首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Applied Geochemistry》2005,20(4):749-766
A synthesis of Sr isotope data from shallow and deep groundwaters, and brines from the Fennoscandian and Canadian Shields is presented. A salinity gradient is evident in the water with concentrations varying from approximately 1–75 g L−1 below 1500 m depth in the Fennoscandian Shield and from 10 up to 300 g L−1 below 650 m depth in the Canadian Shield. Strontium isotope ratios were measured to assess the origin of the salinity and evaluate the degree of water–rock interaction in the systems. In both shields, the Sr concentrations are enriched relative to Cl, defining a positive trend parallel to the seawater dilution line and indicative of Sr addition through weathering processes. The depth distribution for Sr concentration increases strongly with increasing depth in both shields although the variation in Sr-isotope composition does not mirror that of Sr concentrations. Strontium-isotope compositions are presented for surface waters, and groundwaters in several sites in the Fennoscandian and Canadian Shields. Numerous mixing lines can be drawn reflecting water–rock interaction. A series of calculated lines links the surface end-members (surface water and shallow groundwater) and the deep brines; these mixing lines define a range of 87Sr/86Sr ratios for the deep brines in different selected sites. All sites show a specific 87Sr/86Sr signature and the occurrence of large 87Sr/86Sr variations is site specific in both shields. In Canadian Shield brines, the Sr isotope ratios clearly highlight large water rock interaction that increases the 87Sr/86Sr ratio from water that could have been of marine origin. In contrast to the Canadian Shield, groundwater does not occur in closed pockets in the Fennoscandian, and the well-constrained 87Sr/86Sr signatures in deep brines should correspond to a large, well-mixed and homogeneous water reservoir, whose Sr isotope signature results from water–rock interaction.  相似文献   

2.
Large quantities of highly saline brine flow from gas wells in the Marcellus Formation after hydraulic stimulation (“fracking”). This study assesses the composition of these flowback waters from the Marcellus shale in Pennsylvania, USA. Concentrations of most inorganic components of flowback water (Cl, Br, Na, K, Ca, Mg, Sr, Ba, Ra, Fe, Mn, total dissolved solids, and others) increase with time from a well after hydraulic stimulation. Based on results in several datasets reported here, the greatest concentration of Cl in flowback water is 151,000 mg/L. For total Ra (combined 226Ra and 228Ra) in flowback, the highest level reported is 6540 pCi/L. Flowback waters from hydraulic fracturing of Marcellus wells resemble brines produced from conventional gas wells that tap into other Paleozoic formations in the region. The Br/Cl ratio and other parameters indicate that both types of brine formed by the evaporation of seawater followed by dolomitization, sulfate reduction and subsurface mixing with seawater and/or freshwater. Trends and relationships in brine composition indicate that (1) increased salt concentration in flowback is not mainly caused by dissolution of salt or other minerals in rock units, (2) the flowback waters represent a mixture of injection waters with highly concentrated in situ brines similar to those in the other formations, and (3) these waters contain concentrations of Ra and Ba that are commonly hundreds of times the US drinking water standards.  相似文献   

3.
《Applied Geochemistry》1998,13(5):651-671
Highly saline fluids were encountered during the German Continental Deep Drilling Project (KTB) from depths ranging between 2 and 3 km to about 9 km. The most reliable data were obtained from samples extracted during a long-term pumping test in the 4000-m deep KTB pilot hole. Some 460 m3 Ca–Na–Cl brines with about 68 g l−1 total dissolved solids (TDS) and some 270 m3 associated gases, mainly N2 and CH4 were pumped to the surface from the main fracture system situated near the bottom of the pilot hole. Geochemical and isotopic data support the hydraulic tests which suggest the presence of an open and large fluid reservoir at depth. The pumped fluids from this main fracture system were released from a deep reservoir situated at more than 5500 m depth which is hydraulically connected with the 9101 m deep KTB main hole, drilled some 250 m to the northeast of the pilot hole.While Ca and Sr contents of the extracted brines may be the result of water–rock interaction, Cl is most likely of external origin. The Cl is hypothesized to derive from geotectonic processes rather than to descending infiltration of paleo-seawater (evaporitic brines). The sampled fluids have probably migrated from a deeper reservoir to their present position since the Cretaceous–Tertiary period due to tectonic activity. However, several isotopic studies have identified an admixture of descending paleowaters down to more than 4000 m depth. The high 36Cl/Cl ratio of the fluids sampled during the long-term pumping test point to a host rock highly enriched in U–Th, unlike the sampled KTB country rocks. The fluid reservoir is believed to be in contact with the Falkenberg granite massif situated about 2 km to the E of the KTB holes, capable of supplying sufficient neutron flux for considerable subsurface production of 36Cl. The Na–Cl–(K-, SO4) precursor fluids of the Ca–Na–Cl brines were produced in the course of extensive tectonic processes since the Late Caledonian within the Bohemian Massif.  相似文献   

4.
Exploration of unconventional natural gas reservoirs such as impermeable shale basins through the use of horizontal drilling and hydraulic fracturing has changed the energy landscape in the USA providing a vast new energy source. The accelerated production of natural gas has triggered a debate concerning the safety and possible environmental impacts of these operations. This study investigates one of the critical aspects of the environmental effects; the possible degradation of water quality in shallow aquifers overlying producing shale formations. The geochemistry of domestic groundwater wells was investigated in aquifers overlying the Fayetteville Shale in north-central Arkansas, where approximately 4000 wells have been drilled since 2004 to extract unconventional natural gas. Monitoring was performed on 127 drinking water wells and the geochemistry of major ions, trace metals, CH4 gas content and its C isotopes (δ13CCH4), and select isotope tracers (δ11B, 87Sr/86Sr, δ2H, δ18O, δ13CDIC) compared to the composition of flowback-water samples directly from Fayetteville Shale gas wells. Dissolved CH4 was detected in 63% of the drinking-water wells (32 of 51 samples), but only six wells exceeded concentrations of 0.5 mg CH4/L. The δ13CCH4 of dissolved CH4 ranged from −42.3‰ to −74.7‰, with the most negative values characteristic of a biogenic source also associated with the highest observed CH4 concentrations, with a possible minor contribution of trace amounts of thermogenic CH4. The majority of these values are distinct from the reported thermogenic composition of the Fayetteville Shale gas (δ13CCH4 = −35.4‰ to −41.9‰). Based on major element chemistry, four shallow groundwater types were identified: (1) low (<100 mg/L) total dissolved solids (TDS), (2) TDS > 100 mg/L and Ca–HCO3 dominated, (3) TDS > 100 mg/L and Na–HCO3 dominated, and (4) slightly saline groundwater with TDS > 100 mg/L and Cl > 20 mg/L with elevated Br/Cl ratios (>0.001). The Sr (87Sr/86Sr = 0.7097–0.7166), C (δ13CDIC = −21.3‰ to −4.7‰), and B (δ11B = 3.9–32.9‰) isotopes clearly reflect water–rock interactions within the aquifer rocks, while the stable O and H isotopic composition mimics the local meteoric water composition. Overall, there was a geochemical gradient from low-mineralized recharge water to more evolved Ca–HCO3, and higher-mineralized Na–HCO3 composition generated by a combination of carbonate dissolution, silicate weathering, and reverse base-exchange reactions. The chemical and isotopic compositions of the bulk shallow groundwater samples were distinct from the Na–Cl type Fayetteville flowback/produced waters (TDS ∼10,000–20,000 mg/L). Yet, the high Br/Cl variations in a small subset of saline shallow groundwater suggest that they were derived from dilution of saline water similar to the brine in the Fayetteville Shale. Nonetheless, no spatial relationship was found between CH4 and salinity occurrences in shallow drinking water wells with proximity to shale-gas drilling sites. The integration of multiple geochemical and isotopic proxies shows no direct evidence of contamination in shallow drinking-water aquifers associated with natural gas extraction from the Fayetteville Shale.  相似文献   

5.
The isotopic composition of water and dissolved Sr as well as other geochemical parameters at the 2516 m deep Outokumpu Deep Drill Hole, Finland were determined. The drill hole is hosted by Palaeoproterozoic turbiditic metasediments, ophiolite-derived altered ultramafic rocks and pegmatitic granitoids. Sodium–Ca–Cl and Ca–Na–Cl-rich waters (total dissolved solids up to ca. 70 g L−1) containing significant amounts of gas, mainly CH4 (up to 32 mmol L−1), N2 (up to 10 mmol L−1), H2 (up to 3.1 mmol L−1) and He (up to 1.1 mmol L−1) discharge from fracture zones into the drill hole. This water is distinct from the shallow fresh groundwater of the area, and has an isotopic composition typical of shield brines that have been modified during long-term water–rock interaction. Based on water stable isotopes and geochemistry, the drill hole water profile can be divided into five water types, each discharging from separate fracture systems and affected by the surrounding rocks. The δ2H varies from −90‰ to −56‰ (VSMOW) and δ18O from −13.5‰ to −10.4‰ (VSMOW), plotting clearly above the Global and Local Meteoric Water Lines on a δ2H vs. δ18O diagram. The 87Sr/86Sr ratios range between 0.72423 and 0.73668. Simple two-component mixing between 2H and 18O rich end-member brine and meteoric water cannot explain the water stable isotopic composition and trends observed. Instead, hydration of silicates by ancient groundwaters recharged under different climatic conditions, warmer than at present, is the most likely mechanism to have caused the variation of the δ2H and δ18O values. Water types correlate with changes in microbial communities implying that different ecosystems occur at different depths. The different water types and microbial populations have remained isolated from each other and from the surface for long periods of time, probably tens of millions of years.  相似文献   

6.
The Diyadin Geothermal area, located in the eastern part of Anatolia (Turkey) where there has been recent volcanic activity, is favorable for the formation of geothermal systems. Indeed, the Diyadin geothermal system is located in an active geodynamic zone, where strike-slip faults and tensional cracks have developed due to N–S regional compression. The area is characterized by closely spaced thermal and mineralized springs, with temperatures in the range 30–64 °C, and flowrates 0.5–10 L/s. Thermal spring waters are mainly of Ca(Na)-HCO3 and Ca(Mg)-SO4 types, with high salinity, while cold groundwater is mostly of Ca(Na, Mg)-HCO3 type, with lower salinity. High contents of some minor elements in thermal waters, such as F, B, Li, Rb, Sr and Cs probably derive from enhanced water–rock interaction.Thermal water samples collected from Diyadin are far from chemical equilibrium as the waters flow upward from reservoirs towards spring vents and possibly mix with cooler waters. The temperatures of the deep geothermal reservoirs are estimated to be between 92 and 156 °C in Diyadin field, based on quartz geothermometry, while slightly lower estimates are obtained using chalcedony geothermometers. The isotopic composition of thermal water (δ18O, δ2H, δ3H) indicates their deep-circulating meteoric origin. The waters are likely to have originated from the percolation of rainwater along fractures and faults to the deep hot reservoir. Subsequent heating by conduction due to the presence of an intrusive cupola associated with the Tendurek volcano, is followed by the ascent of deep waters to the surface along faults and fractures that act as hydrothermal conduits.Modeling of the geothermal fluids indicates that the fluid is oversaturated with calcite, aragonite and dolomite, which matches travertine precipitation in the discharge area. Likewise, the fluid is oversaturated with respect to quartz, and chalcedony indicating the possibility of siliceous precipitation near the discharge areas. A conceptual hydro-geochemical model of the Diyadin thermal waters based on the isotope and chemical analytical results, has been constructed.  相似文献   

7.
In the arid sub-Saharan of southern Morocco, groundwater salinization poses a direct threat for agricultural production in six oases’ basins that are irrigated by water imported from the High Atlas Mountains. Here the geospatial distribution of salinity is evaluated in shallow groundwater, springs and surface waters in the Drâa Basin, integrating major and trace element geochemistry and isotopic tracers (O, H, Sr and B). The data show that water discharge from the High Atlas Mountains to the Upper section of the Drâa Basin is characterized by both low and high salinity, a distinctive low δ18O and δ2H composition (as low as −9‰ and −66‰, respectively), typical for meteoric water from high elevation, a 87Sr/86Sr range of 0.7078–0.7094, and δ11B of 12–17‰. The Ca–Mg–HCO3, Na–Cl–SO4, and Ca–SO4 compositions as well as the Br/Cl, 87Sr/86Sr, and δ11B values of the saline water suggest dissolution of Lower Jurassic carbonates and evaporite rocks in the High Atlas Mountain catchment. Storage and evaporation of the imported water in a man-made open reservoir causes an enrichment of the stable isotope ratios with a δ18O/δ2H slope of <8 but no change in the Sr and B isotope fingerprints. Downstream from the reservoir, large salinity variations were documented in the shallow groundwater from the six Drâa oases, with systematically higher salinity in the three southern oases, up to 12,000 mg/L. The increase of the salinity is systematically associated with a decrease of the Br/Cl ratio, indicating that the main mechanism of groundwater salinization in the shallow aquifers in the Drâa oases is via salt dissolution (gypsum, halite) in the unsaturated zone. Investigation of shallow groundwater that flows to the northern Drâa oases revealed lower salinity (TDS of 500–4225) water that is characterized by depleted 18O and 2H (as low as −9‰ and −66‰, respectively) and higher 87Sr/86Sr ratios (∼0.7107–0.7115) relative to irrigation water and groundwater flow from the Upper Drâa Basin. This newly-discovered low-saline groundwater with a different isotopic imprint flows from the northeastern Anti-Atlas Jabel Saghro Mountains to the northern oases of the Lower Drâa Basin. This adjacent subsurface flow results in a wide range of Sr isotope ratios in the shallow oases groundwater (0.7084–0.7131) and appears to mitigate salinization in the three northern Drâa oases. In contrast, in the southern oases, the higher salinity suggests that this mitigation is not as affective and increasing salinization through cycles of water irrigation and salt dissolution appears inevitable.  相似文献   

8.
In this paper we report the Sr isotope signatures, and Sr, Al and Na concentrations of 30 surface waters (lakes/ponds and rivers/creeks) and 19 soil sample extracts from the island of Bornholm (Denmark) and present a categorized 87Sr/86Sr value distribution map that may serve as a base for provenance studies, including archaeological migration and authenticity proof for particular food products. The Sr isotopic compositions of surface waters range from 87Sr/86Sr = 0.7097–0.7281 (average 0.7175 ± 0.0049; 1σ), whereas 0.1 M HNO3, 0.05 M HNO3, and 0.01 M CaCl2 soil extracts range from 87Sr/86Sr = 0.7095–0.7197 and define somewhat lower but statistically indistinguishable averages of 0.7125 ± 0.003 (1s). These compositions are lower than the values expected from the Precambrian granitoid basement (87Sr/86Sr = 0.758–0.944), and from the overlying, mainly clastic Paleozoic sediments. Combined Sr isotope composition vs. Sr, Na and Al concentration relationships of soil extracts imply that lowering of the isotopic composition of leachable Sr on Bornholm results as a consequence of significant admixture to this fraction of Sr deposited as marine salts (aerosols), and that rainwater only has a minor influence on the Sr budget of the surface waters. Positively correlated Al/Na and [1/Sr] vs. 87Sr/86Sr relationships in soil extracts and surface waters indicate that the surface run-off on Bornholm is characterized by two predominant sources, namely marine aerosols (sea salts) with high Sr and low 87Sr/86Sr values, and a source with lower [Sr] delivering radiogenic Sr to the surface waters, which we equate with Sr leached from the products of mineral weathering (soils).A feasibility study for using Sr isotopic compositions of surface waters and soil extracts as a proxy for bioavailable Sr signatures was performed with a few samples collected in the vicinity of the eleventh century AD Ndr. Grødbygård cemetery site in SW Bornholm, from where Sr isotope compositions of modern fauna samples and tooth enamel of humans buried in the cemetery have been reported. Waters and soil extracts studied herein from around this site range from 87Sr/86Sr = 0.7104–0.7166 and correspond to Sr compositions extracted from snail shells in this area which span a range of 87Sr/86Sr = 0.7095–0.7160. Some human tooth enamel is characterized by more radiogenic values (87Sr/86Sr up to 0.718) which points to a possible provenance of these humans from the granite–gneiss terrain in the north of the island and/or to immigration of these humans in their childhood from other places (for example from mainland Sweden) to Bornholm. If the total compositional range of 87Sr/86Sr = 0.709–0.718 (n = 44) recorded in human enamel from the Ndr. Grødbygård site is considered representative for the variation of bioavailable Sr on Bornholm, then our soil leachate and surface water data entirely covers this range. We therefore propose that the combination of Sr isotope analyses of surface waters and soil leachates are an easy, fast and relatively cost efficient way to characterize a local bioavailable 87Sr/86Sr signature, and consequently propose that the overall average of 87Sr/86Sr = 0.7153 ± 0.0048 (1σ; n = 50) can be taken as a band for bioavailable Sr fractions suitable to discriminate between local and non-local signatures in provenance studies in the field of archaeology and for food and plant authenticity control in agricultural applications.  相似文献   

9.
The dissolution kinetics of carbonate rocks sampled from the Keg River Formation in Northeast British Columbia were measured at 50 bar pCO2 and 105 °C, in both natural and synthetic brines of 0.4 M ionic strength. Natural brines yielded reaction rates of −12.16 ± 0.11 mol cm−2 s−1 for Log RCa, and −12.64 ± 0.05 for Log RMg. Synthetic brine yielded faster rates of reaction than natural brines. Experiments performed on synthetic brines, spiked with 10 mmol of either Sr or Zn, suggest that enhanced reaction rates observed in synthetic brines are due to a lack of trace ion interaction with mineral surfaces. Results were interpreted within the surface complexation model framework, allowing for the discrimination of reactive surface sites, most importantly the hydration of the >MgOH surface site. Dissolution rates extrapolated from experiments predict that CO2 injected into the Keg River Formation will dissolve a very minor portion of rock in contact with affected formation waters.  相似文献   

10.
《Applied Geochemistry》1988,3(2):185-203
Chemical and isotopic analyses of water from drill holes and mines throughout the Fennoscandian Shield show that distinct layers of groundwater are present. An upper layer of fresh groundwater is underlain by several sharply differentiated saline layers, which may differ in salinity, relative abundance of solutes, and O, H, Sr and S isotope signature. Saline groundwater can be classified into four major groups based on geochemistry and presumed origin. Brackish and saline waters from 50–200 m depth in coastal areas around the Baltic Sea exhibit distinct marine chemical and isotopic fingerprints, modified by reactions with host rocks. These waters represent relict Holocene seawater. Inland, three types of saline groundwater are observed: an uppermost layer of brackish and saline water from 300–900 m depth; saline water and brines from 1000–2000 m depth; and superdeep brines which have been observed to a depth of at least 11 km in the drill hole on the Kola Peninsula, U.S.S.R. Electrical and seismic studies in shield areas suggest that such brines are commonly present at even greater depths. The salinity of all inland groundwaters is attributed predominantly to water-rock interaction. The main solutes are Cl, Ca, Na and Mg in varying proportions, depending on the host rock lithology. The abundance of dissolved gases increases with depth but varies from site to site. The main gas components are N2, CH4 (up to 87 vol.%) and locally H2. The δ13C value for methane is highly variable (−25 to −46%), and it is suggested that hydrothermal or metamorphic gases trapped within the surrounding rocks are the most obvious source of CH4. The uppermost saline water has meteoric oxygen-hydrogen isotopic compositions, whereas values from deeper water plot above the meteoric water line, indicating considerably longer mean residence time and effective low temperature equilibration with host rocks. Geochemical and isotopic results from some localities demonstrate that the upper saline water cannot have been formed through simple mixing between fresh water and deep brines but rather is of independent origin. The source of water itself has not been satisfactorily verified although superdeep brines at least may contain a significant proportion of relict Precambrian hydrothermal or metamorphic fluids.  相似文献   

11.
This study provides 87Sr/86Sr, δ13C and δ18O data from the best-preserved limestone and dolomite of the Ediacaran carbonate-dominated Khorbusuonka Group of the Olenek Uplift, NE Siberian Craton, as well as detrital zircon geochronological data from both underlying and overlying sandstones. The Maastakh Formation is characterized by 87Sr/86Sr ratios of ca. 0.70822 and δ13C values between + 4.8 and + 6.0‰. 87Sr/86Sr ratios in limestones of the Khatyspyt Formation are fairly uniform, ranging from 0.70783 to 0.70806. The carbon isotopic composition slowly decreases from bottom (+ 3.7‰) to top (− 0.2‰) of section. The Sr isotopic composition of the Turkut Formation varies from 0.70824 to 0.70914, value of δ13C is about zero: − 0.7…+0.7 ‰. The youngest population of detrital zircons from Maastakh Formation indicates that these rocks were formed not later than 630 Ma. U–Pb detrital zircons data of Kessyusa Group has a single peak at about 543 Ma, which is almost identical to the earlier dating. Based on biostratigraphy and isotopic data, the Sr isotopic compositions from the Khatyspyt Formation (87Sr/86Sr = 0.70783–0.70806) represent the composition of seawater at 560–550 Ma. Such low values of 87Sr/86Sr ratio in Ediacaran water were probably caused by the quick opening of Iapetus Ocean.  相似文献   

12.
Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotope mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.  相似文献   

13.
The Canning Basin contains several Mississippi Valley‐type Zn‐Pb sulphide prospects and deposits in Devonian carbonate reef complexes on the northern edge of the Fitzroy Trough, and in Ordovician and Silurian marine sequences on the northern margin of the Willara Sub‐basin. This study uses the ionic composition and 5D, δ18O, δ34S, 87Sr/86Sr isotopic data on present‐day deep formation waters to determine their origin and possible relationship to the Zn‐Pb mineralizing palaeofluids.

The present‐day Canning Basin formation waters have salinity ranging from typically less than 5000 mg/L up to 250 000 mg/L locally. The brines are mixtures of highly saline water, formed by seawater which evaporated beyond halite saturation (bittern water), with meteoric water ranging in salinity from low (<5000 mg/L) to hypersaline water (up to about 50 000 mg/L) formed by re‐solution of halite and calcium sulphate minerals. The original marine chemical composition of the bittern‐dominated brines was changed to that of a Na‐Ca‐Cl water by addition of Ca and removal of Mg and SO4, initially by bacterial sulphate reduction and later by dolomitization of carbonate. Other reactions with terrigenous components of the sediment have provided additional Ca and Sr, including a small proportion of 87Sr‐rich material. The δ34S values of the bittern‐containing waters are within the range over which marine sulphate has fluctuated from the Ordovician to the Holocene, although one of the hypersaline waters has a value of +6.8%, indicating SO4 of non‐marine origin. The pH of the bittern‐containing waters is low (about 5) and they contain significant concentrations of dissolved Fe (up to 120 mg/L).

The Canning Basin bitterns appear similar in origin and chemical composition to highly saline marine brines in the Mississippi Salt Dome Basin, USA, which are known to be either metal or sulphide‐rich depending on the organic content of the host rock. In the Canning Basin, mixing of the bittern water with the various types of meteoric water has resulted in decreases in salinity, Na, Ca, Mg, K, Sr, Li and Fe, and increases in HCO3, SO4 and pH.

Mixing of the bitterns with other types of metalliferous fluids and/or with sulphate‐containing hypersaline meteoric waters formed from the same marine evaporite sequence should produce ore‐precipitating fluids which are relatively hot and saline, and the resulting ore deposit should be of high grade and contain abundant sulphate minerals. In the southern Canning Basin, this type of mixing and the corresponding style of ore deposit is evident in the evaporite‐associated areas of Zn‐Pb mineralization near the Admiral Bay Fault. If the bitterns mix with low salinity HCO3‐waters in near‐surface environments, then the ore‐precipitating fluids should have relatively low salinities and carbonate minerals would precipitate during later stages of mixing. In the Lennard Shelf, the present‐day formation waters, the style of the Zn‐Pb deposits, and range of salinity and temperature of the ore‐forming palaeofluids are consistent with this type of mixing.  相似文献   

14.
The chemical and isotopic characteristics (oxygen, hydrogen, and strontium) of spring waters and isotopic compositions of helium (He) and neon (Ne) in gases escaping from spring waters in the Lanping–Simao Basin are studied. A total of twenty-one spring water samples (twelve hot springs, four cold springs, and five saline springs) and eleven gas samples were collected from the study area, including one spring and one gas sample from northern Laos. It is found that saline spring waters in the study area are of chloride type, cold spring waters are of carbonate type or sulfate type, and hot spring waters are of various types. High total dissolved solids levels in saline springs are significantly related to Upper Cretaceous–Paleocene salt-bearing strata. On the basis of hydrochemical geothermometry, the reservoir temperatures (Tr) for hot springs, cold springs, and saline springs are 65.5–144.1, 37.8–64.4, and 65.1–109.0 °C, respectively, and the circulation depths of saline springs are much larger than those of hot and cold springs. The oxygen and hydrogen isotopic compositions of springs in the Lanping–Simao Basin and northern Laos are primarily controlled by meteoric waters with obvious latitude and altitude effects, and are also influenced by δ18O exchange to some extent. Most Sr2+ in spring waters of the study area is derived from varied sources (carbonate, evaporite, and silicate mineral dissolution), and the Sr isotopic compositions are greatly influenced by volcanic rocks. Wide distribution of crust-derived He in the Lanping–Simao Basin and northern Laos reveal that faults in these areas may not descend to the upper mantle. It is concluded that water circulation in the study area may be limited above the upper mantle, while saline springs may originate from the Upper Cretaceous–Paleocene evaporites. Hydrochemical characteristics demonstrate affinities among the Lanping–Simao Basin, northern Laos, and Yanjing, eastern Tibet, while disaffinities are observed between these areas and Tengchong on the basis of the hydrochemical characteristics and noble gas isotopic compositions.  相似文献   

15.
《Applied Geochemistry》2001,16(1):35-55
Formation waters within Upper Carboniferous sandstones in the sub-sea Prince and Phalen coal mines, Nova Scotia, originated as residual evaporative fluids, probably during the precipitation of Windsor Group (Lower Carboniferous) salts which underlie the coal measures. Salinity varies from 7800 to 176,000 mg/l, and the waters are Na–Ca–Cl brines enriched in Ca, Sr and Br and depleted in Na, K, Mg and SO4 relative to the seawater evaporation curve. Br:Cl and Na:Cl ratios suggest that the brine composition corresponds to an evaporation ratio of as much as 30. The brines lie close to the meteoric line on H/O isotopic plots but with a compositional range of δ18O from −4.18 to −6.99 and of δD from −42.4 to −23.5, distant from modern meteoric or ocean water. Mine water composition contrasts with that of nearby salt-spring brines, which are inferred to have originated through dissolution of Windsor Group evaporites by modern meteoric waters. However, a contribution to the mine waters from halite dissolution and from Br in organic matter cannot be ruled out. Present concentrations of several elements in the brines can be explained by water–rock interaction. The original Windsor brines probably moved up into the overlying coal-measure sandstones along faults, prior to the Late Triassic. The high salinity and irregular salinity distribution in the Phalen sandstones suggests that the brines have undergone only modest dilution and are virtually immobile. In contrast, Prince waters show a progressive increase in salinity with depth and are inferred to have mixed with surface waters. Basinal brines from which these modern formation fluids were derived may have been important agents in base-metal and Ba mineralisation from the mid-Carboniferous onwards, as saline fluid inclusions are common in Zn–Pb sulphide deposits in the region.  相似文献   

16.
In this study a typical coastal karst aquifer, developed in lower Cretaceous limestones, on the western Mediterranean seashore (La Clape massif, southern France) was investigated. A combination of geochemical and isotopic approaches was used to investigate the origin of salinity in the aquifer. Water samples were collected between 2009 and 2011. Three groundwater groups (A, B and C) were identified based on the hydrogeological setting and on the Cl concentrations. Average and maximum Cl concentrations in the recharge waters were calculated (ClRef. and ClRef.Max) to be 0.51 and 2.85 mmol/L, respectively). Group A includes spring waters with Cl concentrations that are within the same order of magnitude as the ClRef concentration. Group B includes groundwater with Cl concentrations that range between the ClRef and ClRef.Max concentrations. Group C includes brackish groundwater with Cl concentrations that are significantly greater than the ClRef.Max concentration. Overall, the chemistry of the La Clape groundwater evolves from dominantly Ca–HCO3 to NaCl type. On binary diagrams of the major ions vs. Cl, most of the La Clape waters plot along mixing lines. The mixing end-members include spring waters and a saline component (current seawater or fossil saline water). Based on the Br/Clmolar ratio, the hypothesis of halite dissolution from Triassic evaporites is rejected to explain the origin of salinity in the brackish groundwater.Groundwaters display 87Sr/86Sr ratios intermediate between those of the limestone aquifer matrix and current Mediterranean seawater. On a Sr mixing diagram, most of the La Clape waters plot on a mixing line. The end-members include the La Clape spring waters and saline waters, which are similar to the deep geothermal waters that were identified at the nearby Balaruc site. The 36Cl/Cl ratios of a few groundwater samples from group C are in agreement with the mixing hypothesis of local recharge water with deep saline water at secular equilibrium within a carbonate matrix. Finally, PHREEQC modelling was run based on calcite dissolution in an open system prior to mixing with the Balaruc type saline waters. Modelled data are consistent with the observed data that were obtained from the group C groundwater. Based on several tracers (i.e. concentrations and isotopic compositions of Cl and Sr), calculated ratios of deep saline water in the mixture are coherent and range from 3% to 16% and 0% to 3% for groundwater of groups C and B, respectively.With regard to the La Clape karst aquifer, the extension of a lithospheric fault in the study area may favour the rise of deep saline water. Such rises occur at the nearby geothermal Balaruc site along another lithospheric fault. At the regional scale, several coastal karst aquifers are located along the Gulf of Lion and occur in Mezosoic limestones of similar ages. The 87Sr/86Sr ratios of these aquifers tend toward values of 0.708557, which suggests a general mixing process of shallow karst waters with deep saline fossil waters. The occurrence of these fossil saline waters may be related to the introduction of seawater during and after the Flandrian transgression, when the highly karstified massifs invaded by seawater, formed islands and peninsulas along the Mediterranean coast.  相似文献   

17.
A geochemical survey, in shallow aquifers and soils, has been carried out to evaluate the feasibility of natural gas (CH4) storage in a deep saline aquifer at Rivara (MO), Northern Italy. This paper discusses the areal distribution of CO2 and CH4 fluxes and CO2, CH4, Rn, He, H2 concentrations both in soils and shallow aquifers above the proposed storage reservoir. The distribution of pathfinder elements such as 222Rn, He and H2 has been studied in order to identify potential faults and/or fractures related to preferential migration pathways and the possible interactions between the reservoir and surface. A geochemical and isotopic characterization of the ground waters circulating in the first 200 m has allowed to investigation of (i) the origin of the circulating fluids, (ii) the gas–water–rock interaction processes, (iii) the amount of dissolved gases and/or their saturation status. In the first 200 m, the presence of CH4-rich reducing waters are probably related to organic matter (peat) bearing strata which generate shallow-derived CH4, as elsewhere in the Po Plain. On the basis of isotopic analysis, no hints of thermogenic CH4 gas leakage from a deeper reservoir have been shown. The δ13C(CO2) both in ground waters and free gases suggests a prevalent shallow origin of CO2 (i.e. organic and/or soil-derived). The acquisition of pre-injection data is strategic for the natural gas storage development project and as a baseline for future monitoring during the gas injection/withdrawing period. Such a geochemical approach is considered as a methodological reference model for future CO2/CH4 storage projects.  相似文献   

18.
《Applied Geochemistry》2006,21(10):1626-1634
Mineral waters in Britain show a wide range of 87Sr/86Sr isotope compositions ranging between 87Sr/86Sr = 0.7059 from Carboniferous volcanic rock sources in Dunbartonshire, Scotland to 87Sr/86Sr = 0.7207 in the Dalradian aquifer of Aberdeenshire, Scotland. The 87Sr/86Sr composition of the waters shows a general correlation with the aquifer rocks, resulting in the waters from older rocks having a more radiogenic signature than those from younger rocks. This wide range of values means that the Sr isotope composition of mineral water has applications in a number of types of studies. In the modern commercial context, it provides a way of fingerprinting the various mineral waters and hence provides a method for recognising and reducing fraud. From an environmental perspective, it provides the first spatial distribution of bio-available 87Sr/86Sr in Britain that can be used in modern, historical and archaeological studies.  相似文献   

19.
《Applied Geochemistry》2005,20(8):1496-1517
Chloride concentrations were as high as 230 mg/L in water from the surface discharge of long-screened production wells in Pleasant Valley, Calif., about 100 km NW of Los Angeles. Wells with the higher Cl concentrations were near faults that bound the valley. Depending on well construction, high-Clwater from different sources may enter a well at different depths. For example, Cl concentration in the upper part of some wells completed in overlying aquifers influenced by irrigation return were as high as 220 mg/L, and Cl concentrations in water sampled within wells at depths greater than 450 m were as high as 500 mg/L. These high-Cl waters mix within the well during pumping and produce the water sampled at the surface discharge. Changes in the major ion, minor ion, trace element, and δ34S and δ13C isotopic composition of water in wells with depth were consistent with changes resulting from SO4 reduction, precipitation of calcite, and cation exchange. The chemical and isotopic composition of high-Cl water from deep wells trends towards the composition of oil-field production water from the study area. Chloride concentrations in oil-field production water present at depths 150 m beneath freshwater aquifers were 2200 mg/L, and Cl concentrations in underlying marine rock were as high as 4400 mg/L. High-Cl concentrations in water from deeper parts of wells were associated with dissolved organic C composed primarily of hydrophobic neutral compounds believed to be similar to those associated with petroleum in underlying deposits. These compounds would not be apparent using traditional sampling techniques and would not be detected using analytical methods intended to measure contamination.  相似文献   

20.
Analysis of carbon and oxygen isotopic compositions of large benthic foraminifera tests (Marginopora vertebralis) that lived in the Great Australian Bight during the late Pleistocene, reveal that the tests are enriched by 1 to 3‰ in both 18O and 13C relative to modern specimens from the same region. The intolerance of M. vertebralis for cool waters negates lower ocean water temperature as an explanation for such high δ18O values. The oxygen isotopic compositions are thus interpreted to reflect tests secreted in hypersaline waters of up to 56 ppt salinity, concentrated from seawater by evaporation. M. vertebralis thrives today in waters of similar salinity at Shark Bay, Western Australia. The Pleistocene sedimentary assemblage supports an interpretation that environments broadly similar to those in outer modern-day Shark Bay were wide spread across the Great Australian Bight during portions of marine isotope stages 2, 3 and 4. The high δ13C values of the Pleistocene M. vertebralis are interpreted to reflect enhanced photosynthetic activity that depletes dissolved carbonate in 12C in such shallow, saline settings. These hypersaline environments formed during periods of lower sea-level when shallow-waters (< 20 m depth) extended from the shoreline over ~ 100 km across what is currently a relatively deep shelf. This study indicates that shelf bathymetry was a critical determinant of past environments of deposition across the Great Australian Bight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号