合与云计算平台的结合在地表水体连续变化监测中的应用进行了展望.  相似文献   

7.
During the last two decades, remote sensing data have led to tremendous progress in advancing flood inundation modelling. In particular, low‐cost space‐borne data can be invaluable for large‐scale flood studies in data‐scarce areas. Various satellite products yield valuable information such as land surface elevation, flood extent and water level, which could potentially contribute to various flood studies. An increasing number of research studies have been dedicated to exploring those low‐cost data towards building, calibration and evaluation, and remote‐sensed information assimilation into hydraulic models. This paper aims at reviewing these recent scientific efforts on the integration of low‐cost space‐borne remote sensing data with flood modelling. Potentials and limitations of those data in flood modelling are discussed. This paper also introduces the future satellite missions and anticipates their likely impacts in flood modelling. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Snow-cover parameters are important indicator factors for hydrological models and climate change studies and have typical vertical stratification characteristics. Remote sensing can be used for large-scale monitoring of snow parameters. InSAR (Interferometric Synthetic Aperture Radar) technology has advantages in detecting the vertical structure of snow cover. As a basis of snow vertical structure detection using InSAR, a scattering model can reveal the physical process of interaction between electromagnetic waves and snow. In recent years, the InSAR scattering model for single-layer snow has been fully studied; however, it cannot be applied to the case of multi-layer snow. To solve this problem, a multi-layer snow scattering mode is proposed in this paper, which applies the QCA (Quad-Crystal Approximation) theory to describe the coherent scattering characteristics of snow and introduces a stratification factor to describe the influence of snow stratification on the crosscorrelation of SAR echoes. Based on the proposed model, we simulate an InSAR volumetric correlation of different types of multi-layer snow at the X band (9.6 GHz). The results show that this model is suitable for multi-layer snow, and the sequence of sub-layers of snow has a significant influence on the volumetric correlation. Compared to the single layer model, the multi-layer model can predict a polarization difference in the volumetric correlation more accurately and thus has a wider scope of application. To make the model more available for snow parameter inversion, a simplified multi-layer model was also developed. The model did not have polarization information compared to that of the full model but showed good consistency with the full model. The phase of the co-polarization InSAR volumetric correlation difference is more sensitive to snow parameters than that of the phase difference of the co-polarization InSAR volumetric correlation and more conducive to the development of a parameter-inversion algorithm. The model can be applied to deepen our understanding of InSAR scattering mechanisms and to develop a snow parameter inversion algorithm.  相似文献   

9.
Tundra snow cover is important to monitor as it influences local, regional, and global‐scale surface water balance, energy fluxes, as well as ecosystem and permafrost dynamics. Observations are already showing a decrease in spring snow cover duration at high latitudes, but the impact of changing winter season temperature and precipitation on variables such as snow water equivalent (SWE) is less clear. A multi‐year project was initiated in 2004 with the objective to quantify tundra snow cover properties over multiple years at a scale appropriate for comparison with satellite passive microwave remote sensing data and regional climate and hydrological models. Data collected over seven late winter field campaigns (2004 to 2010) show the patterns of snow depth and SWE are strongly influenced by terrain characteristics. Despite the spatial heterogeneity of snow cover, several inter‐annual consistencies were identified. A regional average density of 0.293 g/cm3 was derived and shown to have little difference with individual site densities when deriving SWE from snow depth measurements. The inter‐annual patterns of SWE show that despite variability in meteorological forcing, there were many consistent ratios between the SWE on flat tundra and the SWE on lakes, plateaus, and slopes. A summary of representative inter‐annual snow stratigraphy from different terrain categories is also presented. © 2013 Her Majesty the Queen in Right of Canada. Hydrological Processes. © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Remote sensing data collected by the Environment Satellite I are characterized by high temporal resolution, high spectral resolution and mid-high spatial resolution. We designed the Remote Sensing Application System for Water Environments (RSASWE) to create an integrated platform for remote sensing data processing, parameter information extraction and thematic mapping using both remote sensing and GIS technologies. This system provides support for regional water environmental monitoring, and prediction and warning of water pollution. Developed to process and apply data collected by Environment Satellite I, this system has automated procedures including clipping, observation geometry computation, radiometric calibration, 6S atmospheric correction and water quality parameter inversion. RSASWE consists of six subsystems: remote sensing image processing, basic parameter inversion, water environment remote sensing thematic outputs, application outputs, automated water environment outputs and a non-point source pollution monitoring subsystem. At present RSASWE plays an important role in operations at the Satellite Environment Center.  相似文献   

11.
来莱  张玉超  景园媛  刘兆敏 《湖泊科学》2021,33(5):1299-1314
随着湖泊流域经济的快速发展,蓝藻水华频繁暴发的现象越来越严重,水体富营养化已经成为国内外重大环境问题.浮游植物是水体的初级生产者,是衡量水体富营养化程度的主要指标之一,遥感技术则是探测水体浮游植物时空分布的重要手段.在收集整理近千篇国内外水体浮游植物遥感研究论文的基础上,从卫星数据源、研究内容及研究方法等角度,总结了遥感技术在富营养化湖泊浮游植物监测应用的历史进展、研究重点及发展趋势.研究表明,现有的富营养化水体浮游植物遥感研究,以湖泊蓝藻水华问题为切入点,研究视角由水体表层(藻华面积、色素浓度)转至水下三维(藻总量),研究方法从定性识别转向定量反演,研究内容从监测蓝藻水华推进到探测不同类群蓝藻,逐渐形成了以应用为导向,"MODIS/VIIRS大中型湖泊日常监测—GF/Sentinel2小型湖泊针对性监测—无人机应急监测"的浮游植物遥感综合监测体系.上述研究梳理了富营养化水体浮游植物遥感监测湖泊水环境学科的发展动向,以期为从事蓝藻水华生态灾害监测和预警人员提供重要的技术支撑和理论参考.  相似文献   

12.
Natural and anthropogenic forcing factors and their changes significantly impact water resources in many river basins around the world. Information on such changes can be derived from fine scale in situ and satellite observations, used in combination with hydrological models. The latter need to account for hydrological changes caused by human activities to correctly estimate the actual water resource. In this study, we consider the catchment area of the Garonne river (in France) to investigate the capabilities of space-based observations and up-to-date hydrological modeling in estimating water resources of a river basin modified by human activities and a changing climate. Using the ISBA–MODCOU and SWAT hydrological models, we find that the water resources of the Garonne basin display a negative climate trend since 1960. The snow component of the two models is validated using the moderate-resolution imaging spectroradiometer snow cover extent climatology. Crop sowing dates based on remote sensing studies are also considered in the validation procedure. Use of this dataset improves the simulated evapotranspiration and river discharge amounts when compared to conventional data. Finally, we investigate the benefit of using the MAELIA multi-agent model that accounts for a realistic agricultural and management scenario. Among other results, we find that changes in crop systems have significant impacts on water uptake for agriculture. This work constitutes a basis for the construction of a future modeling framework of the sociological and hydrological system of the Garonne river region.  相似文献   

13.
实验证明,当物质(体)受到应力作用时,应力能够引起物质(体)电磁辐射能量发生改变.遥感器接收到的电磁辐射能量是由受载物体自身温度和应力共同引起的总辐射能量(观测值)组成.如何将二者定量地分离开,进而反演介质所处的温度状态和应力状态,在地震预测预报、大型岩土工程稳定性监测中, 是一个具有实际意义的问题.本文详细论述了如何采用多波段遥感观测,通过数学手段将二者分离并反演应力的方法, 并列举算例加以证实.   相似文献   

14.
非传统湖泊水色遥感的现状与发展   总被引:2,自引:1,他引:1  
外界环境条件以及自身因素的驱动,改变了传统湖泊水色遥感垂向均一的理论假设前提,基于垂向非均匀条件的湖泊水体水色参数的遥感称之为非传统湖泊水色遥感.本文分析了传统水色遥感面临的挑战,且非传统湖泊水色遥感中藻类叶绿素a浓度的垂向分布类型及其定量表达、水下光场分布的定量表达模型与数值模拟方法,给出垂向异质水体遥感反射比的定量表达式,分析了藻类垂向异质对水色参数遥感反演模型的影响,最后提出下一步需要重点关注的问题.  相似文献   

15.
Performance of process‐based hydrological models is usually assessed through comparison between simulated and measured streamflow. Although necessary, this analysis is not sufficient to estimate the quality and realism of the modelling since streamflow integrates all processes of the water cycle, including intermediate production or redistribution processes such as snowmelt or groundwater flow. Assessing the performance of hydrological models in simulating accurately intermediate processes is often difficult and requires heavy experimental investments. In this study, conceptual hydrological modelling (using SWAT) of a semi‐arid mountainous watershed in the High Atlas in Morocco is attempted. Our objective is to analyse whether good intermediate processes simulation is reached when global‐satisfying streamflow simulation is possible. First, parameters presenting intercorrelation issues are identified: from the soil, the groundwater and, to a lesser extent, from the snow. Second, methodologies are developed to retrieve information from accessible intermediate hydrological processes. A geochemical method is used to quantify the contribution of a superficial and a deep reservoir to streamflow. It is shown that, for this specific process, the model formalism is not adapted to our study area and thus leads to poor simulation results. A remote‐sensing methodology is proposed to retrieve the snow surfaces. Comparison with the simulation shows that this process can be satisfyingly simulated by the model. The multidisciplinary approach adopted in this study, although supported by the hydrological community, is still uncommon. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The spatial and temporal distribution of the snow water equivalent (SWE), snow density and snow depth were estimated by a method combining remote sensing technology and degree‐day techniques over a study area of 370 000 km2. The advantages of this simulation model are its simplicity and the availability of degree‐day parameters, which can be successively evaluated by referring to snow area maps created from satellite images. This simulation worked very well for estimating SWE and helped to separate the areas of thin snow cover from heavier snowfall. However, shallow snow in warm regions led to some misjudgments in the snow area maps because of the time lag between when the satellite image was acquired and the simulation itself. Vulnerable areas, where a large variation in the amount of snow affects people's life, could be identified from the differences between heavy and light snow years. This vulnerability stems from a predicted lack of irrigation water for rice production caused by future climate change. The model developed in this study has the potential to contribute to water management activities and decision‐making processes when considering necessary adaptations to future climate change. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Accurate forecasting of snow properties is important for effective water resources management, especially in mountainous areas like the western United States. Current model-based forecasting approaches are limited by model biases and input data uncertainties. Remote sensing offers an opportunity for observation of snow properties, like areal extent and water equivalent, over larger areas. Data assimilation provides a framework for optimally merging information from remotely sensed observations and hydrologic model predictions. An ensemble Kalman filter (EnKF) was used to assimilate remotely sensed snow observations into the variable infiltration capacity (VIC) macroscale hydrologic model over the Snake River basin. The snow cover extent (SCE) product from the moderate resolution imaging spectroradiometer (MODIS) flown on the NASA Terra satellite was used to update VIC snow water equivalent (SWE), for a period of four consecutive winters (1999–2003). A simple snow depletion curve model was used for the necessary SWE–SCE inversion. The results showed that the EnKF is an effective and operationally feasible solution; the filter successfully updated model SCE predictions to better agree with the MODIS observations and ground surface measurements. Comparisons of the VIC SWE estimates following updating with surface SWE observations (from the NRCS SNOTEL network) indicated that the filter performance was a modest improvement over the open-loop (un-updated) simulations. This improvement was more evident for lower to middle elevations, and during snowmelt, while during accumulation the filter and open-loop estimates were very close on average. Subsequently, a preliminary assessment of the potential for assimilating the SWE product from the advanced microwave scanning radiometer (AMSR-E, flown on board the NASA Aqua satellite) was conducted. The results were not encouraging, and appeared to reflect large errors in the AMSR-E SWE product, which were also apparent in comparisons with SNOTEL data.  相似文献   

18.
卫星被动微波遥感土壤湿度,是准确分析大空间尺度上陆表水分变化信息的有效手段.美国航天局(NASA)发布的基于AMSR-E观测亮温资料的全球土壤湿度反演产品,在蒙古干旱区的实际精度并不令人满意.本文基于对地表微波辐射传输中地表粗糙度和植被层影响的简化处理方法,采用AMSR-E的6.9 GHz,10.7 GHz和18.7 GHz之V极化亮温资料,应用多频率反演算法,并以国际能量和水循环协同观测计划(The Coordinated Energy and Water Cycle Observations Project)即CEOP实验在蒙古国东部荒漠地区的地面实验资料作为先验知识,获取被动微波遥感模型的优化参数,以期获得蒙古干旱区精度更高的土壤湿度遥感估算结果.分析表明,本文方法反演的白天和夜间土壤湿度结果与地面验证值之间的均方根误差(RMSE)接近0.030 cm3/cm3, 证明所用方法在不需要其他辅助资料或参数帮助下,可较精确地反演干旱区表层土壤湿度信息,能够全天候、动态监测大空间尺度的土壤湿度变化,可为干旱区气候变化研究及陆面过程模拟和数据同化研究提供高精度的表层土壤湿度初始场资料.  相似文献   

19.
Abstract

Remote sensing is the use of electromagnetic energy to measure the physical properties of distant objects. It includes photography and geophysical surveying as well as newer techniques that use other parts of the electromagnetic spectrum. The history of remote sensing begins with photography. The origin of other types of remote sensing can be traced to World War II, with the development of radar, sonar, and thermal infrared detection systems. Since the 1960s, sensors have been designed to operate in virtually all of the electromagnetic spectrum. Today a wide variety of remote sensing instruments are available for use in hydrological studies; satellite data, such as Skylab photographs and Landsat images are particularly suitable for regional problems and studies. Planned future satellites will provide a ground resolution of 10–80 m.

Remote sensing is currently used for hydrological applications in most countries of the world. The range of applications includes groundwater exploration determination of physical water quality, snowfield mapping, flood-inundation delineation, and making inventories of irrigated land. The use of remote sensing commonly results in considerable hydrological information at minimal cost. This information can be used to speed-up the development of water resources, to improve management practices, and to monitor environmental problems.  相似文献   

20.
横向不均匀介质中的面波及地球内部速度结构研究   总被引:2,自引:0,他引:2  
近十年中地震面波的理论和应用研究有很大进展。由于资料增加、反演方法的改进及利用了振幅和波形等更多的面波信息,对于全球及区域上地幔速度结构及各向异性有了进一步的认识。同时对于显著不均匀三维介质中面波的传播特征,在理论探讨和实际观测方面取得了较多成果。本文对于面波研究的最新成果作了介绍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号