首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ground-based GPS and weather stations time series for the period 2010–2012 of precipitable water vapor (PWV), relative humidity (RH), and surface temperature (T) of half-hourly resolution are analyzed to demonstrate their value for dynamical analyses and weather forecasting. Three sample stations in the USA from the SoumiNet network are considered, which have rather continuous data for the last 3 years and a few missing values. Results for the three stations reveal the following features: (1) PWV time behavior is dominated by the annual cycle superimposed on high-frequency fluctuations with missing daily cycle, indicating a prevailing large-scale transport source of precipitable water at these sites; (2) RH is characterized by the daily cycle and high-frequency variability, while the annual cycle is missing; (3) T mainly varies following the annual and diurnal cycles; and (4) all variables show similar scaling properties of their variance spectra, S(f)?~?f β , with a high-frequency regime of red noise type scaling (β?~?2) up to a day and long-term persistence beyond a week (β?~?0.5), with a week-long frequency interval of transition. Detrended fluctuation analysis of relative humidity indicates a clear long-term persistence scaling covering more than three decades. Implications of these findings on weather forecasting and climate modeling are discussed.  相似文献   

2.
Temperature reconstructions for recent centuries provide a historical context for the warming over the twentieth century. We reconstruct annual averaged surface temperatures of the past 400?years on hemispherical and global scale from glacier length fluctuations. We use the glacier length records of 308 glaciers. The reconstruction is a temperature proxy with decadal resolution that is completely independent of other temperature records. Temperatures are derived from glacier length changes using a linear response equation and an analytical glacier model that is calibrated on numerical model results. The global and hemispherical temperatures reconstructed from glacier length fluctuations are in good agreement with the instrumental record of the last century. Furthermore our results agree with existing multi-proxy reconstructions of temperature in the pre-instrumental period. The temperature record obtained from glacier fluctuations confirms the pronounced warming of the twentieth century, giving a global cumulative warming of 0.94?±?0.31?K over the period 1830–2000 and a cumulative warming of 0.84?±?0.35?K over the period 1600–2000.  相似文献   

3.
Climate fluctuations in the North Atlantic Ocean have wide-spread implications for Europe, Africa, and the Americas. This study assesses the relative contribution of the long-term trend and variability of North Atlantic warming using EOF analysis of deep-ocean and near-surface observations. Our analysis demonstrates that the recent warming over the North Atlantic is linked to both long-term (including anthropogenic and natural) climate change and multidecadal variability (MDV, ~50–80 years). Our results suggest a general warming trend of 0.031 ± 0.006°C/decade in the upper 2,000 m North Atlantic over the last 80 years of the twentieth century, although during this time there are periods in which short-term trends were strongly amplified by MDV. For example, MDV accounts for ~60% of North Atlantic warming since 1970. The single-sign basin-scale pattern of MDV with prolonged periods of warming (cooling) in the upper ocean layer and opposite tendency in the lower layer is evident from observations. This pattern is associated with a slowdown (enhancement) of the North Atlantic thermohaline overturning circulation during negative (positive) MDV phases. In contrast, the long-term trend exhibits warming in tropical and mid-latitude North Atlantic and a pattern of cooling in regions associated with major northward heat transports, consistent with a slowdown of the North Atlantic circulation as evident from observations and confirmed by selected modeling results. This localized cooling has been masked in recent decades by warming during the positive phase of MDV. Finally, since the North Atlantic Ocean plays a crucial role in establishing and regulating the global thermohaline circulation, the multidecadal fluctuations discussed here should be considered when assessing long-term climate change and variability, both in the North Atlantic and at global scales.  相似文献   

4.
The complex topography and high climatic variability of the North Western Mediterranean Basin (NWMB) require a detailed assessment of climate change projections at high resolution. ECHAM5/MPIOM global climate projections for mid-21st century and three different emission scenarios are downscaled at 10 km resolution over the NWMB, using the WRF-ARW regional model. High resolution improves the spatial distribution of temperature and precipitation climatologies, with Pearson's correlation against observation being higher for WRF-ARW (0.98 for temperature and 0.81 for precipitation) when compared to the ERA40 reanalysis (0.69 and 0.53, respectively). However, downscaled results slightly underestimate mean temperature (≈1.3 K) and overestimate the precipitation field (≈400 mm/year). Temperature is expected to raise in the NWMB in all considered scenarios (up to 1.4 K for the annual mean), and particularly during summertime and at high altitude areas. Annual mean precipitation is likely to decrease (around ?5 % to ?13 % for the most extreme scenarios). The climate signal for seasonal precipitation is not so clear, as it is highly influenced by the driving GCM simulation. All scenarios suggest statistically significant decreases of precipitation for mountain ranges in winter and autumn. High resolution simulations of regional climate are potentially useful to decision makers. Nevertheless, uncertainties related to seasonal precipitation projections still persist and have to be addressed.  相似文献   

5.
The customary representation of climate using sample moments is generally biased due to the noticeably nonstationary behaviour of many climate series. In this study, we introduce a moment-free climate representation based on a statistical model fitted to a long-term daily air temperature anomaly series. This model allows us to separate the climate and weather scale variability in the series. As a result, the climate scale can be characterized using the mean annual cycle of series and local air temperature tolerance, where the latter is computed using the fitted model. The representation of weather scale variability is specified using the frequency and the range of outliers based on the tolerance. The scheme is illustrated using five long-term air temperature records observed by different European meteorological stations.  相似文献   

6.
Assessing streamflow sensitivity to variations in glacier mass balance   总被引:1,自引:0,他引:1  
We examine long-term streamflow and mass balance data from two Alaskan glaciers located in climatically distinct basins: Gulkana Glacier, a continental glacier located in the Alaska Range, and Wolverine Glacier, a maritime glacier located in the Kenai Mountains. Over the 1966–2011 study interval, both glaciers lost mass, primarily as a result of summer warming, and streamflow increased in both basins. We estimate total glacier runoff via summer mass balance and quantify the fraction of runoff related to annual mass imbalances. In both climates, annual (net) mass balance contributes, on average, less than 20 % of total streamflow, substantially less than the fraction related to summer mass loss (>50 %), which occurs even in years of glacier growth. The streamflow fraction related to changes in annual balance increased significantly only in the continental environment. In the maritime climate, where deep winter snowpacks and frequent rain events drive consistently high runoff, the magnitude of this streamflow fraction was small and highly variable, precluding detection of any existing trend. Furthermore, our findings suggest that glacier mass change is likely to impact total basin water yield, timing of runoff and water quality in the continental environment. However, the impacts of maritime glacier change appear more likely to be limited to water quality and runoff timing.  相似文献   

7.
Wei Lu  Gensuo Jia 《Climatic change》2013,119(3-4):747-760
As a monsoon climate dominated region, East Asia has a high rate of climate variation. Previous studies demonstrated that the East Asian monsoon had weakened since the end of 1970’s; however, contrary to the climatic trend, a common scenario of advancing farming-pastoral ecotone (FPE) has been proposed. The objective of this study is to analyze land surface changes in association with monsoon climate variability over past 25 years in East Asia. A combination of intensive ground survey of vegetation and land use, meteorological data, and remote sensing are used to quantify the relationship between vegetation and climate and to analyze the FPE fluctuations associated with changing climate. Field precipitation data from 1981 to 2005, are used to represent climate variations and to delineate the FPE boundary. NDVI data are used to evaluate greenness-precipitation linkages by vegetation type and to create land cover maps depicting spatial pattern fluctuations of the FPE. This study demonstrates that: (1) There was no persistent northwest shifting trend of either the FPE boundary or vegetation cover during last 25 years. (2) Time integrated NDVI (TI-NDVI) varies with precipitation, and the maximum or minimum NDVI may be only sensitive to precipitation for areas with mean annual precipitation lower than approximately 200 mm. (3) A significant relationship exists between NDVI and precipitation variations for areas with mean annual precipitation greater than approximately 300 mm, especially the ecotone with a ΔNDVI of 0.122?±?0.032. (4) The “advances” of FPE closely mimic fluctuations of precipitation in East Asia.  相似文献   

8.
The source region of the Yangtze River is experiencing ever-faster glacier retreat and land deterioration as a result of climate change; however, understanding the past climate variability in the region is still limited by lack of long-term climate records. Here, we report a temperature-sensitive annual stable carbon isotope (??13C) series of Tibetan juniper (Sabina tibetica) tree rings from 1850 to 2002 in natural forests in the source region of the Yangtze River on the northeastern Tibetan Plateau. The stable carbon discrimination (??13C) is significantly negatively correlated with the regional mean summer (May, June, and July) temperature, as well as with large-scale temperature variations. The reconstructed mean summer temperature explained about 44.3% of the total variance. It also agreed well with neighboring temperature proxies, including the ice-core ??18O series from the Guoqu glacier and from Dasuopu glacier and other tree-ring proxies. The cold and warm periods indicated by the climate reconstruction also coincide well with documented glacier advances and retreats in the eastern and southeastern Tibetan Plateau. The significant correlations among the reconstructed temperature, sea surface temperature (SSTNino3), and the Southern Oscillation index suggest the influences of synoptic atmospheric circulation on low-frequency variations in temperature on the region of the Yangtze River.  相似文献   

9.
Observing the full range of climate change impacts at the local scale is difficult. Predicted rates of change are often small relative to interannual variability, and few locations have sufficiently comprehensive long-term records of environmental variables to enable researchers to observe the fine-scale patterns that may be important to understanding the influence of climate change on biological systems at the taxon, community, and ecosystem levels. We examined a 50-year meteorological and hydrological record from the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, an intensively monitored Long-Term Ecological Research site. Of the examined climate metrics, trends in temperature were the most significant (ranging from 0.7 to 1.3 °C increase over 40–50 year records at 4 temperature stations), while analysis of precipitation and hydrologic data yielded mixed results. Regional records show generally similar trends over the same time period, though longer-term (70–102 year) trends are less dramatic. Taken together, the results from HBEF and the regional records indicate that the climate has warmed detectably over 50 years, with important consequences for hydrological processes. Understanding effects on ecosystems will require a diversity of metrics and concurrent ecological observations at a range of sites, as well as a recognition that ecosystems have existed in a directionally changing climate for decades, and are not necessarily in equilibrium with the current climate.  相似文献   

10.
Glaciers of the conterminous United States have been receding for the past century. Since 1900 the recession has varied from a 24 % loss in area (Mt. Rainier, Washington) to a 66 % loss in the Lewis Range of Montana. The rates of retreat are generally similar with a rapid loss in the early decades of the 20th century, slowing in the 1950s–1970s, and a resumption of rapid retreat starting in the 1990s. Decadal estimates of changes in glacier area for a subset of 31 glaciers from 1900 to 2000 are used to test a snow water equivalent model that is subsequently employed to examine the effects of temperature and precipitation variability on annual glacier area changes for these glaciers. Model results indicate that both winter precipitation and winter temperature have been important climatic factors affecting the variability of glacier variability during the 20th Century. Most of the glaciers analyzed appear to be more sensitive to temperature variability than to precipitation variability. However, precipitation variability is important, especially for high elevation glaciers. Additionally, glaciers with areas greater than 1 km2 are highly sensitive to variability in temperature.  相似文献   

11.
The spatial resolution gap between global or regional climate models and the requirements for local impact studies motivates the need for climate downscaling. For impact studies that involve glacier modelling, the sparsity or complete absence of climate monitoring activities within the regions of interest presents a substantial additional challenge. Downscaling methods for this application must be independent of climate observations and cannot rely on tuning to station data. We present new, computationally-efficient methods for downscaling precipitation and temperature to the high spatial resolutions required to force mountain glacier models. Our precipitation downscaling is based on an existing linear theory for orographic precipitation, which we modify for large study regions by including moist air tracking. Temperature is downscaled using an interpolation scheme that reconstructs the vertical temperature structure to estimate surface temperatures from upper air data. Both methods are able to produce output on km to sub-km spatial resolution, yet do not require tuning to station measurements. By comparing our downscaled precipitation (1 km resolution) and temperature (200 m resolution) fields to station measurements in southern British Columbia, we evaluate their performance regionally and through the annual cycle. Precipitation is improved by as much as 30% (median relative error) over the input reanalysis data and temperature is reconstructed with a mean bias of 0.5°C at locations with high vertical relief. Both methods perform best in mountainous terrain, where glaciers tend to be concentrated.  相似文献   

12.
 During the Younger Dryas (YD) the climate in NW Europe returned to near-glacial conditions. To improve our understanding of climate variability during this cold interval, we compare an AGCM simulation of this climate, performed with the ECHAM model, with temperature reconstructions for NW Europe based on geological and paleoecological records. Maps for the mean winter, summer and annual temperature are presented. The simulated winters are consistent with reconstructions in the northern part of the study area. A strong deviation is noted in Ireland and England, where the simulation is too warm by at least 10 °C. It appears that the N Atlantic was cooler than prescribed in the YD simulation, including a southward expansion of the sea-ice margin. The comparison for the summer shows a too warm continental Europe in the simulation. Supposedly, these anomalously warm conditions are caused by the AGCM’s response to the prescribed increased summer insolation. The region of maximum summer cooling is similar in both the simulation and reconstruction, i.e., S Sweden. We suggest that this is due to the local cooling effect of the Scandinavian ice sheet. Compared to the present climate a considerable increase of the annual temperature range is inferred, especially for regions close to the Atlantic Ocean. Received: 20 November 1996 / Accepted: 8 July 1997  相似文献   

13.
Using the Food and Agriculture Organization’s (FAO) Mediterranean capture fisheries production dataset in conjunction with global and Mediterranean sea surface temperatures, we investigated trends in fisheries landings and landings per unit of effort of commercially important marine organisms, in relation to temperature oscillations. In addition to the overall warming trend, a temperature shift was detected in the Mediterranean Sea in the late 1990s. Fisheries landings fluctuations were examined for the most abundant commercial species (59 species) and showed significant year-to-year correlations with temperature for nearly 60 % of the cases. From these, the majority (~70 %) were negatively related and showed a reduction of 44 % on average. Increasing trends were found, mainly in the landings of species with short life spans, which seem to have benefited from the increase in water temperature. Τhe effect of oceanic warming is apparent in most species or groups of species sharing ecological (e.g. small and medium pelagic, demersal fish) or taxonomic (e.g. cephalopods, crustaceans) traits. A landings-per-unit-of-effort (LPUE) proxy, using data from the seven Mediterranean European Union member states, also showed significant correlation with temperature fluctuations for six out of the eight species examined, indicating the persistence of temperature influence on landings when the fishing effect is accounted for. The speed of response of marine landings to the warming of the Mediterranean Sea possibly shows both the sensitivity and the vulnerable state of the fish stocks and indicates that climate should be examined together with fisheries as a factor shaping stock fluctuations.  相似文献   

14.
This work presents a methodology to study the interannual variability associated with summertime months in which extremely hot temperatures are frequent. Daily time series of maximum and minimum temperature fields (T max and T min, respectively) are used to define indexes of extreme months based on the number of days crossing thresholds. An empirical orthogonal function (EOF) analysis is applied to the monthly indexes. EOF loadings give information about the geographical areas where the number of days per month with extreme temperatures has the largest variability. Correlations between the EOF principal components and the time series of other fields allow plotting maps highlighting the anomalies in the large scale circulation and in the SSTs that are associated with the occurrence of extreme events. The methodology is used to construct the “climatology” of the extremely hot summertime months over Europe. In terms of both interannual and intraseasonal variability, there are three regions in which the frequency of the extremely hot days per month homogeneously varies: north-west Europe, Euro-Mediterranean and Eurasia region. Although extremes over those regions occur during the whole summer (June to August), the anomalous climatic conditions associated with frequent heatwaves present some intraseasonal variability. Extreme climate events over the north-west Europe and Eurasia are typically related to the occurrence of blocking situations. The intraseasonal variability of those patterns is related to the amplitude of the blocking, the relative location of the action centre and the wavetrain of anomalies downstream or upstream of the blocking. During June and July, blocking situations which give extremely hot climate conditions over north-west Europe are also associated with cold conditions over the eastern Mediterranean sector. The Euro-Mediterranean region is a transition area in which extratropical and tropical systems compete, influencing the occurrence of climate events: blockings tend to be related to extremely hot months during June while baroclinic anomalies dominate the variability of the climate events in July and August. We highlight that our method could be easily applied to other regions of the world, to other fields as well as to model outputs to assess, e.g. the potential change of extreme climate events in a warmer climate.  相似文献   

15.
Intrinsic properties of Sahel precipitation anomalies and rainfall   总被引:3,自引:2,他引:1  
The estimation of the future projected precipitation and rainfall on short- and long-term basis is crucial because their substantial changes are closely associated with severe socioeconomic and ecological consequences. For this reason, the detrended fluctuation analysis is applied on the Sahel precipitation and standardized rainfall anomalies in order to explore the intrinsic properties of their temporal variability. The results obtained show that the Sahel precipitation anomalies the period 1900–2010 exhibit persistent long-range correlations for all the time lags between 4 months and 28 years. This result states that the fluctuations of the Sahel precipitation anomalies in small time intervals are positively correlated to those in longer time intervals in a power law fashion. In opposite, the Sahel standardized rainfall fluctuations during the periods 1948–2001 show an almost random walk behavior. It should be emphasized that these findings could substantially contribute to the precipitation forecast and the advanced simulation of the variability of the global climate system. For instance, the data of the precipitation forecast modeling must exhibit the long-range correlations dictated by the precipitation data in the past. A detailed analysis on this topic will be published elsewhere.  相似文献   

16.
Glaciers around the world retreated as the climate warmed substantially. For the majority of alpine and arctic areas, however, the lack of meteorological data over a long period makes it difficult to build long-term climate and glacial fluctuation relationships, emphasizing the importance of natural proxy archives. Here we use the 230-year record of stem radial growth of birch trees (Betula ermanii) from the treeline forests above the receding glaciers in eastern maritime Kamchatka to analyse temporal variations of climate as well as glacial advance and retreat. Glaciers in Kamchatka Peninsula represent the southern limit of glaciation in far eastern Eurasia, which makes them prone to global warming. Using instrumental climate data (1930–1996) from local meteorological stations, we find that the July temperature had most prominent positive impact on birch growth. On the contrary, smaller ring increments are associated with the positive summer and net annual ice mass balance of Koryto Glacier. The prevailing trend of higher summer temperatures and lower snowfall over the past 70 years has enhanced tree growth while causing the glacier’s surface to lower by about 35 m and its front to retreat by about 490 m. Assuming these same relationships between climate, tree growth, and glacier mass balance also existed in the past, we use tree rings as a proxy record of climatically induced temporary halts in the glacier’s retreat over the past two centuries, which in total was over 1,000 m. Both direct observations and tree ring proxies indicate several prolonged warm periods (1990s, 1960s, 1930–1940s, 1880–1900s) interspersed with cooler periods (1984–1985, 1970–1976, 1953–1957, 1912–1926, 1855–1875, 1830–1845, 1805–1820 and 1770–1780) when the glacier re-advanced, creating several consecutive terminal moraine ridges. We conclude that birch tree-rings are suitable for assessing tree growth/climate/glacial relationships over a longer timescale in maritime Kamchatka.  相似文献   

17.
Many studies have observed changes in the frequency and intensity of precipitation extremes and floods during the last decade(s). Natural variability by climate oscillations partly determines the observed evolution of precipitation extremes. Based on a technique for the identification and analysis of changes in extremes, this paper shows that precipitation extremes have oscillatory behaviour at multidecadal time scales. The analysis is based on a unique dataset of 108 years of 10-minute precipitation intensities at Uccle (Brussels), not affected by instrumental changes. We also checked the consistency of the findings with long precipitation records at 724 stations across Europe and the Middle East. The past 100 years show for northwestern Europe, both in winter and summer, larger and more precipitation extremes around the 1910s, 1950–1960s, and more recently during the 1990s–2000s. The oscillations for southwestern Europe are anti-correlated with these of northwestern Europe, thus with oscillation highs in the 1930–1940s and 1970s. The precipitation oscillation peaks are explained by persistence in atmospheric circulation patterns over the North Atlantic during periods of 10 to 15 years.  相似文献   

18.
The issue of whether the secular climate (twentieth century) is stationary or changing to some new semi-permanent state is clouded by the presence of so-called climate fluctuations. The twentieth century climate record of the United States reveals a substantial number of decadal fluctuations which occur in all seasons for both temperature and precipitation. Recent examples of such behavior include changes in winter and summer temperature variability and increases in transition season precipitation. Statistical evidence suggests that a substantial portion of these fluctuations, even those which are remarkably unusual, are merely manifestations of a stochastic process which possesses weak year-to-year persistence as viewed from an a posteriori perspective. The implications of this result are particularly important with respect to the formulation of physical causes of the fluctuations. The results emphasize the desirability of well-founded clearly-stated a priori theories of climate change as well as the limited usefulness of widely used climate normals.  相似文献   

19.
Sahelian rainfall has recorded a high variability during the last century with a significant decrease (more than 20 %) in the annual rainfall amount since 1970. Using a linear regression model, the fluctuations of the annual rainfall from the observations over Burkina Faso during 1961–2009 period are described through the changes in the characteristics of the rainy season. The methodology is then applied to simulated rainfall data produced by five regional climate models under A1B scenario over two periods: 1971–2000 as reference period and 2021–2050 as projection period. As found with other climate models, the projected change in annual rainfall for West Africa is very uncertain. However, the present study shows that some features of the impact of climate change on rainfall regime in the region are robust. The number of the low rainfall events (0.1–5 mm/d) is projected to decrease by 3 % and the number of strong rainfall events (>50 mm/d) is expected to increase by 15 % on average. In addition, the rainy season onset is projected by all models to be delayed by one week on average and a consensus exists on the lengthening of the dry spells at about 20 %. Furthermore, the simulated relationship between changed annual rainfall amounts and the number of rain days or their intensity varies strongly from one model to another and some changes do not correspond to what is observed for the rainfall variability over the last 50 years.  相似文献   

20.
The ability of a large ensemble of regional climate models to accurately simulate heat waves at the regional scale of Europe was evaluated. Within the EURO-CORDEX project, several state-of-the art models, including non-hydrostatic meso-scale models, were run for an extended time period (20 years) at high resolution (12 km), over a large domain allowing for the first time the simultaneous representation of atmospheric phenomena over a large range of spatial scales. Eight models were run in this configuration, and thirteen models were run at a classical resolution of 50 km. The models were driven with the same boundary conditions, the ERA-Interim re-analysis, and except for one simulation, no observations were assimilated in the inner domain. Results, which are compared with daily temperature and precipitation observations (ECA&D and E-OBS data sets) show that, even forced by the same re-analysis, the ensemble exhibits a large spread. A preliminary analysis of the sources of spread, using in particular simulations of the same model with different parameterizations, shows that the simulation of hot temperature is primarily sensitive to the convection and the microphysics schemes, which affect incoming energy and the Bowen ratio. Further, most models exhibit an overestimation of summertime temperature extremes in Mediterranean regions and an underestimation over Scandinavia. Even after bias removal, the simulated heat wave events were found to be too persistent, but a higher resolution reduced this deficiency. The amplitude of events as well as the variability beyond the 90th percentile threshold were found to be too strong in almost all simulations and increasing resolution did not generally improve this deficiency. Resolution increase was also shown to induce large-scale 90th percentile warming or cooling for some models, with beneficial or detrimental effects on the overall biases. Even though full causality cannot be established on the basis of this evaluation work, the drivers of such regional differences were shown to be linked to changes in precipitation due to resolution changes, affecting the energy partitioning. Finally, the inter-annual sequence of hot summers over central/southern Europe was found to be fairly well simulated in most experiments despite an overestimation of the number of hot days and of the variability. The accurate simulation of inter-annual variability for a few models is independent of the model bias. This indicates that internal variability of high summer temperatures should not play a major role in controlling inter-annual variability. Despite some improvements, especially along coastlines, the analyses conducted here did not allow us to generally conclude that a higher resolution is clearly beneficial for a correct representation of heat waves by regional climate models. Even though local-scale feedbacks should be better represented at high resolution, combinations of parameterizations have to be improved or adapted accordingly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号