首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘洪杰  刘勇  李玉成 《海洋学报》2009,31(4):159-166
基于线性势流理论,对斜向波与消浪室内带部分填料的开孔板式防波堤结构的相互作用进行了理论研究.利用匹配特征函数展开法给出了开孔防波堤结构反射系数和波浪力系数的理论计算方法,在极限情况下的计算结果与已有结果一致.利用数值算例分析了开孔结构反射系数和波浪力系数的主要影响因素.增加消浪室内填料厚度通常可以降低开孔墙结构的波浪力系数,加大结构的反射系数.随着波浪入射角度的增加,带填料防波堤结构的反射系数值先减小,达到最小值后又单调增加.  相似文献   

2.
Diffraction of obliquely incident waves by a floating structure near a wall with step-type bottom topography is investigated under the three-dimensional small amplitude wave theory. Full solution of the problem under the potential flow approach is obtained by the matched eigenfunction expansion method. The wave-induced forces on the structure and on the wall, the reflection and transmission characteristics and the wave elevations in the free surface regions are studied for different incident wave angles, water depth ratios and dimension of the structure and the distance of the wall from the center of the structure. The problem is reformulated under shallow water approximations and results are compared with the finite depth results.  相似文献   

3.
The interaction of diagonal waves with perforated-wall breakwater partially filled with rock fill is studied using the linear potential theory. By means of the matched eigenfunction expansion method, an analytical method is presented to calculate the reflection coefficient and the wave force coefficient of the breakwater. The calculated results of the reflection coefficient for limiting cases are the same to the existing results. The main effect factors of the reflection coefficient and the wave force coefficient are analyzed by numerical examples. With the increasing of thickness of rock fill, the wave force coefficient on the perforated wall generally decreases, while the reflection coefficient increases. With the increasing of the incident angle of the wave, the reflection coefficient of the breakwater first decreases, reaches its minimum, and then increases monotonously.  相似文献   

4.
D. S. Jeng   《Ocean Engineering》2002,29(13):1711-1724
A third-order perturbation approximation for the partial reflection from a vertical wall is presented in this paper. The wave parameters are expressed in terms of the amplitude of incident waves. The reflection coefficient is defined as the ratio of the height of reflected waves to incident waves. The numerical results demonstrate the significant influences of reflected coefficient on the wave profile and wave frequency bifurcation. For example, the critical angle of wave frequency bifurcation with partial reflection is about 7.5 degrees, not 21 degrees as reported previously for fully reflection.  相似文献   

5.
双消浪室局部开孔沉箱防波堤具有低反射、结构受力小、适宜较大水深和工程造价低等优点。为明确双消浪室局部开孔沉箱水动力特性的主要影响因素,采用理论分析和物理模型试验相结合的方法,对规则波和不规则波作用下双消浪室局部开孔沉箱防波堤的反射特性进行研究。基于势流理论,建立规则波和不规则波对局部开孔沉箱防波堤作用的三维解析解,采用二次压力损失边界条件考虑沉箱开孔墙对波浪运动的影响,利用周期性边界条件考虑防波堤结构沿长度方向的周期性变化。开展相应规则波和不规则波物理模型试验,验证理论模型的合理性。通过算例分析,研究不同波浪要素和结构参数对防波堤反射特性的影响。研究表明:双消浪室局部开孔沉箱相对消浪室宽度取值为0.08~0.20,沉箱前墙开孔率大于后墙开孔率时,防波堤在较大波浪频率范围内消波效果显著;当前后墙的开孔率相等时,防波堤反射系数的最小值随着开孔率增大而减小。  相似文献   

6.
Wave reflection by a vertical wall with a horizontal submerged porous plate   总被引:3,自引:0,他引:3  
By applying the linear water wave theory and the eigenfunction expansion method, the wave reflection by a vertical wall with a horizontal submerged porous plate is investigated in this paper. The numerical results, concerning the effects of the dimensionless plate length, the relative water depth, and the porous effect parameter of the plate on the wave loads on the plate and the wave height near the wall as well as the reflection coefficient, are discussed. It is found that the submerged plate increases the complexity of the phenomenon related to the wave reflection and refraction in the close region of the wall, and leads to the occurrence of the phenomenon of wave trapping. The results indicate that there may exist a process of focusing wave energy near the wall for small dimensionless porous effect parameters, whereas the increase of the dimensionless porous effect parameter decreases gradually the wave height until setdown occurs. The behavior of a larger plate with proper porosity is similar to that of a wave absorber which can significantly suppress not only the wave height above the plate but also the reflection waves. The ability of the porous plate to reduce the wave height on the wall surface is, in general, directly proportional to the dimensionless plate length and may be strongest for a proper value of the dimensionless porous effect parameter. It is also demonstrated that the wave loads on a porous plate are smaller than those on an impermeable plate.  相似文献   

7.
This paper presents a mathematical model which computes the hydrodynamic characteristics of a curtainwall–pile breakwater (CPB) using circular piles, by modifying the model developed for rectangular piles by Suh et al. [2006. Hydrodynamic characteristics of pile-supported vertical wall breakwaters. Journal of Waterway, Port, Coastal and Ocean Engineering 132(2), 83–96]. To examine the validity of the model, laboratory experiments have been conducted for CPB with various values of draft of curtain wall, spacing between piles, and wave height and period. Comparisons between measurement and prediction show that the mathematical model adequately reproduces most of the important features of the experimental results. The mathematical model based on linear wave theory tends to over-predict the reflection coefficient as the wave height increases. As the draft of the curtain wall increases and the porosity between piles decreases, the reflection and transmission coefficient increases and decreases, respectively, as expected. As the relative water depth increases, however, the effect of porosity disappears because the wave motion is minimal in the lower part of a water column for short waves.  相似文献   

8.
Wave interaction with a wave absorbing double curtain-wall breakwater   总被引:3,自引:0,他引:3  
Yong Liu  Yu-cheng Li 《Ocean Engineering》2011,38(10):1237-1245
This study examines the hydrodynamic performance of a wave absorbing double curtain-wall breakwater. The breakwater consists of a seaward perforated wall and a shoreward impermeable wall. Both walls extend from above the seawater to some distance above the seabed. Then the below gap allows the seawater exchange, the sediment transport and the fish passage. By means of the eigenfunction expansion method and a least square approach, a linear analytical solution is developed for the interaction of water waves with the breakwater. Then the reflection coefficient, the transmission coefficient and the wave forces acting on the walls are calculated. The numerical results obtained for limiting cases agree very well with previous predictions for a single partially immersed impermeable wall, the double partially immersed impermeable walls and the bottom-standing Jarlan-type breakwater. The predicted reflection coefficients for the present breakwater also agree reasonable with previous experimental results. Numerical results show that with appropriate structure parameters, the reflection and transmission coefficients of the breakwater may be both below 0.5 at a wide range of the relative water depth. At the same time, the magnitude of wave force acting on each wall is small. This is significant for practical engineering.  相似文献   

9.
《Coastal Engineering》2001,44(2):141-151
An analytical model has been developed that predicts the reflection of irregular waves normally incident upon a perforated-wall caisson breakwater. To examine the predictability of the developed model, laboratory experiments have been conducted for the reflection of irregular waves of various significant wave heights and periods impinging upon breakwaters having various wave chamber widths. For frequency-averaged reflection coefficients, though the overall agreement is fairly good between measurement and calculation, the model somewhat over-predicts the reflection coefficients at larger values, and under-predicts at smaller values. The model also underestimates the energy loss coefficients as wave reflection becomes larger. These differences occur because the model neglects the evanescent waves near the breakwater, which increase the energy loss at the perforated wall. The frequency-averaged reflection coefficient shows a minimum when the wave chamber width is approximately 0.2 times the significant wavelength, and it decreases with increasing wave steepness. Finally, it is shown that the reflection of irregular waves from a perforated-wall caisson breakwater depends on the wave frequency, so that the reflected wave spectrum shows a frequency dependent oscillatory behavior.  相似文献   

10.
明基床开孔沉箱不规则波反射系数试验研究   总被引:1,自引:1,他引:0  
通过二维波浪水槽物模试验,在考虑消浪室相对宽度、相对水深、相对波高、开孔率对反射系数的影响基础上,针对明基床开孔沉箱的工程应用,引入相对基床高度新的影响因素,通过控制单一变量原则分析各因素和反射率的关系,采用多元回归给出明基床开孔沉箱不规则波浪反射系数的计算公式,对明基床开孔沉箱的消浪机理进行了有益的探索,研究成果为工程设计及应用提供了一种简捷可靠的计算方法。  相似文献   

11.
波浪在Jarlan型开孔潜堤上的运动   总被引:2,自引:0,他引:2  
The wave motion over a submerged Jarlan-type breakwater consisting of a perforated front wall and a solid rear wall was investigated analytically and experimentally. An analytical solution was developed using matched eigenfunction expansions. The analytical solution was confirmed by previously known solutions for single and double submerged solid vertical plates, a multidomain boundary element method solution, and experimental data. The calculated results by the analytical solution showed that compared with double submerged vertical plates, the submerged Jarlan-type perforated breakwater had better wave-absorbing performance and lower wave forces. For engineering designs, the optimum values of the front wall porosity, relative submerged depth of the breakwater, and relative chamber width between front and rear walls were 0.1–0.2, 0.1–0.2, and 0.3–0.4, respectively. Interchanging the perforated front wall and solid rear wall may have no effect on the transmission coefficient. However, the present breakwater with a seaside perforated wall had a lower reflection coefficient.  相似文献   

12.
波浪反射系数谱的特征分析   总被引:3,自引:1,他引:2  
应用斜向不规则波反射系数的改进两点法(MTPM),用模型试验研究了混凝土护面堤和块石护面堤波浪反射系数的频率谱和方向谱,结果表明,分析的反射系数随入射波频率的增加、结构坡度的减小和入射角的加大而减小.给出了波浪反射系数频率谱及其随Iribarren数变化的规律,提出了反射系数三维谱的经验公式,由此可定量地描述斜向不规则波的反射系数随无量纲特征参数Iribarren数和入射波角度的变化规律.  相似文献   

13.
The hydrodynamic efficiencies of caisson-type vertical porous seawalls used for protecting coastal areas were calculated in this study. Physical models were developed to compare the wave reflection from vertical plane, semi-porous, and porous seawalls caused by both regular and random waves. Tests were carried out for a wide range of wave heights, wave periods, and different water depths (d=0.165, 0.270 and 0.375 m). The performance regarding the reflected waves from porous and semi-porous seawalls showed improvement when compared with those from the plane seawall. The reflection coefficients of the porous and semi-porous seawalls were calculated as 0.6 and 0.75, respectively, while the coefficient for the fully reflecting plane vertical wall was significantly higher (0.9). It was also observed that the reflection coefficient decreases with increase in wave steepness and relative water depth. In addition, the reduction in the reflection coefficient of porous and semi-porous seawalls, as compared to that of a plane seawall, was observed for both regular and random waves. New equations were also proposed to calculate the reflection coefficient of different types of seawalls with the aid of laboratory experiments. By verifying the developed equations using some other experimental data, it was validated that the equations could be used for practical situations. The results of the present study can be applied to optimize the design of vertical seawalls and for coastal protecting schemes.  相似文献   

14.
Yong Liu  Yu-cheng Li  Bin Teng 《Ocean Engineering》2007,34(17-18):2364-2373
This study examines the hydrodynamic performance of a new perforated-wall breakwater. The breakwater consists of a perforated front wall, a solid back wall and a submerged horizontal porous plate installed between them. The horizontal porous plate enhances the stability and wave-absorbing capacity of the structure. An analytical solution based on linear potential theory is developed for the interaction of water waves with the new proposed breakwater. According to the division of the structure, the whole fluid domain is divided into three sub-domains, and the velocity potential in each domain is obtained using the matched eigenfunction method. Then the reflection coefficient and the wave forces and moments on the perforated front wall and the submerged horizontal porous plate are calculated. The numerical results obtained for limiting cases are exactly the same as previous predictions for a perforated-wall breakwater with a submerged horizontal solid plate [Yip, T.L., Chwang, A.T., 2000. Perforated wall breakwater with internal horiontal plate. Journal of Engineering Mechanics ASCE 126 (5), 533–538] and a vertical wall with a submerged horizontal porous plate [Wu, J.H., Wan, Z.P., Fang, Y., 1998. Wave reflection by a vertical wall with a horizontal submerged porous plate. Ocean Engineering 25 (9), 767–779]. Numerical results show that with suitable geometric porosity of the front wall and horizontal plate, the reflection coefficient will be always rather small if the relative wave absorbing chamber width (distance between the front and back walls versus incident wavelength) exceeds a certain small value. In addition, the wave force and moment on the horizontal plate decrease significantly with the increase of the plate porosity.  相似文献   

15.
Interaction Between Waves and A Comb-Type Breakwater   总被引:2,自引:1,他引:2  
DONG  Guo-hai 《中国海洋工程》2003,17(4):517-526
The characteristics of wave transmission, reflection and energy dissipation of comb-type caisson breakwaters are studied through laboratory physical model tests. Regular and irregular waves, with a wide range of wave heights and periods and a constant water depth, are considered. Different dimensions of each portion of the comb-type caisson breakwater are tested. Empirical formulae for calculating the reduction coefficient k, which is the ratio of horizontal wave force on unit length of the comb-type breakwater to that on unit length of the vertical wall breakwater, and for calculating the reflection coefficient of waves k, are obtained from the measurements. The comb-type caisson breakwater has been found to be very efficient in dissipating incident wave energy and in reducing wave reflection, and has already been used for the construction of an island breakwater in the Dayao Bay of Dalian Port, Liaoning Province, China. Compared with the cost of a common caisson breakwater, about 24. 5% of the investm  相似文献   

16.
由于在前壁上设置了尺寸较小的孔,开孔沉箱受流体黏性力作用显著,依照弗劳德数相似准则设计模型存在比尺效应。为揭示比尺效应,建立了模拟波浪与开孔沉箱相互作用的光滑粒子流体动力学(SPH)模型。其中流体运动由连续性方程和Navier-Stokes方程控制,固壁边界由改进的动力边界粒子施加。模型收敛性通过分析不同粒子分辨率下的波浪反射系数得到,模型精度通过比较计算与理论波浪反射系数证明。使用经过验证的SPH模型,计算并比较了不同几何比尺和开孔率下开孔沉箱附近的涡量场、箱体外侧的波面时程曲线和波浪反射系数。结果表明,随着模型几何比尺的减小,开孔沉箱受到偏大的流体黏性力,致使更多波能在湍流运动中耗散,进而减小了波浪反射系数并降低了箱体外侧的波面高度。  相似文献   

17.
王龙  陈兵  王利东 《海洋工程》2020,38(2):56-64
极限波浪载荷是导致海上结构物疲劳失效的主要载荷之一。固定在海洋基础结构物上的直立开孔墙对减小波浪载荷具有一定的效果。基于不可压缩黏性流体流动理论和N-S方程,采用VOF与Level-set相结合追踪自由表面的方法,首先建立数值波浪水槽,然后对开孔墙本身的开孔率和开孔墙与直立墙之间的相对距离,在降低反射系数和波浪力两个方面进行分析。研究结果表明,开孔墙可以明显降低作用在结构物上的波浪力,开孔墙本身的开孔率和与直立墙的相对距离会对其产生明显影响;不同波浪参数下会存在一个最佳的开孔率,但是不同波浪参数时最佳开孔率会略有不同;当开孔墙和直立墙的相对距离在0.2到0.3之间时,开孔墙的消波减载效果最佳。研究结果可为海洋工程相关设计提供一定的参考。  相似文献   

18.
利用数值方法和物理模型分析以反射为主的陡坡上波浪传播变形特性。数值方法采用标记单元法,为处理倾斜反射边界对斜坡前波浪运动的影响,提出了“台阶镜像法”。通过1:1.5光滑斜坡上物理模型试验,分析了不完全立波的运动特性,说明强反射光滑陡坡坡前波浪运动呈明显的立波状态,它与直墙反射的主要差别是被前第一波节点和腹点位置向岸推移。本试验得到的波浪反射、爬高和回落特征值与港口工程规范给定结果接近。  相似文献   

19.
界面波作用产生的周期沙波现象的动力机制一直没有得到合理圆满的解释。本文针对这种现象通过对浅水弱非线性Boussinesq方程,讨论界面波由于反射效应产生的反射波与入射波的非线性相互作用,得出了一个不受时间变量制约的不传播非线性二阶驻波解。从这个驻波解空间分布上可以看出,这种动力机制作用产生的周期沙波通常是其波形平行于反射壁,并且沙波波长为入射波垂直反射壁面分量的一半。数值模拟结果证明这个非线性二阶波是Genus-2波列的一个子集.水槽实验和海岸高空照片资料上清楚的分辨出这种由反射壁效应产生的沙波的客观存在性。  相似文献   

20.
卢坤  屈科  姚宇  孙唯一  蒋昌波 《海洋通报》2021,40(2):143-151
基于非静压单相流模型NHWAVE建立了高精度二维数值波浪水槽,采用日本2011年实测真实海啸波型系统研究了海啸波在岛礁上传播变形的规律,并且分析了波高、礁坪淹没水深和礁前斜坡坡度等因素对孤立波和真实海啸传播变形的影响。结果表明,相比孤立波,类海啸波的波长明显大于孤立波波长,在测点处引起的水面变化持续时间更长,同等波高情况下真实海啸波型比孤立波能够携带更多的能量,与岛礁的相互作用也更为复杂,在礁坪上形成的淹没水深约为孤立波的两倍。礁前斜坡坡度和礁坪淹没水深均对类海啸波的反射和透射系数有显著影响。随着礁前斜坡坡度的增加,反射系数和透射系数均逐渐增加。随着礁坪淹没水深的增加,反射系数逐渐减小,而透射系数逐渐增大。但是,反射系数和透射系数均随着入射波高的增加而逐渐减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号