首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
For the analysis of trends in weather extremes, we introduce a diagnostic index variable, the exceedance product, which combines intensity and frequency of extremes. We separate trends in higher moments from trends in mean or standard deviation and use bootstrap resampling to evaluate statistical significances. The application of the concept of the exceedance product to daily meteorological time series from Potsdam (1893 to 2005) and Prague–Klementinum (1775 to 2004) reveals that extremely cold winters occurred only until the mid-20th century, whereas warm winters show upward trends. These changes were significant in higher moments of the temperature distribution. In contrast, trends in summer temperature extremes (e.g., the 2003 European heatwave) can be explained by linear changes in mean or standard deviation. While precipitation at Potsdam does not show pronounced trends, dew point does exhibit a change from maximum extremes during the 1960s to minimum extremes during the 1970s.  相似文献   

2.
Time of Emergence (ToE) is the time at which the signal of climate change emerges from the background noise of natural climate variability, and can provide useful information for climate change impacts and adaptations. This study examines future ToEs for daily maximum and minimum temperatures over the Northeast Asia using five Regional Climate Models (RCMs) simulations driven by single Global Climate Model (GCM) under two Representative Concentration Pathways (RCP) emission scenarios. Noise is defined based on the interannual variability during the present-day period (1981-2010) and warming signals in the future years (2021-2100) are compared against the noise in order to identify ToEs. Results show that ToEs of annual mean temperatures occur between 2030s and 2040s in RCMs, which essentially follow those of the driving GCM. This represents the dominant influence of GCM boundary forcing on RCM results in this region. ToEs of seasonal temperatures exhibit larger ranges from 2030s to 2090s. The seasonality of ToE is found to be determined majorly by noise amplitudes. The earliest ToE appears in autumn when the noise is smallest while the latest ToE occurs in winter when the noise is largest. The RCP4.5 scenario exhibits later emergence years than the RCP8.5 scenario by 5-35 years. The significant delay in ToEs by taking the lower emission scenario provides an important implication for climate change mitigation. Daily minimum temperatures tend to have earlier emergence than daily maximum temperature but with low confidence. It is also found that noise thresholds can strongly affect ToE years, i.e. larger noise threshold induces later emergence, indicating the importance of noise estimation in the ToE assessment.  相似文献   

3.
To study the impacts of climate change on water resources in the western U.S., global climate simulations were produced using the National Center for Atmospheric Research/Department of Energy (NCAR/DOE) Parallel Climate Model (PCM). The Penn State/NCAR Mesoscale Model (MM5) was used to downscale the PCM control (20 years) and three future(2040–2060) climate simulations to yield ensemble regional climate simulations at 40 km spatial resolution for the western U.S. This paper describes the regional simulations and focuses on the hydroclimate conditions in the Columbia River Basin (CRB) and Sacramento-San Joaquin River (SSJ) Basin. Results based on global and regional simulations show that by mid-century, the average regional warming of 1 to 2.5 °C strongly affects snowpack in the western U.S. Along coastal mountains, reduction in annual snowpack was about70% as indicated by the regional simulations. Besides changes in mean temperature, precipitation, and snowpack, cold season extreme daily precipitation increased by 5 to 15 mm/day (15–20%) along theCascades and the Sierra. The warming resulted in increased rainfall at the expense of reduced snowfall, and reduced snow accumulation (or earlier snowmelt) during the cold season. In the CRB, these changes were accompanied by more frequent rain-on-snow events. Overall, they induced higher likelihood of wintertime flooding and reduced runoff and soil moisture in the summer. Changes in surface water and energy budgets in the CRB and SSJ basin were affected mainly by changes in surface temperature, which were statistically significant at the 0.95 confidence level. Changes in precipitation, while spatially incoherent, were not statistically significant except for the drying trend during summer. Because snow and runoff are highly sensitive tospatial distributions of temperature and precipitation, this study shows that (1) downscaling provides more realistic estimates of hydrologic impacts in mountainous regions such as the western U.S., and (2) despite relatively small changes in temperature and precipitation, changes in snowpack and runoff can be much larger on monthly to seasonal time scales because the effects of temperature and precipitation are integrated over time and space through various surface hydrological and land-atmosphere feedback processes. Although the results reported in this study were derived from an ensemble of regional climate simulations driven by a global climate model that displays low climate sensitivity compared with most other models, climate change was found to significantly affect water resources in the western U.S. by the mid twenty-first century.  相似文献   

4.
In this study, human-induced climate change over the Eastern Mediterranean–Black Sea region has been analyzed for the twenty-first century by performing regional climate model simulations forced with large-scale fields from three different global circulation models (GCMs). Climate projections have been produced with Special Report on Emissions Scenarios A2, A1FI and B1 scenarios, which provide greater diversity in climate information for future period. The gradual increases for temperature are widely apparent during the twenty-first century for each scenario simulation, but ECHAM5-driven simulation generally has a weaker signal for all seasons compared to CCSM3 simulations except for the Fertile Crescent. The contrast in future temperature change between the winter and summer seasons is very strong for CCSM3-A2-driven and HadCM3-A2-driven simulations over Carpathians and Balkans, 4–5 °C. In addition, winter runoff over mountainous region of Turkey, which feeds many river systems including the Euphrates and Tigris, increases in second half of the century since the snowmelt process accelerates where the elevation is higher than 1,500 m. Moreover, analysis of daily temperature outputs reveals that the gradual decrease in daily minimum temperature variability for January during the twenty-first century is apparent over Carpathians and Balkans. Analysis of daily precipitation extremes shows that positive trend is clear during the last two decades of the twenty-first century over Carpathians for both CCSM3-driven and ECHAM5-driven simulations. Multiple-GCM driven regional climate simulations contribute to the quantification of the range of climate change over a region by performing detailed comparisons between the simulations.  相似文献   

5.
Although uncertainties are still large, many potentially dangerous effects have already been identified concerning the impacts of global warming on human societies. For example, the record-breaking 2003 summer heat wave in Europe has given a glimpse of possible future European climate conditions. Here we use an ensemble of regional climate simulations for the end of the twentieth and twenty-first centuries over Europe to show that frequency, length and intensity changes in warm and cold temperature extremes can be derived to a close approximation from the knowledge of changes in three central statistics, the mean, standard deviation and skewness of the Probability Distribution Function, for which current climate models are better suited. In particular, the effect of the skewness parameter appears to be crucial, especially in the case of cold extremes, since it mostly explains the relative warming of these events compared to the whole distribution. An application of this finding is that the future impacts of extreme heat waves and cold spells on non-climatological variables (e.g., mortality) can be estimated to a first-order approximation from observed time series of daily temperature transformed in order to account for simulated changes in these three statistics.  相似文献   

6.
“一带一路”地区人口众多,气候类型复杂,亟待加强区域气候变化风险的认识。文中将该区分成10个区域,基于第五次耦合模式比较计划(CMIP5)中的31个全球模式模拟结果,应用概率密度分布(PDF)方法评估历史阶段(1986—2005年)各模式模拟暖月和冷月气温的能力,挑选并建立较优模式集合,用以预估21世纪中叶(2041—2060年)和21世纪末(2081—2100年)的极端月气温。结果表明,模式对观测中冷月气温距平PDF的模拟水平整体较暖月高。与多模式平均以及中位值相比,较优模式集合方法更适于极端暖/冷月气温的评估。在中等排放RCP4.5情景下,与低纬度地区相比,较优模式模拟中高纬地区未来极端暖/冷月气温的增温幅度的不确定性范围较大。21世纪中叶和21世纪末较优模式模拟的极端暖月气温在地中海增幅整体最大,东南亚增幅整体最小。对较优模式集合预估的极端冷月气温而言,无论是21世纪中叶还是世纪末,北欧增幅整体最大,东南亚增幅整体最小。  相似文献   

7.
A regional climate model (RCM) constrained by future anomalies averaged from atmosphere–ocean general circulation model (AOGCM) simulations is used to generate mid-twenty-first century climate change predictions at 30-km resolution over the central U.S. The predictions are compared with those from 15 AOGCM and 7 RCM dynamic downscaling simulations to identify common climate change signals. There is strong agreement among the multi-model ensemble in predicting wetter conditions in April and May over the northern Great Plains and drier conditions over the southern Great Plains in June through August for the mid-twenty-first century. Projected changes in extreme daily precipitation are statistically significant over only a limited portion of the central U.S. in the RCM constrained with future anomalies. Projected changes in monthly mean 2-m air temperature are generally consistent across the AOGCM ensemble average, North American Regional Climate Change Assessment Program RCM ensemble average, and RCM constrained with future anomalies, which produce a maximum increase in August of 2.4–2.9 K over the northern and southern Great Plains and Midwest. Changes in extremes in daily 2-m air temperature from the RCM downscaled with anomalies are statistically significant over nearly the entire Great Plains and Midwest and indicate a positive shift in the warm tail of the daily 2-m temperature distribution that is larger than the positive shift in the cold tail.  相似文献   

8.
Indices for extreme events in projections of anthropogenic climate change   总被引:3,自引:2,他引:1  
Indices for temperature and precipitation extremes are calculated on the basis of the global climate model ECHAM5/MPI-OM simulations of the twentieth century and SRES A1B and B1 emission scenarios for the twenty-first century. For model evaluation, the simulated indices representing the present climate were compared with indices based on observational data. This comparison shows that the model is able to realistically capture the observed climatological large-scale patterns of temperature and precipitation indices, although the quality of the simulations depends on the index and region under consideration. In the climate projections for the twenty-first century, all considered temperature-based indices, minimum Tmin, maximum Tmax, and the frequency of tropical nights, show a significant increase worldwide. Similarly, extreme precipitation, as represented by the maximum 5-day precipitation and the 95th percentile of precipitation, is projected to increase significantly in most regions of the world, especially in those that are relatively wet already under present climate conditions. Analogously, dry spells increase particularly in those regions that are characterized by dry conditions in present-day climate. Future changes in the indices exhibit distinct regional and seasonal patterns as identified exemplarily in three European regions.  相似文献   

9.
Changes in snowfall in northern Europe (55–71°N, 5–35°E) are analysed from 12 regional model simulations of twenty-first century climate under the Special Report on Emissions Scenarios A1B scenario. As an ensemble mean, the models suggest a decrease in the winter total snowfall in nearly all of northern Europe. In the middle of the winter, however, snowfall generally increases in the coldest areas. The borderline between increasing and decreasing snowfall broadly coincides with the ?11 °C isotherm in baseline (1980–2010) monthly mean temperature, although with variation between models and grid boxes. High extremes of daily snowfall remain nearly unchanged, except for decreases in the mildest areas, where snowfall as a whole becomes much less common. A smaller fraction of the snow in the simulated late twenty-first century climate falls on severely cold days and a larger fraction on days with near-zero temperatures. Not only do days with low temperatures become less common, but they also typically have more positive anomalies of sea level pressure and less snowfall for the same temperature than in the present-day climate.  相似文献   

10.
The possible changes in the frequency of extreme temperature events in Hong Kong in the 21st century were investigated by statistically downscaling 26 sets of the daily global climate model projections (a combination of 11 models and 3 greenhouse gas emission scenarios, namely A2, A1B, and B1) of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. The models’ performance in simulating the past climate during 1971–2000 has also been verified and discussed. The verification revealed that the models in general have an acceptable skill in reproducing past statistics of extreme temperature events. Moreover, the models are more skillful in simulating the past climate of the hot nights and cold days than that of the very hot days. The projection results suggested that, in the 21st century, the frequency of occurrence of extremely high temperature events in Hong Kong would increase significantly while that of the extremely low temperature events is expected to drop significantly. Based on the multi-model scenario ensemble mean, the average annual numbers of very hot days and hot nights in Hong Kong are expected to increase significantly from 9 days and 16 nights in 1980–1999 to 89 days and 137 nights respectively in 2090–2099. On the other hand, the average annual number of cold days will drop from 17 days in 1980–1999 to about 1 day in 2090–2099. About 65 percent of the model-scenario combinations indicate that there will be on average less than one cold day in 2090–2099. While all the model-emission scenarios in general have projected consistent trends in the change of temperature extremes in the 21st century, there is a large divergence in the projections between difierent model/emission scenarios. This reflects that there are still large uncertainties in the model simulation of the future climate of extreme temperature events.  相似文献   

11.
本文基于一套在5个全球气候模式结果驱动下,RegCM4区域气候模式对东亚25 km水平分辨率的集合预估,分析了中、高温室气体典型排放路径(RCP4.5和RCP8.5)下,21世纪不同时期新疆地区的未来气候变化。对模式当代气候模拟结果的检验表明,区域模式的模拟集合(ensR)总体上能够很好地再现当代新疆平均气温、降水和极端气温、降水分布特征。ensR预估21世纪未来新疆平均气温和降水将不断升高或增加,RCP8.5下的变化大于RCP4.5。在21世纪末期RCP8.5下,区域年平均气温和降水将分别增加4.9°C和28%(102 mm),夏季(6~8月)的升温幅度略高于冬季(12~2月),降水则以冬季增加为主。极端温度以及高温日数同样将不断升高,其中年日最低气温最小值的增幅总体高于年日最高气温最大值,未来新疆地区的极端冷事件将减少,高温、热浪事件将增加。由极端降水指标日最大降水量反应的强降水事件将普遍增加,连续无降水日数总体以减少为主。积雪变化存在一定区域差异,具体表现为除塔里木盆地外的普遍减少。对总径流量和表层土壤湿度的预估分析表明,二者在新疆地区均以增加为主,但水文干旱在北疆会加重。ensR各模拟间无论是在当代模拟还是未来预估中都表现出较好的一致性,但在变化的具体数量及个别情况下符号均存在一定差异。最后,综合考虑ensR对各要素的预估发现,总体而言新疆未来更趋向于“暖湿化”,但这不会改变其干旱、半干旱气候的本质,而且水文干旱频率在一些地区会增加,未来新疆的水资源状况仍不容乐观。  相似文献   

12.
Future changes in East Asian summer monsoon precipitation climatology, frequency, and intensity are analyzed using historical climate simulations and future climate simulations under the RCP4.5 scenario using the World Climate Research Programme’s (WCRP) Coupled Model Intercomparison Project 5 (CMIP5) multi-model dataset. The model reproducibility is evaluated, and well performance in the present-day climate simulation can be obtained by most of the studied models. However, underestimation is obvious over the East Asian region for precipitation climatology and precipitation intensity, and overestimation is observed for precipitation frequency. The overestimation of precipitation frequency is mainly due to the large positive bias of the light precipitation (precipitation <10 mm/day) days, and the underestimation of precipitation intensity is mainly caused by the negative bias of the intense precipitation (precipitation >10 mm/day) intensity. For the future climate simulations, simple multi-model ensemble (MME) averages using all of the models show increases in precipitation and its intensity over almost all of East Asia, while the precipitation frequency is projected to decrease over eastern China and around Japan and increase in other regions. When the weighted MME is considered, no large difference can be observed compared with the simple MME. For the MME using the six best models that have good performance in simulating the present-day climate, the future climate changes over East Asia are very similar to those predicted using all of the models. Further analysis shows that the frequency and intensity of intense precipitation events are also projected to significantly increase over East Asia. Increases in precipitation frequency and intensity are the main contributors to increases in precipitation, and the contribution of frequency increases (contributed by 40.8 % in the near future and by 58.9 % by the end of the twenty-first century) is much larger than that of intensity increases (contributed by 29.9 % in the near future and by 30.1 % by the end of the twenty-first century). This finding also implies an increased risk of intense precipitation events over the East Asian region under global warming scenario. These results regarding future climate simulations show much greater reliability than those using CMIP3 simulations.  相似文献   

13.
This paper describes atmospheric general circulation model climate change experiments in which the Arctic sea-ice thickness is either fixed to 3 m or somewhat more realistically parameterized in order to take into account essentially the spatial variability of Arctic sea-ice thickness, which is, to a first approximation, a function of ice type (perennial or seasonal). It is shown that, both at present and at the end of the twenty-first century (under the SRES-A1B greenhouse gas scenario), the impact of a variable sea-ice thickness compared to a uniform value is essentially limited to the cold seasons and the lower troposphere. However, because first-year ice is scarce in the Central Arctic today, but not under SRES-A1B conditions at the end of the twenty-first century, and because the impact of a sea-ice thickness reduction can be masked by changes of the open water fraction, the spatial and temporal patterns of the effect of sea-ice thinning on the atmosphere differ between the two periods considered. As a consequence, not only the climate simulated at a given period, but also the simulated Arctic climate change over the twenty-first century is affected by the way sea-ice thickness is prescribed.  相似文献   

14.
中国20年一遇气温和降水极值变化的高分辨率模拟   总被引:1,自引:0,他引:1  
基于25 km高分辨率区域气候模式(RegCM3)嵌套MIROC3.2_hires全球气候模式结果,进行IPCC SRES A1B情景下21世纪气候变化的模拟,分析中国区域未来气温和降水极值重现期的变化。首先检验模式对当代(1981-2000年)极端事件重现期的模拟能力,结果表明,模式能够较好地再现中国地区20年一遇极端事件的基本分布型,但所模拟的数值与观测相比还有一定偏差,特别是在极端降水方面。21世纪中期(2041-2060年)和末期(2081-2100年)20年一遇的高温极值在整个区域内均将升高,东北地区增幅最大;低温极值将增大,中心位于内蒙古、新疆及青藏高原南麓;降水极值也将普遍增大。气温和降水极值在21世纪末期的增加幅度均比中期要大。在未来全球变暖背景下,中国地区极端高温事件将明显增多,面积增大;极端低温事件将大幅度减少,面积减少;强降水事件也将增多,面积不断扩大。  相似文献   

15.
Recent winter seasons have evidenced that global warming does not exclude the occurrence of exceptionally cold and/or snowy episodes in the Northern mid-latitudes. The expected rarefaction of such events is likely to exacerbate both their societal and environmental impacts. This paper therefore aims to evaluate model uncertainties underlying the fate of wintertime cold extremes over Europe. Understanding why climate models (1) still show deficiencies in simulating present-day features and (2) differ in their responses under future scenarios for the twentyfirst century indeed constitutes a crucial challenge. Here we propose a weather-regime approach in order to separate the contributions of large-scale circulation and non-dynamical processes to biases or changes in the simulated mean and extreme temperatures. We illustrate our methodology from the wintertime occurrence of extremely cold days in idealized atmosphere-only experiments performed with two of the CMIP5 climate models (CNRM-CM5 and IPSL-CM5A-LR). First we find that most of the present-day temperature biases are due to systematic errors in non-dynamical processes, while the main features of the large-scale dynamics are well captured in such experiments driven by observed sea-surface temperatures, with the exception of a generalized underestimation of blocking episodes. Then we show that uncertainties associated with changes in large-scale circulation modulate the depletion in cold extremes under an idealized scenario for the late twentyfirst century. These preliminary results suggest that the original methodology proposed in this paper can be helpful for understanding spreads of larger model-ensembles when simulating the response of temperature extremes to climate change.  相似文献   

16.
Changes in temperature and precipitation extremes in the CMIP5 ensemble   总被引:6,自引:1,他引:5  
Twenty-year temperature and precipitation extremes and their projected future changes are evaluated in an ensemble of climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5), updating a similar study based on the CMIP3 ensemble. The projected changes are documented for three radiative forcing scenarios. The performance of the CMIP5 models in simulating 20-year temperature and precipitation extremes is comparable to that of the CMIP3 ensemble. The models simulate late 20th century warm extremes reasonably well, compared to estimates from reanalyses. The model discrepancies in simulating cold extremes are generally larger than those for warm extremes. Simulated late 20th century precipitation extremes are plausible in the extratropics but uncertainty in extreme precipitation in the tropics and subtropics remains very large, both in the models and the observationally-constrained datasets. Consistent with CMIP3 results, CMIP5 cold extremes generally warm faster than warm extremes, mainly in regions where snow and sea-ice retreat with global warming. There are tropical and subtropical regions where warming rates of warm extremes exceed those of cold extremes. Relative changes in the intensity of precipitation extremes generally exceed relative changes in annual mean precipitation. The corresponding waiting times for late 20th century extreme precipitation events are reduced almost everywhere, except for a few subtropical regions. The CMIP5 planetary sensitivity in extreme precipitation is about 6 %/°C, with generally lower values over extratropical land.  相似文献   

17.
The features of changes and variability for cold temperature extremes over Russia are analyzed using observational data for the period from the middle of the 20th century. The impact is assessed that observed changes in thermal regime make on the characteristics of rare extremes which are used as standard parameters for designing infrastructure facilities. The results are interpreted in terms of the power system operation reliability. The risk assessment for critical temperature impacts indicates the important regional features of climate change effect on extreme energy loads and requirements for power capacities during the cold season.  相似文献   

18.
The objective of this study is to assess the climate projections over South America using the Eta-CPTEC regional model driven by four members of an ensemble of the Met Office Hadley Centre Global Coupled climate model HadCM3. The global model ensemble was run over the twenty-first century according to the SRES A1B emissions scenario, but with each member having a different climate sensitivity. The four members selected to drive the Eta-CPTEC model span the sensitivity range in the global model ensemble. The Eta-CPTEC model nested in these lateral boundary conditions was configured with a 40-km grid size and was run over 1961–1990 to represent baseline climate, and 2011–2100 to simulate possible future changes. Results presented here focus on austral summer and winter climate of 2011–2040, 2041–2070 and 2071–2100 periods, for South America and for three major river basins in Brazil. Projections of changes in upper and low-level circulation and the mean sea level pressure (SLP) fields simulate a pattern of weakening of the tropical circulation and strengthening of the subtropical circulation, marked by intensification at the surface of the Chaco Low and the subtropical highs. Strong warming (4–6°C) of continental South America increases the temperature gradient between continental South America and the South Atlantic. This leads to stronger SLP gradients between continent and oceans, and to changes in moisture transport and rainfall. Large rainfall reductions are simulated in Amazonia and Northeast Brazil (reaching up to 40%), and rainfall increases around the northern coast of Peru and Ecuador and in southeastern South America, reaching up to 30% in northern Argentina. All changes are more intense after 2040. The Precipitation–Evaporation (P–E) difference in the A1B downscaled scenario suggest water deficits and river runoff reductions in the eastern Amazon and S?o Francisco Basin, making these regions susceptible to drier conditions and droughts in the future.  相似文献   

19.
Climate change in the twenty-first century, projected by a large ensemble average of global coupled models forced by a mid-range (A1B) radiative forcing scenario, is downscaled to Climate Divisions across the western United States. A simple empirical downscaling technique is employed, involving model-projected linear trends in temperature or precipitation superimposed onto a repetition of observed twentieth century interannual variability. This procedure allows the projected trends to be assessed in terms of historical climate variability. The linear trend assumption provides a very close approximation to the time evolution of the ensemble-average climate change, while the imposition of repeated interannual variability is probably conservative. These assumptions are very transparent, so the scenario is simple to understand and can provide a useful baseline assumption for other scenarios that may incorporate more sophisticated empirical or dynamical downscaling techniques. Projected temperature trends in some areas of the western US extend beyond the twentieth century historical range of variability (HRV) of seasonal averages, especially in summer, whereas precipitation trends are relatively much smaller, remaining within the HRV. Temperature and precipitation scenarios are used to generate Division-scale projections of the monthly palmer drought severity index (PDSI) across the western US through the twenty-first century, using the twentieth century as a baseline. The PDSI is a commonly used metric designed to describe drought in terms of the local surface water balance. Consistent with previous studies, the PDSI trends imply that the higher evaporation rates associated with positive temperature trends exacerbate the severity and extent of drought in the semi-arid West. Comparison of twentieth century historical droughts with projected twenty-first century droughts (based on the prescribed repetition of twentieth century interannual variability) shows that the projected trend toward warmer temperatures inhibits recovery from droughts caused by decade-scale precipitation deficits.  相似文献   

20.
The terms “weather extremes” and “climate extremes” are widely used in meteorology, often in relation to climate change. This paper reviews the empirical investigations into parallel changes in extreme events and climate change published in recent years and looks at their relevance for the global energy system. Empirical investigation into the correlation of extremes with global warming covers five groups: changes in temperature, precipitation, wind (storm) extremes, tropical and extra-tropical circulation phenomena. For temperature extremes, extensive analyses demonstrate that extreme hot days and nights will likely become more frequent, and extreme cold days and nights less frequent. Intense precipitation events will likely become more frequent in most continental regions. Scientific confidence in the trends of the frequency, duration, and intensity of tropical cyclones, is still low. A poleward shift is observed for extratropical cyclones, whereas no convincing tendencies of many smaller-scale phenomena, for example, tornados, or hail, can yet be detected. All these extremes have serious implications for the energy sector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号