首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Interaction between basaltic melts and peridotites has played an important role in modifying the lithospheric and asthenospheric mantle during magma genesis in a number of tectonic settings. Compositions of basaltic melts vary considerably and may play an important role in controlling the kinetics of melt–peridotite interaction. To better understand the effect of melt composition on melt–peridotite interaction, we conducted spinel lherzolite dissolution experiments at 2 GPa and 1,425 °C using the dissolution couple method. The reacting melts include a basaltic andesite, a ferro-basalt, and an alkali basalt. Dissolution of lherzolite in the basaltic andesite and the ferro-basalt produced harzburgite–lherzolite sequences with a thin orthopyroxenite layer at the melt–harzburgite interface, whereas dissolution of lherzolite in the alkali basalt produced a dunite–harzburgite–lherzolite sequence. Systematic variations in mineral compositions across the lithological units are observed. These mineral compositional variations are attributed to grain-scale processes that involve dissolution, precipitation, and reprecipitation and depend strongly on reacting melt composition. Comparison of mineral compositional variations across the dissolution couples with those observed in mantle xenoliths from the North China Craton (NCC) helps to assess the spatial and temporal variations in the extent of siliceous melt and peridotite interaction in modifying the lithospheric mantle beneath the NCC. We found that such melt–rock interaction mainly took place in Early Cretaceous, and is responsible for the enrichment of pyroxene in the lithospheric mantle. Spatially, siliceous melt–peridotite interaction took place in the ancient orogens with thickened lower crust.  相似文献   

2.
The Cenozoic Haoti kamafugite field (23 Ma) is situated at the western Qinling Orogen, Gansu Province in China, which is a conjunction region of the North China Craton, the Yangtze Craton and the Tibetan Plateau. Fresh peridotitic xenoliths entrained in these volcanic rocks provide an opportunity to study the nature and processes of the lithospheric mantle beneath the western Qinling. These xenoliths can be divided into two groups based on the petrological features and mineral compositions, type 1 and type 2. Type 1 xenoliths with strongly deformed texture have higher Fo (90–92.5) contents in olivines, Mg# (91–94) and Cr# (15–35) of clinopyroxenes, and Cr# (36–67) of spinels than the weakly deformed type 2 xenoliths, which have the corresponding values of 89–90, 89–91.5, 10–15 and 5–15 in minerals, respectively. CaO contents in fine-grained olivines are slightly higher than 0.10 wt% compared with coarse-grained ones (less than 0.10 wt%). Fine-grained clinopyroxenes have low Al2O3 + CaO contents (generally <23 wt%) relative to coarse-grained ones (>23 wt%). Fo contents in fine-grained olivines mainly in the melt pocket of the type 1 xenoliths are higher than those in coarse-grained ones, which is somewhat contrary to the type 2 xenoliths without melt pocket. Clinopyroxenes of the type 2 display higher Na2O contents (1.7–1.9 wt%) than those of the type 1 (<1.4 wt%). P–T estimations reveal that the type 1 xenoliths give temperature in range of 1106–1187 °C and pressure of 21–26 kbar and that relatively low temperature (907 and 1022 °C) and pressure (19.0 and 18.5 kbar) for the type 2 xenoliths. The type 1 xenoliths are characterized by depletion due to high degree of partial melting (>10%), modal metasomatic and deformed characteristics, and may represent the old refractory lithospheric mantle. In contrast, the type 2 peridotites show fertile features with low degree of partial melting (<5%) and may represent the newly-accreted lithospheric mantle. The lithospheric mantle beneath the western Qinling underwent partial melting, recrystallization, deformation and metasomatism due to asthenospheric upwelling and the latest decompression responding to the Cenozoic extensive tectonic environment. These processes perhaps are closely related to the evolution of Tibetan Plateau caused by the India-Asian collision.  相似文献   

3.
It is generally believed that the lithospheric mantle and the mantle transition zone are important carbon reservoirs. However, the location of carbon storage in Earth’s interior and the reasons for carbon enrichment remain unclear. In this study, we report CO2-rich olivine-hosted melt inclusions in the mantle xenoliths of late Cenozoic basalts from the Penglai area, Hainan Province, which may shed some light on the carbon enrichment process in the lithospheric mantle. We also present ...  相似文献   

4.
Geochemical characteristics of spinel lherzolite xenoliths, enclosed in Miocene alkali basalt from Boeun, Korea, provide important clues for understanding the lithosphere composition, equilibrium temperature and pressure conditions, and depletion and enrichment processes of subcontinental lithospheric mantle beneath Boeun. The spinel lherzolite xenoliths with protogranular to porpyroclastic textures were accidentally trapped by the ascending alkali basalt magma. The spinel lherzolite xenoliths originated at depths between 50 and 63 km with equilibrium temperatures ranging from 847 to 1030 °C. These xenoliths may have undergone small degrees (1–2%) of partial melting and cryptic metasomatism by an alkali basaltic melt. Based on Sr and Nd isotope compositions, the subcontinental lithospheric mantle beneath Boeun was heterogeneous and similar to that beneath East China and Central Mongolia rather than the Japanese Island Arc.  相似文献   

5.
鲁西中生代辉长-闪长质岩石中纯橄岩捕虏体的岩石学、矿物化学及微量元素地球化学研究表明,纯橄岩捕虏体代表了古老岩石圈地幔的残留;地幔纯橄岩捕虏体中存在两种类型的交代作用,一是以填隙型金云母为代表的早期富含CO_2和H_2O的不活动流体的交代作用;二是以斜方辉石交代脉和网络状斜方辉石为代表的晚期富硅质熔(流)体的交代作用。后者代表了起源于软流圈的富硅质熔(流)体对古老岩石圈地幔的一种化学侵蚀。这对认识华北地块东部中生代岩石圈地幔的性质以及岩石圈减薄机制具有重要意义。  相似文献   

6.
Mafic granulite and pyroxenite xenoliths from Cenozoic alkaline basalts at Hannuoba, Hebei Province, North China have been selected for a systematic geochemical and Sr–Nd–Pb isotopic study, which provides a unique opportunity to explore nature of the lower crust and the interaction between the continental crust and lithospheric mantle beneath an Archean craton. The major, compatible and incompatible elements and radiogenic isotopes of these xenoliths suggest great chemical heterogeneity of the lower crust beneath the Hannuoba region. Petrological and geochemical evidences indicate a clear cumulate origin, and most likely, they are related to basaltic underplating in different geological episodes. However, the Sr–Nd–Pb isotopic compositions of the xenoliths reveal a profound enriched source signature (EM I) with some influence of EM II, which implies that some portion of pre-existing, old metasomatized subcontinental lithospheric mantle could have played an important role in their genesis. It is suggested that the interaction between continental crust and subcontinental mantle as manifested by basaltic underplating would be closely related to regional tectonic episodes and geodynamic processes in the deep part of subcontinental lithospheric mantle.  相似文献   

7.
Anhydrous spinel lherzolite and harzburgite xenoliths from Tres Lagos, situated inboard of the Volcanic Arc Gap (VAG) in southernmost Patagonia, are samples of a depleted lithospheric mantle and can be divided into two major groups: metasomatized and non-metasomatized. Metasomatized samples, which are the minority, are partly mylonitized and their metasomatism is related to this tectonic process. A group of non-metasomatized samples have enriched whole rock LREE-abundances that are not consistent with the depleted LREE-abundances in their clinopyroxenes. Intergranular host basalt infiltration could be responsible for the whole rock LREE enrichments. Their Sr- and Nd-isotopic ratios have also been affected by host basalt infiltration, whereas their high Sr-isotopic ratios point to subsequent contamination by ground-water and/or Ca-rich surface solutions. Similar contamination is thought to cause the decoupling of Sr- and Nd-isotopes (high Sr- and Nd-isotopic ratios) observed in the non-metasomatized samples with depleted whole rock LREE. A two-stage partial melting process could be responsible for the origin of the Tres Lagos xenoliths. Model calculations have shown that in the first stage, 2% of batch melting took place in the garnet peridotite field and subsequently the residue experienced 2–8% batch melting in the spinel peridotite field. The Tres Lagos peridotites have not been affected by subduction-related metasomatic processes and they could represent an old lithospheric mantle.  相似文献   

8.
The Shanwang and Qixia basalts lie within the North China block and were erupted in Miocene to Pliocene time (18.1 to 4.3 Ma) and Pliocene time (6.4 to 5.9 Ma), respectively. The Shanwang area lies astride the Tancheng-Lujiang (Tanlu) fault zone, a major lithospheric fault, whereas the Qixia area lies east of the fault zone. The basaltic rocks (alkali olivine basalts, basanites, nephelinites) carry abundant deep-seated xenoliths including spinel lherzolite (dominant), dunite, and pyroxenite, and a megacryst suite including augite, anorthoclase, phlogopite, ilmenite, and garnet. Xenoliths with coarse-grained microstructures are common in the Qixia xenolith suite, but are absent in Shanwang. Reconstructed bulk compositions of the lherzolites range from relatively depleted (<3% modal diopside) to fertile (>12% modal diopside). Equilibration temperatures of 850° to 1020°C indicate entrainment of these lherzolites from depths ≤45 km, within the lithosphere; the geotherm may have been higher beneath Shanwang. The Shanwang suite contains less-depleted lherzolites, and more pyroxenites, than the Qixia suite. The chondrite-normalized REE patterns in clinopyroxenes of the Shandong xenoliths vary from LREE depleted, through concave shaped, to LREE enriched; spidergrams for the clinopyroxenes can be divided into depleted, fertile, and metasomatic types. Progressive depletion in Na and Al is accompanied by depletion in moderately incompatible elements such as Y, Yb, and Zr, and an increase in Mg#. Ti and Zr in clinopyroxenes have not been affected by the metasomatic process, and MREE have been little disturbed, whereas the light rare-earth elements, Nb, and Sr have been strongly enriched during metasomatism; this suggests that carbonate-rich fluids/melts were the metasomatic agent. The mantle beneath the Shandong Peninsula sampled by these basalts is dominantly Phanerozoic in character rather than Archean or Proterozoic lithospheric mantle. This mantle probably represents a mixture of older lithospheric mantle and newly accreted material that replaced the Archean lithospheric keel through extension, thermal erosion, and fluid/melt metasomatism. The differences in micro-structures, chemistry, temperature, and fluid/melt activity between Shanwang and Qixia are ascribed to their spatial relationships to the Tanlu fault, which is a major translithospheric suture that hasplayed an important role in the Cenozoic replacement of the pre-existing Archean lithospheric mantle.  相似文献   

9.
运用电子探针(EMP)和激光熔蚀等离子体质谱(LA-ICPMS)对湖南宁远早侏罗世玄武岩中的橄榄岩包体矿物进行了主要元素和微量元素的系统分析,结果表明这些橄榄岩是经历了小程度部分熔融的原始地幔残留,并经历了后期交代作用的影响,硅酸盐熔体可能是重要的交代介质。运用显微傅立叶变换红外光谱技术(Micro-FTIR)对宁远橄榄岩中的单斜辉石和斜方辉石进行了详细的观察,结果显示两种辉石均含有以OH缺陷形式存在的结构水,其含量(H2O的质量分数,下同)分别为147×10-6~461×10-6和40×10-6~126×10-6。根据矿物百分含量计算的全岩水含量为34×10-6~108×10-6,除1个样品外,其余样品的水含量均50×10-6。结合文献中的资料看来,由橄榄岩包体所代表的宁远中生代岩石圈地幔的含水量要明显高于华北克拉通新生代岩石圈地幔的含水量(多30×10-6)。宁远中生代岩石圈地幔和华北新生代岩石圈地幔之间的差异反映的可能是中国东部岩石圈地幔含水性的时代演化,即伴随着岩石圈减薄的进行,上涌软流圈的热烘烤使得岩石圈地幔的水含量不断降低。  相似文献   

10.
Protogranular spinel-peridotite mantle xenoliths and their host sodic alkaline lavas of Cretaceous to Paleogene age occur at the same latitude ≈26°S in central eastern Paraguay and Andes. Na- alkaline lavas from both regions display similar geochemical features, differing mainly by higher Rb content of the Paraguayan samples. Sr, Nd, and Pb isotope ratios are also similar with predominant trends from depleted to enriched mantle components. The mantle xenoliths are divided into two main suites, i.e. relatively low in potassium and incompatible elements, and high in potassium and incompatible elements. The suite high in potassium occurs only in Paraguay. Compositions of both suites range from lherzolite to dunite indicating variable “melt extraction”. Clinopyroxenes from the xenoliths display variable trace element enrichment/depletion patterns compared with the pattern of average primitive mantle. Enrichment in LREE and Sr coupled with depletion of Nb, Ti and Zr in xenoliths from both areas are attributed to asthenospheric metasomatic fluids affecting the lithospheric mantle. Metasomatism is apparent in the sieve textures and glassy drops in clinopyroxenes, by glassy patches with associated primary carbonates in Paraguayan xenoliths. Trace element geochemistry and thermobarometric data indicate lack of interaction between xenoliths and host lavas, due to their rapid ascent. Sr and Nd isotope signatures of the Andean and Paraguayan xenoliths and host volcanic rocks plot mainly into the field of depleted mantle and show some compositional overlap. The Andean samples indicate a generally slightly more depleted mantle lithosphere. Pb isotope signatures in xenoliths and host volcanic rocks indicate the existence of a radiogenic Pb source (high U/Pb component in the source) in both areas. In spite of the distinct tectonic settings, generally compressive in the Central Andes (but extensional in a back-arc environment), and extensional in Eastern Paraguay (rifting environment in an intercratonic area), lavas and host xenoliths from both regions are similar in terms of geochemical and isotopic characteristics.  相似文献   

11.
This paper presents an updated review of recent field/structural and petrologic/geochemical studies on orogenic peridotites from the Alpine–Apennine ophiolites (NW Italy). Results provide determinant constraints to the evolution of the lithospheric mantle during passive rifting of the fossil Ligurian Tethys oceanic basin.The pre-rift, spinel lherzolites precursors, preserved in the mantle section of the Ligurian ophiolites, were resident in the lithosphere along an intermediate geothermal gradient (T about 1000 °C, P compatible with spinel-peridotite facies). Passive rifting by far-field tectonic forces induced whole-lithosphere extension and thinning (the a-magmatic stage). After significant thinning of the lithosphere, the passively upwelling asthenosphere underwent decompression melting along the axial zone of extension. Silica-undersaturated melt fractions infiltrated via diffuse/focused porous-flow through the lithospheric mantle under extension (the magmatic stage) and underwent pyroxenes-dissolving/olivine-crystallizing interaction with the percolated host peridotite.Pyroxenes assimilation and olivine deposition modified the melt compositions into silica-saturated. These derivative liquids migrated to shallower, plagioclase-peridotite facies levels, where they stagnated and impregnated/refertilized the lithospheric mantle. Melt thermal advection by melt infiltration heated to temperatures higher than 1200 °C the lithospheric mantle column above the melting asthenosphere.The syn-rift magmatic and tectonic processes induced significant rheological softening/weakening that destabilized the lithospheric mantle of the Europe–Adria plate along the axial zone of extension. The presence of destabilized lithospheric mantle between the future continental margins played a determinant role in promoting the geodynamic evolution from pre-oceanic rifting to oceanic spreading.The active upwelling of hotter/deeper asthenosphere inside the destabilized axial zone promoted transition to active rifting, enhancing continent break-up. Asthenosphere underwent partial melting and formed aggregated MORB liquids that migrated inside high-porosity dunite channels. The MORB liquids formed olivine-gabbro intrusions and pillowed lava flows (the oceanic crustal rocks).This paper evidences the primary role of mantle destabilization by melt infiltration in the geodynamic evolution of the Ligurian Tethys rifting.  相似文献   

12.
Mantle xenoliths from Hainan and Qilin, South China have been studied to constrain the nature of the upper mantle and mantle processes beneath a continental margin. The extremely low Ti (160–245 ppm) contents in clinopyroxenes from some spinel lherzolites, indicative of high degrees of partial melting are inconsistent with the relatively high clinopyroxene modes (7.4–13%) in these samples. This inconsistency could be due to polybaric melting that started in the garnet stability field, then, after the breakdown of garnet to pyroxene and spinel, continued in the spinel stability field. Polybaric melting, due to adiabatic decompression of upwelling mantle, would leave a residual mantle in which the degree of depletion decreases with depth. The predicted stratified lithospheric mantle is evidenced by the negative correlation between the forsterite content in olivine and the equilibration temperature, proportional to the depth in the lithosphere from which the xenolith was derived. The lower part of the lithospheric mantle beneath South China consists predominantly of fertile and moderately depleted peridotites, which are either devoid of LREE enrichment, or show the trace element signature of incipient metasomatism, and plot within the Phanerozoic mantle domain. In contrast, the upper part of the mantle contains harzburgite and cpx-poor lherzolite, which are strongly affected by metasomatism of melt/fluid of highly variable composition. The anomalously high orthopyroxene mode (up to 47%) makes some of these refractory samples compositionally similar to the Proterozoic/Archean mantle. Their low equilibrium temperature (800–900 °C) points to the presence of old lithospheric relicts in the uppermost mantle beneath South China. Such lithosphere architecture may have resulted from partial replacement of Archean–Proterozoic lithosphere by asthenosphere that rose adiabatically subsequent to lithospheric thinning during the Cenozoic.  相似文献   

13.
Mantle xenoliths hosted in Miocene-Quaternary mafic alkaline volcanic rocks from Sardinia have been investigated with electron microprobe, laser ablation microprobe-inductively coupled plasma-mass spectrometry and thermal ionization mass spectrometry techniques. The xenoliths are anhydrous clinopyroxene-poor lherzolites and harzburgites, plus very rare websterites and olivine-websterites. Glassy pods having thin subhedral to euhedral microlites of olivine, clinopyroxene and spinel have been found in harzburgites and websterites. Clinopyroxene shows trace element variability, with values of (La/Yb)N ranging from sub-chondritic (0.01) to supra-chondritic (8.6). The Sr–Nd isotopic ratios of the clinopyroxenes fall mostly in the field of the European lithospheric mantle xenoliths (87Sr/86Sr from 0.70385 to 0.70568 and 143Nd/144Nd ranging from 0.512557 to 0.512953). The geochemical characteristics of the Sardinian xenoliths testify to the variable degrees of earlier partial melt extraction, followed by metasomatic modification by alkaline melts or fluids. Websterites are considered to represent small lenses or veins of cumulitic (i.e. magmatic) origin within the mantle peridotite.  相似文献   

14.
刘金霖  李怀滨  王建  张云峰 《岩石学报》2021,37(7):2073-2085
在大兴安岭北部的诺敏和科洛地区的新生代玄武岩中发现了尖晶石相的橄榄岩包体。地幔橄榄岩中橄榄石的Mg~#说明了研究区上地幔具有部分难熔的特点。在橄榄石含量与Fo图解中,有一部分橄榄岩包体落在太古代和元古代的地幔区域,揭示了研究区的岩石圈地幔存在古老岩石圈地幔的残余。研究区方辉橄榄岩与二辉橄榄岩有显示高氧逸度值FMQ+1.95~3.01,这与一般情况下相对还原的古老岩石圈地幔的低氧逸度值形成鲜明对比,可能为古生代的古亚洲洋以及中生代的古太平洋相继俯冲到了兴蒙造山带之下,导致当时岩石圈地幔的氧化所致。在地幔包体的反应边中发现了富钾熔体(K20 1%-6%),这被认为研究区地幔经历了多期富钾流体活动,富钾流体的来源可能与俯冲再循环的壳源物质有关。  相似文献   

15.
高山  刘勇胜 《地学前缘》2003,10(3):61-67
测定了辽宁复县奥陶纪金伯利岩和河北汉诺坝与山东栖霞第三纪碱性玄武岩中产出的地幔包体的Re Os同位素组成。金伯利岩中地幔包体的Re贫化Os同位素模式年龄 (TRD)为 2 .5~ 2 .8Ga ,从Re Os同位素定年角度证明了华北克拉通确实存在太古宙岩石圈地幔。对汉诺坝二辉橄榄岩包体获得了 (1.9± 0 .18)Ga的Re Os同位素等时线年龄 ,表明现今保存在那里的地幔主要是古元古代时形成的。汉诺坝地区出露有大量新太古代岩石 ,表明曾存在太古宙地幔。由于缺乏太古宙年龄 ,说明由汉诺坝所代表的克拉通中部曾存在的太古宙地幔在古元古代时已被减薄 ,并被 1.9Ga的新生岩石圈地幔置换。该事件与华北克拉通中部广泛的古元古代碰撞造山过程导致的麻粒岩相变质作用的时代相同 ,说明有关的岩石圈置换作用可能主要与拆沉作用有关。栖霞地幔包体具有与现代对流地幔相同的Os同位素组成 ,且Os同位素组成与Re/Os比值没有明显相关性 ,表明年龄很新。结合其它地质地球化学证据 ,说明克拉通东部的太古宙岩石圈地幔的置换作用主要发生在中生代 ,且可能与三叠纪华北和扬子陆块的陆陆碰撞造山导致的岩石圈地幔和下地壳的拆沉作用有关。本研究表明华北克拉通岩石圈地幔置换作用在时空上的分布是十分不均一的。 2 .5~ 2 .8Ga与 1.9Ga不仅?  相似文献   

16.
In situ trace element analyses of constituent minerals in mantle xenoliths occurring in an alnöite diatreme and in nephelinite plugs emplaced within the central zone of the Damara Belt have been determined by laser ablation ICP-MS. Primitive mantle-normalized trace element patterns of clinopyroxene and amphibole indicate the presence of both depleted MORB-like mantle and variably enriched mantle beneath this region. Clinopyroxenes showing geochemical depletion have low La/Smn ratios (0.02–0.2), whereas those showing variable enrichment have La/Smn ranging up to 3.8 and La/Ybn to 9.1. The most enriched clinopyroxenes coexist with amphibole showing similar REE patterns (La/Smn = 1.3–4.1; La/Ybn = 4.5–9). Primitive mantle-normalized trace element patterns allow further groups to be distinguished amongst the variably enriched clinopyroxenes: one having strong relative depletion in Rb–Ba, Ta–Nb and relative enrichment in Th–U; another with similar characteristics but with additional strong relative depletion in Zr–Hf; and one showing no significant anomalies. Amphiboles show similar normalized trace element patterns to co-existing clinopyroxene. Clinopyroxene and amphiboles showing LREEN enrichment have high Sr and low Nd isotope ratios compared to clinopyroxene with LREE-depleted patterns. Numerical simulation of melt percolation through the mantle via reactive porous flow is used to show that the chromatographic affect associated with such a melt migration process is able to account for the fractionation seen in La–Ce–Nd in cryptically metasomatized clinopyroxenes in Type 1 xenoliths, where melt–matrix interactions occur near the percolation front, whereas REE patterns in clinopyroxenes proximal to the source of metasomatic melt/fluid match those found in modally metasomatized Type 2 xenoliths. The strong fractionation between Rb–Ba, Th–U and Ta–Nb shown by some cryptically metasomatized xenoliths can be also accounted for by reactive porous flow, provided amphibole crystallizes from the percolating melt/fluid close to its source. The presence of amphibole in vein-like structures in some xenoliths is consistent with this interpretation. The strong depletion in Zr–Hf in clinopyroxene and amphibole in some xenoliths cannot be accounted for by melt migration processes and requires metasomatism by a separate carbonate-rich melt/fluid. When taken together with published isotope data on these same xenoliths, the source of metasomatic enrichment of the previously depleted (MORB-like) sub-Damaran lithospheric mantle is attributed to the upwelling Tristan plume head at the time of continental breakup.  相似文献   

17.
The petrology and geochemistry of peridotite xenoliths in the Cenozoic basalts from Fanshi, the central North China Craton (NCC), provide constraints on the evolution of sub-continental lithospheric mantle. These peridotite xenoliths are mainly spinel-facies lherzolites with minor harzburgites. The lherzolites are characterized by low forsterite contents in olivines (Fo < 91) and light rare earth element (LREE) enrichments in clinopyroxenes. In contrast, the harzburgites are typified by high-Fo olivines (> 91), high-Cr# spinels and clinopyroxenes with low abundances of heavy REE (HREE). These features are similar to those from old refractory lithospheric mantle around the world, and thus interpreted to be relics of old lithospheric mantle. The old lithospheric mantle has been chemically modified by the influx of melts, as evidenced by the Sr–Nd isotopic compositions of clinopyroxenes and relatively lower Fo contents than typical Archean lithospheric mantle (Fo > 92.5). The Sr–Nd isotopic compositions of harzburgites are close to EM1-type mantle, and of the lherzolites are similar to bulk silicate earth. The latter could be the result of recent modification of old harzburgites by asthenospheric melt, which is strengthened by fertile compositions of minerals in the lherzolites. Therefore, the isotopic and chemical heterogeneities of the Fanshi peridotite xenoliths reflect the refertilization of ancient refractory lithospheric mantle by massive addition of asthenospheric melts. This may be an important mechanism for the lithospheric evolution beneath the Central NCC.  相似文献   

18.
The petrological characteristics of peridotite xenoliths exhumedfrom the lithospheric mantle below the Western Pacific arcs(Kamchatka, NE Japan, SW Japan, Luzon–Taiwan, New Irelandand Vanuatu) are reviewed to obtain an overview of the supra-subductionzone mantle in mature subduction systems. These data are thencompared with those for peridotite xenoliths from recent orolder arcs described in the literature (e.g. New Britain, WesternCanada to USA, Central Mexico, Patagonia, Lesser Antilles andPannonian Basin) to establish a petrological model of the lithosphericmantle beneath the arc. In currently active volcanic arcs, thedegree of partial melting recorded in the peridotites appearsto decrease away from the fore-arc towards the back-arc region.Highly depleted harzburgites, more depleted than abyssal harzburgites,occur only in the frontal arc to fore-arc region. The degreeof depletion increases again to a degree similar to that ofthe most depleted abyssal harzburgites within the back-arc extensionalregion, whether or not a back-arc basin is developed. Metasomatismis most prominent beneath the volcanic front, where the magmaproduction rate is highest; silica enrichment, involving themetasomatic formation of secondary orthopyroxene at the expenseof olivine, is important in this region because of the additionof slab-derived siliceous fluids. Some apparently primary orthopyroxenes,such as those in harzburgites from the Lesser Antilles arc,could possibly be of this secondary paragenesis but have beenrecrystallized such that the replacement texture is lost. TheTi content of hydrous minerals is relatively low in the sub-arclithospheric mantle peridotites. The K/Na ratio of the metasomatichydrous minerals decreases rearward from the fore-arc mantleas well as downward within the lithospheric mantle. The lithosphericmantle wedge peridotites, especially metasomatized ones frombelow the volcanic front, are highly oxidized. Shearing of themantle wedge is expected beneath the volcanic front, and isrepresented by fine-grained peridotite xenoliths. KEY WORDS: mantle wedge; lithospheric mantle; peridotite xenoliths; melting; metasomatism  相似文献   

19.
Composite mantle xenoliths from the Cima Volcanic Field (CA, USA) contain glassy veins that cross-cut lithologic layering and preserve evidence of lithospheric melt infiltration events. Compositions and textures of minerals and glasses from these veins have the potential to place constraints on the rates and extents of reaction during infiltration. We studied glass-bearing regions of two previously undescribed composite xenoliths, including optical petrography and chemical analysis for major and trace elements by electron probe microanalysis and laser-ablation inductively coupled plasma mass spectrometry. The petrogenetic history of each vein involves melt intrusion, cooling accompanied by both wall-rock reaction and crystallization, quench of melt to a glass, and possibly later modifications. Exotic secondary olivine crystals in the veins display concentric phosphorus (P)-rich zoning, P-rich glass inclusions, and zoning of rapidly diffusing elements (e.g., Li) that we interpret as records of rapid disequilibrium events and cooling rates on the order of 10 °C/h. Nevertheless, thermodynamic modeling of the diversity of glass compositions recorded in one of the samples demonstrates extensive reaction with Mg-rich olivine from the matrix before final quench. Our results serve as a case study of methods for interpreting the rates and processes of lithospheric melt-rock reactions in many continental and oceanic environments.  相似文献   

20.
Peridotite xenoliths erupted by alkali basaltic volcanoes in the western Pannonian Basin can be divided into two fundamentally contrasting groups. Geochemical characteristics of the abundant protogranular, porphyroclastic and equigranular nodules suggest that these samples originate from an old consolidated and moderately depleted lithospheric mantle domain. In contrast, the geochemical features of the worldwide rare, but in the Pannonian Basin relatively abundant, poikilitic xenoliths attest to a more complex evolution. It has been argued that the origin of the peculiar texture and chemistry may be intimately linked to melt/rock reactions at successively decreasing liquid volumes in a porous melt flow system. The most likely site where such reactions can take place is the asthenosphere–lithosphere boundary. In this context, poikilitic xenoliths may provide petrological and geochemical evidence for reactions between magmatic liquids issued from the uprising asthenosphere and the solid mantle rocks of the lithosphere. These reactions are important agents of the thermal erosion of the lithosphere; thus, they could have considerably contributed to the thinning of the lithosphere in the Pannonian region. We suggest that in the Pannonian Basin, there could be a strong relation between the unusual abundance of poikilitic mantle xenoliths and the strongly eroded lithosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号