首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Weakening of Indian summer monsoon rainfall in warming environment   总被引:1,自引:1,他引:0  
Though over a century long period (1871–2010) the Indian summer monsoon rainfall (ISMR) series is stable, it does depict the decreasing tendency during the last three decades of the 20th century. Around mid-1970s, there was a major climate shift over the globe. The average all-India surface air temperature also shows consistent rise after 1975. This unequivocal warming may have some impact on the weakening of ISMR. The reduction in seasonal rainfall is mainly contributed by the deficit rainfall over core monsoon zone which happens to be the major contributor to seasonal rainfall amount. During the period 1976–2004, the deficit (excess) monsoons have become more (less) frequent. The monsoon circulation is observed to be weakened. The mid-tropospheric gradient responsible for the maintenance of monsoon circulation has been observed to be weakened significantly as compared to 1901–1975. The warming over western equatorial Indian Ocean as well as equatorial Pacific is more pronounced after mid-70s and the co-occurrence of positive Indian Ocean Dipole Mode events and El Nino events might have reinforced the large deficit anomalies of Indian summer monsoon rainfall during 1976–2004. All these factors may contribute to the weakening of ISMR.  相似文献   

2.
印度洋对ENSO事件的响应:观测与模拟   总被引:11,自引:3,他引:8  
观测事实显示,在El Ni(n~)o期间,伴随着赤道中东太平洋表层海温(SST)的升高,热带印度洋SST出现正距平.作者利用海气耦合模式模拟了印度洋对ENSO事件的上述响应,并进而讨论了其物理机制.所用模式为法国国家科研中心Pierre-Simon-Laplace 全球环境科学联合实验室(IPSL)发展的全球海气耦合模式.该模式成功地控制了气候漂移,能够合理再现印度洋的基本气候态.观测中与ENSO相关的热带印度洋SST变化,表现为全海盆一致的正距平,并且这种变化要滞后赤道中东太平洋SST变化大约一个季度,意味着它主要是对东太平洋SST强迫的一种遥响应,模式结果也支持这一机制,尽管模式中的南方涛动现象被夸大了,使得模拟的与ENSO相关联的SST正距平的位置南移,阿拉伯海和孟加拉湾被负距平(而不是正距平)所控制.研究表明,东太平洋主要通过大气桥影响潜热释放来影响印度洋SST变化.赤道东太平洋El Ni(n~)o事件的发展,导致印度洋上空风场异常自东而西传播;伴随着风场的变化,潜热发生相应变化,并最终导致SST异常的发生.非洲东海岸受索马里急流控制的海域,其SST的变化不能简单地利用热通量的变化来解释.证据显示,印度洋的增暖是ENSO事件发生的结果而不是其前期信号.  相似文献   

3.
Lim  Eun-Pa  Hendon  Harry H.  Shi  Li  de Burgh-Day  Catherine  Hudson  Debra  King  Andrew  Trewin  Blair  Griffiths  Morwenna  Marshall  Andrew 《Climate Dynamics》2021,56(11):3625-3641

We explore the causes and predictability of extreme low minimum temperatures (Tmin) that occurred across northern and eastern Australia in September 2019. Historically, reduced Tmin is related to the occurrence of a positive Indian Ocean Dipole (IOD) and central Pacific El Niño. Positive IOD events tend to locate an anomalous anticyclone over the Great Australian Bight, therefore inducing cold advection across eastern Australia. Positive IOD and central Pacific El Niño also reduce cloud cover over northern and eastern Australia, thus enhancing radiative cooling at night-time. During September 2019, the IOD and central Pacific El Niño were strongly positive, and so the observed Tmin anomalies are well reconstructed based on their historical relationships with the IOD and central Pacific El Niño. This implies that September 2019 Tmin anomalies should have been predictable at least 1–2 months in advance. However, even at zero lead time the Bureau of Metereorolgy ACCESS-S1 seasonal prediction model failed to predict the anomalous anticyclone in the Bight and the cold anomalies in the east. Analysis of hindcasts for 1990–2012 indicates that the model's teleconnections from the IOD are systematically weaker than the observed, which likely stems from mean state biases in sea surface temperature and rainfall in the tropical Indian and western Pacific Oceans. Together with this weak IOD teleconnection, forecasts for earlier-than-observed onset of the negative Southern Annular Mode following the strong polar stratospheric warming that occurred in late August 2019 may have contributed to the Tmin forecast bust over Australia for September 2019.

  相似文献   

4.
赤道西太平洋-印度洋海温异常对亚洲夏季风的影响   总被引:8,自引:0,他引:8  
本文采用了p-σ五层原始方程模式模拟并研究了赤道西太平洋-印度洋海温距平场对亚洲夏季风的影响,计算了四种不同的海温距平试验方案。试验结果表明赤道西太平洋海温正距平使对流层下层的印度低压明显加强,副高北挺,季风槽加深,同时加强了对流层上层的反气旋环流。赤道西印度洋暖海温的模拟结果与赤道西太平洋暖海温对上述系统的影响相反,而赤道西印度洋冷海温对季风环流的影响与赤道西太平洋暧海温的影响一致。试验进一步表明赤道西太平洋-印度洋海温距平的纬向梯度方向对亚洲夏季风的影响是主要的,这一结论与实际观测结果一致。本文进一步讨论了赤道海温距平对越赤道气流、印度洋赤道东-西纬向环流和非绝热加热场的影响,结果都表明赤道西太平洋海温正距平和赤道西印度洋海温负距平的模拟特征与反El Nino年亚洲夏季环流特征类似,而赤道西印度洋海员正距平的模拟特征与El Nino年亚洲夏季坏流特征类似。  相似文献   

5.
基于1951—2012年逐月海洋和大气多种要素的再分析资料,分析了与两类El Nino相伴的IOD(Indian Ocean Dipole,印度洋偶极子)事件盛期的海洋和大气异常特征,并进一步对比了与不同类型El Nino相伴的IOD事件的季节演变及对应的海气耦合过程。结果表明:两类IOD事件盛期时,暖海温强度和位置有显著差异。发生在东部型El Nino期间的IOD事件(简称EP-IOD)盛期,正(负)SSTA中心出现在热带西北(赤道东南)印度洋,强度相当,对应的热带印度洋—海洋大陆异常Walker环流强度较强、范围较大;与中部型CP El Nino相伴的IOD事件(简称CP-IOD)的正SSTA相对较弱,且偏于南印度洋,异常Walker环流较弱、较窄。在季节演变中,两类IOD事件期间的局地海气过程差异显著,伴随着西印度洋西南季风减弱和东印度洋异常东风加强,EP-IOD事件的发展以西正东负的偶极型异常海温的出现及加强为主要特征;而CP-IOD事件的发生发展则与西北印度洋异常冷海温的生消及南印度洋暖水的堆积相伴,表现为"-+-"三极型SSTA的出现并转为西正东负偶极型的过程,夏季时出现在东印度洋的异常东风以及赤道中印度洋低层负涡度异常水平环流对其发展具有重要作用。  相似文献   

6.
In this study,the teleconnection between Indian Ocean sea surface temperature anomalies (SSTAs) and the frequency of high temperature extremes (HTEs) across the southern Yangtze River valley (YRV) was investigated.The results indicate that the frequency of HTEs across the southern YRV in August is remotely influenced by the Indian Ocean basin mode (IOBM) SSTAs.Corresponding to June-July-August (JJA) IOBM warming condition,the number of HTEs was above normal,and corresponding to IOBM cooling conditions,the number of HTEs was below normal across the southern YRV in August.The results of this study indicate that the tropical IOBM warming triggered low-level anomalous anticyclonic circulation in the subtropical northwestern Pacific Ocean and southern China by emanating a warm Kelvin wave in August.In the southern YRV,the reduced rainfall and downward vertical motion associated with the anomalous low-level anticyclonic circulation led to the increase of HTE frequency in August.  相似文献   

7.
Anthropogenic greenhouse gas emissions are expected to lead to more frequent and intense summer temperature extremes, not only due to the mean warming itself, but also due to changes in temperature variability. To test this hypothesis, we analyse daily output of ten PRUDENCE regional climate model scenarios over Europe for the 2071–2100 period. The models project more frequent temperature extremes particularly over the Mediterranean and the transitional climate zone (TCZ, between the Mediterranean to the south and the Baltic Sea to the north). The projected warming of the uppermost percentiles of daily summer temperatures is found to be largest over France (in the region of maximum variability increase) rather than the Mediterranean (where the mean warming is largest). The underlying changes in temperature variability may arise from changes in (1) interannual temperature variability, (2) intraseasonal variability, and (3) the seasonal cycle. We present a methodology to decompose the total daily variability into these three components. Over France and depending upon the model, the total daily summer temperature variability is projected to significantly increase by 20–40% as a result of increases in all three components: interannual variability (30–95%), seasonal variability (35–105%), and intraseasonal variability (10–30%). Variability changes in northern and southern Europe are substantially smaller. Over France and parts of the TCZ, the models simulate a progressive warming within the summer season (corresponding to an increase in seasonal variability), with the projected temperature change in August exceeding that in June by 2–3 K. Thus, the most distinct warming is superimposed upon the maximum of the current seasonal cycle, leading to a higher intensity of extremes and an extension of the summer period (enabling extreme temperatures and heat waves even in September). The processes driving the variability changes are different for the three components but generally relate to enhanced land–atmosphere coupling and/or increased variability of surface net radiation, accompanied by a strong reduction of cloudiness, atmospheric circulation changes and a progressive depletion of soil moisture within the summer season. The relative contribution of these processes differs substantially between models.  相似文献   

8.
根据1979~2016年春季海表温度、土壤温度以及大尺度气候指数与中亚地区夏季温度的相关关系,确定了印度洋东南部海表温度、非洲西北部土壤温度、大西洋多年代际振荡(AMO)和东亚/西俄型(EA/WR)4个春季预测因子,进而建立了中亚地区夏季温度的预测模型。春季印度洋东南部海表温度暖异常、非洲西北部土壤温度暖异常、AMO正异常与EA/WR负异常均对应夏季中亚地区500 hPa位势高度场正异常,为该地区夏季高温发生提供有利条件。预测模型留一法交叉验证产生的1979~2016年中亚地区夏季温度无(有)趋势的时间序列与观测的无(有)趋势的时间序列的相关为0.65(0.74),表明该预测模型具有良好的预测能力。研究结果有望帮助提高中亚地区夏季温度的预测技巧。  相似文献   

9.
Extreme summers of Europe are usually affected by blocking highs that shift between Western and Eastern Europe to cause regional variations in the surface temperature anomalies. Generally, the blocking high induces a regional temperature dipole with poles of warm and cold anomalies on two sides of Europe. The extreme summers of Western Europe, when the Eastern Europe is colder than normal, are usually associated with the teleconnections arising from positive Indian Ocean Dipole (IOD) events. In contrast, analogous warm events in Eastern Europe are usually associated with La Niña. The western Pacific conditions that prevail during the turnaround phase of El Niño to La Niña are found to be responsible for developing the extreme Eastern Europe events. The role of North Atlantic Oscillation (NAO) is not blatant for the Eastern Europe summers though it has a weaker influence on Western Europe summers for which IOD plays a dominant role: The seasonal July–August correlation for Western Europe temperature with IOD index is higher than that with the NAO index. The teleconnections for both types of extremes are associated with a Rossby wavetrain that travel around the globe to reach the Europe. This circumglobal teleconnection is largely determined by the location of the tropospheric heat source. For Western Europe warm events, major contributions come from the atmospheric convections/diabatic heating over northwest India and southern Pakistan. For the Eastern Europe events, the convections over northwest Pacific, south of Japan, are found to project the signals on to the mid-latitude wave-guide. These patterns of teleconnection are so robust that those can be seen on daily to seasonal time-scales of atmospheric anomalies. The wavetrains are found to set-in a couple of weeks prior to the development of blocking highs and extreme hot conditions over Europe.  相似文献   

10.
This study aims to explore the relative role of oceanic dynamics and surface heat fluxes in the warming of southern Arabian Sea and southwest Indian Ocean during the development of Indian Ocean Dipole (IOD) events by using National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) daily reanalysis data and Global Ocean Data Assimilation System (GODAS) monthly mean ocean reanalysis data from 1982 to 2013, based on regression analysis, Empirical Orthogonal Function (EOF) analysis and combined with a 2? layer dynamic upper-ocean model. The results show that during the initial stage of IOD events, warm downwelling Rossby waves excited by an anomalous anticyclone over the west Indian Peninsula, southwest Indian Ocean and southeast Indian Ocean lead to the warming of the mixed layer by reducing entrainment cooling. An anomalous anticyclone over the west Indian Peninsula weakens the wind over the Arabian Sea and Somali coast, which helps decrease the sea surface heat loss and shallow the surface mixed layer, and also contributes to the sea surface temperature (SST) warming in the southern Arabian Sea by inhibiting entrainment. The weakened winds increase the SST along the Somali coast by inhibiting upwelling and zonal advection. The wind and net sea surface heat flux anomalies are not significant over the southwest Indian Ocean. During the antecedent stage of IOD events, the warming of the southern Arabian Sea is closely connected with the reduction of entrainment cooling caused by the Rossby waves and the weakened wind. With the appearance of an equatorial easterly wind anomaly, the warming of the southwest Indian Ocean is not only driven by weaker entrainment cooling caused by the Rossby waves, but also by the meridional heat transport carried by Ekman flow. The anomalous sea surface heat flux plays a key role to damp the warming of the west pole of the IOD.  相似文献   

11.
Indian Ocean sea surface salinity variations in a coupled model   总被引:2,自引:0,他引:2  
The variability of the sea surface salinity (SSS) in the Indian Ocean is studied using a 100-year control simulation of the Community Climate System Model (CCSM 2.0). The monsoon-driven seasonal SSS pattern in the Indian Ocean, marked by low salinity in the east and high salinity in the west, is captured by the model. The model overestimates runoff into the Bay of Bengal due to higher rainfall over the Himalayan–Tibetan regions which drain into the Bay of Bengal through Ganga–Brahmaputra rivers. The outflow of low-salinity water from the Bay of Bengal is too strong in the model. Consequently, the model Indian Ocean SSS is about 1 less than that seen in the climatology. The seasonal Indian Ocean salt balance obtained from the model is consistent with the analysis from climatological data sets. During summer, the large freshwater input into the Bay of Bengal and its redistribution decide the spatial pattern of salinity tendency. During winter, horizontal advection is the dominant contributor to the tendency term. The interannual variability of the SSS in the Indian Ocean is about five times larger than that in coupled model simulations of the North Atlantic Ocean. Regions of large interannual standard deviations are located near river mouths in the Bay of Bengal and in the eastern equatorial Indian Ocean. Both freshwater input into the ocean and advection of this anomalous flux are responsible for the generation of these anomalies. The model simulates 20 significant Indian Ocean Dipole (IOD) events and during IOD years large salinity anomalies appear in the equatorial Indian Ocean. The anomalies exist as two zonal bands: negative salinity anomalies to the north of the equator and positive to the south. The SSS anomalies for the years in which IOD is not present and for ENSO years are much weaker than during IOD years. Significant interannual SSS anomalies appear in the Indian Ocean only during IOD years.  相似文献   

12.
The seasonal change in the relationship between El Nino and Indian Ocean dipole (IOD) is examined using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), and the twentieth century simulations (20c3m) from the Geophysical Fluid Dynamics Laboratory Coupled Model, version 2.1. It is found that, both in ERA-40 and the model simulations, the correlation between El Nino (Nino3 index) and the eastern part of the IOD (90?C110°E; 10°S-equator) is predominantly positive from January to June, and then changes to negative from July to December. Correlation maps of atmospheric and oceanic variables with respect to the Nino3 index are constructed for each season in order to examine the spatial structure of their seasonal response to El Nino. The occurrence of El Nino conditions during January to March induces low-level anti-cyclonic circulation anomalies over the southeastern Indian Ocean, which counteracts the climatological cyclonic circulation in that region. As a result, evaporation decreases and the southeastern Indian Ocean warms up as the El Nino proceeds, and weaken the development of a positive phase of an IOD. This warming of the southeastern Indian Ocean associated with the El Nino does not exist past June because the climatological winds there develop into the monsoon-type flow, enhancing the anomalous circulation over the region. Furthermore, the development of El Nino from July to September induces upwelling in the southeastern Indian Ocean, thereby contributing to further cooling of the region during the summer season. This results in the enhancement of a positive phase of an IOD. Once the climatological circulation shifts from the boreal summer to winter mode, the negative correlation between El Nino and SST of the southeastern Indian Ocean changes back to a positive one.  相似文献   

13.
基于1982—2013年逐月NCEP资料及GODAS资料,采用回归分析、合成分析以及2.5层简化海洋模式数值模拟等方法,研究了热带东印度洋的大气和海洋过程对印度洋海温偶极子(IOD,Indian Ocean Dipole)东极(IODE,IOD East pole)海温异常的影响。结果表明,IODE海温异常的演变超前IOD西极(IODW,IOD West pole)海温异常的演变,并对IOD事件的生成和发展起到关键作用。初夏,来自阿拉伯海、中南半岛地区以及孟加拉湾西南部的水汽输送,导致孟加拉湾东部出现强降水。降水释放的潜热在热带东印度形成了一个跨越赤道的经向环流,有利于加强赤道东印度洋的过赤道气流,并在苏门答腊沿岸形成偏南风异常。该异常偏南风通过影响混合层垂向夹卷混合过程和纬向平流过程,导致IODE海温迅速下降。随后赤道东南印度洋异常东南风迅速增强以及赤道中印度洋东风异常的出现,增强了自东南印度洋向西印度洋的水汽输送,削弱了向孟加拉湾的水汽输送,使西南印度洋的降水增强,孟加拉湾东部的降水减弱。因此,IOD达到盛期前孟加拉湾东部的降水通过局地经向环流在苏门答腊沿岸形成偏南风异常,导致苏门答腊沿岸迅速的降温,并最终导致IOD事件的发生。  相似文献   

14.
胡帅  吴波  周天军 《大气科学》2019,43(4):831-845
印度洋偶极子(IOD)是热带印度洋年际变率主导模态之一,对于区域乃至全球气候有重要影响。准确预报IOD对于短期气候预测具有重要意义。中国科学院大气物理研究所最近建立了近期气候预测系统IAP-DecPreS,其初始化方案采用“集合最优插值—分析增量更新”(EnOI-IAU)方案,能够同化观测的海洋次表层温度廓线资料。本文分析了IAP-DecPreS季节回报试验对IOD的回报技巧,重点比较了全场同化和异常场同化两种初始化策略下预测系统对IOD的回报技巧。分析表明,8月起报秋季IOD,无论从确定性预报还是概率性预报的角度,基于全场同化的回报试验技巧均高于异常场同化的回报试验。对于5月起报的秋季IOD,基于两种初始化策略的回报试验技巧相当。研究发现,全场同化策略相对于异常场的优势主要源于它提高了对伴随ENSO发生的IOD的预报技巧。ENSO遥强迫触发的热带东印度洋“风—蒸发—SST”正反馈过程是IOD发展和维持的关键。采用全场同化策略的回报结果能够更好地模拟出IOD发展过程中ENSO遥强迫产生的异常降水场和异常风场的空间分布特征;而采用异常场同化策略,模拟的异常降水场和风场偏差较大。导致两种初始化策略预测结果技巧差异的主要原因是,全场同化能够减小模式对热带印度洋气候平均态降水固有的模拟偏差,从而提升了热带印度洋对ENSO遥强迫响应的模拟能力。而异常场同化由于在同化过程中保持了模式固有的气候平均态,因此模拟的热带印度洋对ENSO遥强迫的响应存在与模式自由积分类似的模拟偏差。  相似文献   

15.
Shaolei TANG  Jing-Jia LUO  Jiaying HE  Jiye WU  Yu ZHOU  Wushan YING 《大气科学进展》2021,38(12):2023-2039,中插8-中插11
The extreme floods in the Middle/Lower Yangtze River Valley (MLYRV) during June?July 2020 caused more than 170 billion Chinese Yuan direct economic losses. Here, we examine the key features related to this extreme event and explore relative contributions of SST anomalies in different tropical oceans. Our results reveal that the extreme floods over the MLYRV were tightly related to a strong anomalous anticyclone persisting over the western North Pacific, which brought tropical warm moisture northward that converged over the MLYRV. In addition, despite the absence of a strong El Ni?o in 2019/2020 winter, the mean SST anomaly in the tropical Indian Ocean during June?July 2020 reached its highest value over the last 40 years, and 43% (57%) of it is attributed to the multi-decadal warming trend (interannual variability). Based on the NUIST CFS1.0 model that successfully predicted the wet conditions over the MLYRV in summer 2020 initiated from 1 March 2020 (albeit the magnitude of the predicted precipitation was only about one-seventh of the observed), sensitivity experiment results suggest that the warm SST condition in the Indian Ocean played a dominant role in generating the extreme floods, compared to the contributions of SST anomalies in the Maritime Continent, central and eastern equatorial Pacific, and North Atlantic. Furthermore, both the multi-decadal warming trend and the interannual variability of the Indian Ocean SSTs had positive impacts on the extreme floods. Our results imply that the strong multi-decadal warming trend in the Indian Ocean needs to be taken into consideration for the prediction/projection of summer extreme floods over the MLYRV in the future.  相似文献   

16.
Hai Lin  Zhiwei Wu 《Climate Dynamics》2012,39(1-2):303-311
Previous studies have shown that climate anomalies over the North Atlantic–Europe (NAE) can influence the Indian summer monsoon (ISM) variability. It is, however, still an outstanding question whether the latter has a significant impact on the former. In this study, observational evidences indicate that the interannual variability of ISM is closely linked to the climate anomalies over NAE. A strong ISM is often associated with significant above normal precipitation over most of western Europe. Meanwhile, positive surface air temperature (SAT) anomalies are usually observed over the Mediterranean, accompanied by below normal SAT in Western Europe during a strong ISM summer. The situation is just opposite during a weak ISM summer. A global primitive equation model is utilized to assess the mechanism of the above observed connection.  相似文献   

17.
赤道印度洋纬向海温梯度模及其气候影响   总被引:13,自引:7,他引:6  
赤道印度洋纬向海温差异对气候的影响是有关印度洋地区海气相互作用研究的焦点。作者进一步分析了印度洋纬向海温差异的特征,提出了赤道印度洋纬向海温梯度模的概念,并在此基础上利用中国科学院大气物理研究所的九层大气环流模式模拟研究了赤道印度洋海温梯度变化对气候的影响。分析结果表明赤道印度洋纬向海温梯度的变化及其对气候的影响比较复杂,由于海温梯度分别产生于暖海温或冷海温两种不同的大尺度背景场,因此它对气候的影响不仅与海温梯度的变化有关,还与其产生的大尺度背景场(暖海温或冷海温)有很直接的关系。在太平洋地区海温不变的情况下,由于赤道东西印度洋大范围海温的升高或降低,有可能在整个印度洋和太平洋之间产生一个海温梯度(简称印-太海温梯度),这一海温梯度对亚洲季风区的降水分布和季风活动起着十分重要的作用,而赤道印度洋纬向海温梯度与印-太海温梯度的叠加,不仅加强或减弱了印-太海温梯度引起的大范围大气辐合、辐散,同时也使得辐合及辐散区的位置发生移动,进而影响了小范围地区的气候异常,特别是赤道东印度洋地区的降水分布和风场变化。与赤道印度洋地区纬向海温梯度的作用相比,赤道印度洋偶极子对气候的影响相对比较单纯,引起的降水异常和风场变化主要与海温偶极子的变化有关。  相似文献   

18.
Shaolei TANG  Jing-Jia LUO  Jiaying HE  Jiye WU  Yu ZHOU  Wushan YING 《大气科学进展》2021,38(12):2023-2039,中插8-中插11
The extreme floods in the Middle/Lower Yangtze River Valley (MLYRV) during June?July 2020 caused more than 170 billion Chinese Yuan direct economic losses. Here, we examine the key features related to this extreme event and explore relative contributions of SST anomalies in different tropical oceans. Our results reveal that the extreme floods over the MLYRV were tightly related to a strong anomalous anticyclone persisting over the western North Pacific, which brought tropical warm moisture northward that converged over the MLYRV. In addition, despite the absence of a strong El Ni?o in 2019/2020 winter, the mean SST anomaly in the tropical Indian Ocean during June?July 2020 reached its highest value over the last 40 years, and 43% (57%) of it is attributed to the multi-decadal warming trend (interannual variability). Based on the NUIST CFS1.0 model that successfully predicted the wet conditions over the MLYRV in summer 2020 initiated from 1 March 2020 (albeit the magnitude of the predicted precipitation was only about one-seventh of the observed), sensitivity experiment results suggest that the warm SST condition in the Indian Ocean played a dominant role in generating the extreme floods, compared to the contributions of SST anomalies in the Maritime Continent, central and eastern equatorial Pacific, and North Atlantic. Furthermore, both the multi-decadal warming trend and the interannual variability of the Indian Ocean SSTs had positive impacts on the extreme floods. Our results imply that the strong multi-decadal warming trend in the Indian Ocean needs to be taken into consideration for the prediction/projection of summer extreme floods over the MLYRV in the future.  相似文献   

19.
Yamaura  Tsuyoshi  Kajikawa  Yoshiyuki 《Climate Dynamics》2017,48(9-10):3003-3014

A decadal change in activity of the boreal summer intraseasonal oscillation (BSISO) was identified at a broad scale. The change was more prominent during August–October in the boreal summer. The BSISO activity during 1999–2008 (P2) was significantly greater than that during 1984–1998 (P1). Compared to P1, convection in the BSISO was enhanced and the phase speed of northward-propagating convection was reduced in P2. Under background conditions, warm sea surface temperature (SST) anomalies in P2 were apparent over the tropical Indian Ocean and the western tropical Pacific. The former supplied favorable conditions for the active convection of the BSISO, whereas the latter led to a strengthened Walker circulation through enhanced convection. This induced descending anomalies over the tropical Indian Ocean. Thermal convection tends to be suppressed by descending anomalies, whereas once an active BSISO signal enters the Indian Ocean, convection is enhanced through convective instability by positive SST anomalies. After P2, the BSISO activity was weakened during 2009–2014 (P3). Compared to P2, convective activity in the BSISO tended to be inactive over the southern tropical Indian Ocean in P3. The phase speed of the northward-propagating convection was accelerated. Under background conditions during P3, warmer SST anomalies over the maritime continent enhance convection, which strengthened the local Hadley circulation between the western tropical Pacific and the southern tropical Indian Ocean. Hence, the convection in the BSISO over the southern tropical Indian Ocean was suppressed. The decadal change in BSISO activity correlates with the variability in seasonal mean SST over the tropical Asian monsoon region, which suggests that it is possible to predict the decadal change.

  相似文献   

20.
Summary The interannual variability of sea surface temperature (SST) anomalies in the tropical Indian Ocean is dominated mainly by a basin-scale mode (BM) and partly by an east–west contrast mode (zonal mode, ZM). The BM reflects the basin-scale warming or cooling and is highly correlated with El Nino with 3- to 6-month lags, while the ZM is marginally correlated with El Nino with 9-month lags.During an El Nino, large-scale anomalous subsidence over the maritime continent occurs as a result of an eastward shift in the rising branch of the Walker circulation suppresses convection over the eastern Indian Ocean, allowing more solar radiation over the eastern Indian Ocean. At the same time, the anomalous southeasterly wind over the equatorial Indian Ocean forces the thermocline over the western Indian Ocean to deepen, especially in the southern part. As a result, SST over the whole basin increases. As El Nino decays, the subsidence over the maritime continent ceases and so does the anomalous southeasterly wind. However, the thermocline perturbation does not quickly shoal back to normal because of inertia and it disperses as Rossby waves. These Rossby waves are reflected back as an equatorial Kelvin wave, causing deepening of the thermocline in the eastern Indian Ocean, and preventing SSTs from cooling in that region. Moreover, the weaker wind speed of the monsoon circulation results in less latent heat loss, and thus warms the eastern Indian Ocean. These two processes therefore help to maintain warm SSTs over the eastern Indian Ocean until fall. During the fall, the warm SST over the eastern Indian Ocean and the cold SST over the western Indian Ocean are enhanced by air–sea interaction and the ZM returns. The ZM dissipates through the seasonal reversal of the monsoon atmospheric circulation and the boundary-reflected Kelvin wave. In the same manner, a basin-scale cooling in the tropical Indian Ocean can induce the ZM warming in the west and cooling in the east.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号