首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Regional heat flow patterns in the Western Canadian Sedimentary Basin   总被引:2,自引:0,他引:2  
The regional geothermal pattern of the Western Canadian Sedimentary Basin has been studied using available temperature data from wells. Average heat conductivity for various geological formations has been estimated on the basis of net rock studies by Canadian Stratigraphie Services. These data and observations of temperature made in “shut-in holes” in some of the oil pools have been used in heat flow estimations by the Bullard method.The geothermal gradient and heat flow within the basin are exceptionally high in comparison with the other world wide Precambrian platform areas. Especially high geothermal gradient areas are found in the northwestern part of the Prairies Basin in Alberta and British Columbia and most of southeastern and southwestern Saskatchewan. Areas of low gradient are found mainly in the Disturbed Belt of the Foothills, southern and southeastern Alberta, and the Peace River area in British Columbia. Neither the analysis of regional heat conductivity distribution nor the heat generation distribution of the basement rock of the Prairies Basin evaluated on the basis of U, Th and K data after Burwash (1979), explain the observed heat flow patterns of the Prairies Basin. Comparison of heat flow patterns with some of the hydrogeological phenomena suggests the significant influence of fluid flow in the basin formations on geothermal features. Low geothermal gradient areas coincide with water recharge areas and high hydraulic head distribution regions.The phenomenon of upward water movement in the deep strata and downward flow through much of the Cenozoic and Mesozoic strata seems to control the regional heat flow distribution in the basin. The analyses of coal metamorphism in the upper and middle Mesozoic formations of the Foothills Belt and in the central Prairies Basin suggest that the pre-Laramide paleogeothermal heat flow distribution was different from the present one. It is very probable that the Foothills Belt area was characterized by a higher geothermal gradient than the central part of the Prairies Basin, i.e. opposite to the present picture.  相似文献   

2.
Exploration of Perth's geothermal potential has been performed by the Western Australian Geothermal Centre of Excellence (WAGCoE). Detailed vertical temperature and gamma ray logging of 17 Western Australia Department of Water's (DoW) Artesian Monitoring (AM) wells was completed throughout the Perth Metropolitan Area (PMA). In addition, temperature logs from 53 DoW AM wells measured in the 1980s were digitised into LAS format. The logged data are available in the WAGCoE Data Catalogue.

Analysis of the gamma ray logs yielded the first estimates of radiogenic heat production in Perth Basin formations. Values by formation ranged between 0.24 and 1.065 μW m?3. The temperature logs provide a picture of true formation temperatures within shallow sediments in the Perth Basin. A three-dimensional model of the temperature distribution was used to produce maps of temperature at depth and on the top of the Yarragadee aquifer.

The temperature data were interpreted with a one-dimensional conductive heat model. Significant differences between the model and the observations was indicative of heat moving via non-conductive mechanisms, such as advection or convection. Evidence of non-conductive or advective heat flow is demonstrated in most formations in the region, with significant effects in the aquifers. Average conductive geothermal gradients range from 13°C km?1 to 39°C km?1, with sandstone formations exhibiting average gradients of approximately 25°C km?1, while insulating silt/shale formations show higher average gradients of over 30°C km?1.

To produce preliminary heat flow estimates, temperature gradients were combined with thermal conductivities measured elsewhere. The geometric mean heat flow estimates range between 64 mW m?2 to 91 mW m?2, with the standard deviation of the arithmetic mean heat flow ranging between 15 and 23 mW m?2.

The study characterises the shallow temperature regime in the Perth Metropolitan Area, which is of direct relevance towards developing commercial geothermal projects.  相似文献   

3.
In porous sediments of the Ishikari Lowland, there is a gradual increase in the background geothermal gradient from the Ishikari River (3–4 °C 100 m–1) to the southwest highland area (10 °C 100 m–1). However, the geothermal gradient at shallow depths differs in detail from the background distribution. In spite of convective heat-flow loss generally associated with groundwater flow, heat flow remains high (100 mW m–2) in the recharge area in the southwestern part of the Ishikari basin, which is part of an active geothermal field. In the northeastern part of the lowland, heat flow locally reaches 140 mW m–2, probably due to upward water flow from the deep geothermal field. Between the two areas the heat flow is much lower. To examine the role of hydraulic flow in the distortion of the isotherms in this area, thermal gradient vs. temperature analyses were made, and they helped to define the major components of the groundwater-flow system of the region. Two-dimensional simulation modeling aided in understanding not only the cause of horizontal heat-flow variations in this field but also the contrast between thermal properties of shallow and deep groundwater reservoirs. Electronic Publication  相似文献   

4.
Geothermal gradients and present day heat flow values were evaluated for about seventy one wells in parts of the eastern Niger delta, using reservoir and corrected bottom–hole temperatures data and other data collected from the wells. The results showed that the geothermal gradients in the shallow/continental sections in the Niger delta vary between 10 - 18° C/km onshore, increasing to about 24° C/km seawards, southwards and eastwards. In the deeper (marine/paralic) section, geothermal gradients vary between 18 - 45° C/km. Heat flow values computed using Petromod 1–D modeling software and calibrated against corrected BHT and reservoir temperatures suggests that heat flow variations in this part of the Niger delta range from 29–55 mW/m2 (0.69–1.31 HFU) with an average value of 42.5 mW/m2 (1.00 HFU). Heat flow variations in the eastern Niger delta correspond closely to variations in geothermal gradients. Geothermal gradients increase eastwards, northwards and seawards from the coastal swamp. Vertically, thermal gradients in the Niger delta show a continuous and non-linear relationship with depth, increasing with diminishing sand percentages. As sand percentages decrease eastwards and seawards, thermal gradient increases. Lower heat flow values (< 40 mW/m2) occur in the western and north central parts of the study area. Higher heat flow values (40 - 55 mW/m2) occur in the eastern and northwestern parts of the study area. A significant regional trend of eastward increase in heat flow is observed in the area. Other regional heat flow trends includes; an eastwards and westwards increase in heat flow from the central parts of the central swamp and an increase in heat flow from the western parts of the coastal swamp to the shallow offshore. Vertical and lateral variations in thermal gradients and heat flow values in parts of the eastern Niger delta are influenced by certain mechanisms and geological factors which include lithological variations, variations in basement heat flow, temporal changes in thermal gradients and heat flow, related to thicker sedmentary sequence, prior to erosion and evidenced by unconformities, fluid redistribution by migration of fluids and different scales of fluid migration in the sub-surface and overpressures.  相似文献   

5.
华北平原新生界盖层地温梯度图及其简要说明   总被引:6,自引:1,他引:6       下载免费PDF全文
陈墨香  邓孝 《地质科学》1990,(3):269-277
本文报道新编比例尺为1:1500000的华北平原新生界盖层地温梯度图。该图以近4000口钻井的温度资料和对地温场控制因素的分析为基础,并结合地温场数学模拟计算结果编制而成。圈定全区地温梯度G>4℃/100m及大地热流q>62mw/m2的局部地热异常区44片,总面积为25000km2,为地热能勘探、开发远景规划提供了重要的科学依据。  相似文献   

6.
海拉尔盆地地温分布及控制因素研究   总被引:4,自引:3,他引:4  
根据大量钻孔测温资料和实测热导率资料分析了海拉尔盆地地温分布状况,现今地温梯度变化在2.50℃/100m至4.0℃/100m之间,平均为3.0℃/100m,现今大地热值为42.15~63.86 mWm-2,平均约为55.00mWm-2,明显较松辽盆地低,表明海拉尔盆地是一个中温盆地。海拉尔盆地大磨拐河组底面和南屯组底面地温分布具有南高北低的特点。现今地温对油气生成有重要的控制作用,南部凹陷南屯组热演化程度高,普遍处于成熟生油阶段,南屯组是海拉尔盆地的主力生油层位,南部凹陷是海拉尔盆地主要找油区。海拉尔盆地与松辽盆地壳幔结构存在显著的差异。海拉尔盆地现今地温场主要受地壳厚度、基底结构、基底埋深及盆地构造等因素的控制。  相似文献   

7.
An updated analysis of geothermal data from the highland area of eastern Brazil has been carried out and the characteristics of regional variations in geothermal gradients and heat flow examined. The database employed includes results of geothermal measurements at 45 localities. The results indicate that the Salvador craton and the adjacent metamorphic fold belts northeastern parts of the study area are characterized by geothermal gradients in the range of 6–17°C/km. The estimated heat flow values fall in the range of 28–53 mW/m2, with low values in the cratonic area relative to the fold belts. On the other hand, the São Francisco craton and the intracratonic São Francisco sedimentary basin in the southwestern parts are characterized by relatively higher gradient values, in the range of 14–42°C/km, with the corresponding heat flow values falling in the range of 36–89 mW/m2. Maps of regional variations indicate that high heat flow anomaly in the São Francisco craton is limited to areas of sedimentary cover, to the west of the Espinhaço mountain belt. Crustal thermal models have been developed to examine the implications of the observed intracratonic variations in heat flow. The thermal models take into consideration variation of thermal conductivity with temperature as well as change of radiogenic heat generation with depth. Vertical distributions of seismic velocities were used in obtaining estimates of radiogenic heat production in crustal layers. Crustal temperatures are calculated based on a procedure that makes simultaneous use of the Kirchoff and Generalized Integral Transforms, providing thereby analytical solutions in 2D and 3D geometry. The results point to temperature variations of up to 300°C at the Moho depth, between the northern Salvador and southern São Francisco cratons. There are indications that differences in rheological properties, related to thermal field, are responsible for the contrasting styles of deformation patterns in the adjacent metamorphic fold belts.  相似文献   

8.
Guanzhong Basin is a typical medium-low temperature geothermal field mainly controlled by geo-pressure in the west of China.The characteristics of hydrogen and oxygen isotopes were used to analyze the flow and storage modes of geothermal resources in the basin.In this paper,the basin was divided into six geotectonic units,where a total of 121 samples were collected from geothermal wells and surface water bodies for the analysis of hydrogen-oxygen isotopes.Analytical results show that the isotopic signatures of hydrogen and oxygen throughout Guanzhong Basin reveal a trend of gradual increase from the basin edge areas to the basin center.In terms of recharge systems,the area in the south edge belongs to the geothermal system of Qinling Mountain piedmont,while to the north of Weihe fault is the geothermal system of North mountain piedmont,where the atmospheric temperature is about 0.2℃-1.8℃in the recharge areas.The main factors that affect the geothermal waterδ18O drifting include the depth of geothermal reservoir and temperature of geothermal reservoir,lithological characteristics,water-rock interaction,geothermal reservoir environment and residence time.Theδ18O-δD relation shows that the main source is the meteoric water,together with some sedimentary water,but there are no deep magmatic water and mantle water which recharge the geothermal water in the basin.Through examining the distribution pattern of hydrogen-oxygen isotopic signatures,the groundwater circulation model of this basin can be divided into open circulation type,semi-open type,closed type and sedimentary type.This provides some important information for rational exploitation of the geothermal resources.  相似文献   

9.
Shallow geothermal prospecting ( < 700 m) has been performed in four zones in Morocco for which few deep data are available: northwestern basin, northeastern basin, Tadla Basin and Agadir Basin. These areas are different geologically and hydrogeologically. The temperature data from 250 wells at depths between 15 and 500 m have been analysed in order to estimate the natural geothermal gradient in these areas, to determine the principal thermal anomalies, to identify the main thermal indices and to characterise the recharge, discharge and potential mixing limits of the aquifers.The hydrostratigraphical study of each basin revealed several potential reservoir layers in which the Turonian carbonate aquifer (Tadal and Agadir Basins) and Liassic acquifer (Moroccan northwestern and northeastern basins) are the most important hot water reservoirs in Morocco. The recharge zones of each aquifer are characterised by high topography, high water potential, shallow cold water, low geothermal gradient and negative anomalies. The discharge zones are characterized by low topography, low piezometric level, high geothermal gradient, high temperature with hot springs and positive anomalies. The main thermal indices and the principal thermal anomalies that coincide with the artesian zones of the Turonian and Liassic aquifers have been identified.  相似文献   

10.
雷州半岛局部地热异常及其形成机制   总被引:15,自引:0,他引:15       下载免费PDF全文
雷州半岛地热场主要受基底构造格局的控制和地下水活动的影响,隐伏花岗岩体放射性元素生热对盖层地温的贡献不可忽视,第四纪更新世火山喷发活动的岩浆余热已几乎完全散失,岩浆体和围岩温度已趋于平衡。由火山喷发而形成的雷北螺岗岭和雷南石峁岭两个玄武岩台地,为半岛地下水的主要补给区,由于冷水流下渗的地温效应,新生界盖层浅部地温梯度<3℃/100m,呈现地热负异常。在以传导传热为主的区域,地热场特点与华北盆地相似,新生界盖层地温梯度与基底岩面的埋深密切相关。由于地壳深部较均一的热流在地壳表部再分配的结果,若干凸起区盖层地温梯度为4—5℃/100m,呈现地热正异常。某些控制凸起区的边界断裂,当深层热水沿其上涌,造成附加热源,和传导传热相叠加,盖层地温梯度可高达5—8℃/100m,形成更鲜明的地热正异常。  相似文献   

11.
Owing to the lack o f terrestrial heat flow data, studying lithospheric thermal structure and geodynamics of the Yingen-Ejinaqi Basin in Inner Mongolia is limited. In this paper, the terrestrial heat flow o f the Chagan sag in the YingenEjinaqi Basin were calculated by 193 system steady-state temperature measurements of 4 wells, and newly measuring 62 rock thermal conductivity and 20 heat production rate data on basis o f the original 107 rock thermal conductivity and 70 heat production data. The results show that the average thermal conductivity and heat production rate are 2.11 ±0.28 W/(m.K) and2.42±0.25 nW/m~3 in the Lower Cretaceous o f the Chagan sag. The average geothermal gradient from the Lower Suhongtu 2 Formation to the Suhongtu 1 Fonnation is 37.6 °C/km, and that o f the Bayingebi 2 Formation is 27.4 °C/km. Meanwhile, the average terrestrial heat flow in the Chagan sag is 70.6 mW/m~2. On the above results, it is clear that there is an obvious negative correlation between the thermal conductivity o f the stratum and its geothermal gradient. Moreover, it reveals that there is a geothermal state between tectonically stable and active areas. This work may provide geothermal parameters for further research o f lithospheric thermal structure and geodynamics in the Chagan sag.  相似文献   

12.
雄安新区地热资源丰富,本文通过对地热井资料的收集分析,并对单井地温梯度值进行计算,结合区域资料,编制本区盖层地温梯度等值线图,并分析了地温梯度值纵横向变化规律及影响因素。本区地温梯度值基本上都在3.0℃/100m以上,局部达到6.0℃/100m;平面上,地温梯度值总体特征是北高南低、中间高两侧低的特点;纵向上,盖层地温梯度值高,热储层内部地温梯度值低;其地温场的变化主要受地质构造、地层岩性、盖层、水文地质条件等因素控制,其中由于地质构造的影响,加上岩石热导率之间的差异,造成来自地幔的热量向上传递过程中重新分配,向背斜核部集中,导致盖层局部地温梯度值高。  相似文献   

13.
The evolution of the early/middle Miocene Fohnsdorf Basin has been studied using borehole data, reflection seismic lines, and vitrinite reflectance. The basin is located along the sinistral Mur-Mürz fault system and probably formed as an asymmetric pull-apart basin, which was subsequently modified by halfgraben tectonics, as a consequence of eastward lateral extrusion. Sedimentation started with the deposition of fluvio-deltaic sediments. Thick coal accumulated in the northwestern basin. Thereafter subsidence rates increased dramatically with the formation of a lake several hundred meters deep. The lake was filled mainly from the north with more than 1500?m of sediments showing a coarsening-upward trend due to southward prograding deltaic lobes. A sequence of more than 1000?m of boulder gravels (Blockschotter) in the southeastern part of the basin are interpreted as the upper part of a coarse-grained fan delta succession, which accumulated along a normal fault along the southern basin margin. Fan deltas reached the central basin only during the early stages of sedimentation and during the late stages of basin formation. Miocene heat flow was approximately 65–70?mW/m2, which is significantly lower than in other basins along the Mur-Mürz fault system. The present-day southwestern basin margin is a recent feature, which is related to transpression along the dextral Pöls-Lavanttal fault system. It is formed by reverse faults constituting the northeastern part of a flower structure. Miocene sediments in the Feeberg valley are preserved along its southwestern part. Uplift of the central part of the flower structure was at least 2.4?km. North–south compression resulted in the deformation of the basin fill, uplift of the E/W-trending basement ridge separating the Fohnsdorf and Seckau basins, and in the erosion of 1750?m of sediments along the northern basin margin.  相似文献   

14.
中深层地热单井换热是一种"取热不取水"开发地热能的技术,该技术具有不破坏地下水环境、取热量大等优势,但目前就深度3 000 m以上的单井换热数值计算研究较少,本文针对西安地区地热地质条件,采用数值法计算了不同井型结构(L型定向井、丛式定向井)的中深层地热单井在连续运行一个采暖季情景下的换热量。计算结果表明:同一流速及地温梯度下,在系统连续运行120 d后,L型定向井的出口温度、单位时间取热量及延米取热量高于丛式定向井;同一流速下,地温梯度越大其出口温度越高,单位时间取热量及延米取热量也越大;同一地温梯度下,流速越大其出口温度越低,单位时间取热量及延米取热量越大。丛式定向井井斜30°的出口温度、单位时间取热量及延米取热量高于井斜45°,随着流速的增加,两种井斜下的出口温度、单位时间取热量及延米取热量的差异逐渐减小。从出口温度、单位时间取热量及延米取热量角度考虑,L型定向井的换热效率优于丛式定向井;从钻井施工的难易程度角度考虑,丛式定向井优于L型定向井;丛式定向井的两种井斜结构中,井斜30°的丛式定向井优于井斜45°。所得不同工况的计算结果,可为中深层地热的开发与利用提供参考依据。   相似文献   

15.
Temperature measurements carried out on 9 hydrocarbon exploration boreholes together with Bottom Simulating Reflectors (BSRs) from reflection seismic images are used in this study to derive geothermal gradients and heat flows in the northern margin of the South China Sea near Taiwan. The method of Horner plot is applied to obtain true formation temperatures from measured borehole temperatures, which are disturbed by drilling processes. Sub-seafloor depths of BSRs are used to calculate sub-bottom temperatures using theoretical pressure/temperature phase boundary that marks the base of gas hydrate stability zone. Our results show that the geothermal gradients and heat flows in the study area range from 28 to 128 °C/km and 40 to 159 mW/m2, respectively. There is a marked difference in geothermal gradients and heat flow beneath the shelf and slope regions. It is cooler beneath the shelf with an average geothermal gradient of 34.5 °C/km, and 62.7 mW/m2 heat flow. The continental slope shows a higher average geothermal gradient of 56.4 °C/km, and 70.9 mW/m2 heat flow. Lower heat flow on the shelf is most likely caused by thicker sediments that have accumulated there compared to the sediment thickness beneath the slope. In addition, the continental crust is highly extended beneath the continental slope, yielding higher heat flow in this region. A half graben exists beneath the continental slope with a north-dipping graben-bounding fault. A high heat-flow anomaly coincides at the location of this graben-bounding fault at the Jiulong Ridge, indicating vigorous vertical fluid convection which may take place along this fault.  相似文献   

16.
The Roosevelt Hot Springs Known Geothermal Resource Area (KGRA) is a Basin and Range-type geothermal resource, which is located in southwestern Utah. The integrated multicomponent geothermometry (IMG) approach is used to estimate the reservoir temperature at the Roosevelt Hot Springs KGRA. Geothermometric modeling results indicate the deep reservoir temperature is approximately 284.6°C. A conceptual model of the Roosevelt Hot Spring KGRA is provided through integrating the various pieces of exploration information, including the geological data, geothermometric results, temperature well log and field evidence. A two-dimensional cross-sectional model was thus built to quantitatively investigate the coupled thermal-hydraulic processes in the Roosevelt geothermal field. By matching the preproduction temperature log data of deep wells, parameters controlling flow and heat transport are identified. The method and model presented here may be useful for other geothermal fields with similar conditions.  相似文献   

17.
Seismic reflection data reveal prominent bottom-simulating reflections (BSRs) within the relatively young (<0.78 Ma) sediments along the West Svalbard continental margin. The potential hydrate occurrence zone covers an area of c. 1600 km2. The hydrate accumulation zone is bound by structural/tectonic features (Knipovich Ridge, Molloy Transform Fault, Vestnesa Ridge) and the presence of glacigenic debris lobes inhibiting hydrate formation upslope. The thickness of the gas-zone underneath the BSR varies laterally, and reaches a maximum of c. 150 ms. Using the BSR as an in-situ temperature proxy, geothermal gradients increase gradually from 70 to 115 °C km−1 towards the Molloy Transform Fault. Anomalies only occur in the immediate vicinity of normal faults, where the BSR shoals, indicating near-vertical heat/fluid flow within the fault zones. Amplitude analyses suggest that sub-horizontal fluid migration also takes place along the stratigraphy. As the faults are related to the northwards propagation of the Knipovich Ridge, long-term disturbance of hydrate stability appears related to incipient rifting processes.  相似文献   

18.
Present Geothermal Fields of the Dongpu Sag in the Bohai Bay Basin   总被引:2,自引:0,他引:2  
The Dongpu sag is located in the south of the Bohai Bay basin, China, and has abundant oil and gas reserves. To date, there has been no systematic documentation of its geothermal fields. This study measured the rock thermal conductivity of 324 cores from 47 wells, and calculated rock thermal conductivity for different formations. The geothermal gradient and terrestrial heat flow were calculated for 192 wells on basis of 892 formation-testing data from 523 wells. The results show that the Dongpu sag is characterized by a medium-temperature geothermal field between stable and active tectonic areas, with an average geothermal gradient of 32.0°C/km and terrestrial heat flow of 65.6 mW/m2. The geothermal fields in the Dongpu sag is significantly controlled by the Changyuan, Yellow River, and Lanliao basement faults. They developed in the Paleogene and the Dongying movement occurred at the Dongying Formation depositional period. The geothermal fields distribution has a similar characteristic to the tectonic framework of the Dongpu sag, namely two subsags, one uplift, one steep slope and one gentle slope. The oil and gas distribution is closely associated with the present geothermal fields. The work may provide constraints for reconstructing the thermal history and modeling source rock maturation evolution in the Dongpu sag.  相似文献   

19.
含油气盆地的地温场在油气的生成、运聚及盆地演化过程中起着十分重要的作用。柴达木盆地是中国西部重要的含油气盆地,位于喜马拉雅构造域的东北部,盆地现今地温场特征研究不仅为柴达木盆地及周缘陆内或板内大陆动力学及盆地动力学研究提供了科学依据,同时也是油气成烃、成藏及资源评价等工作的研究基础。柴达木盆地现今地温场研究的前期工作主要集中在盆地西部,盆地的北缘、东部开展的工作很少,所用研究数据多取自20世纪之前,盆地现今地温场特征的系统研究尚比较缺乏,亟须开展相关研究工作。文中采用先进的钻孔温度连续采集系统,实现了深井稳态测温工作的大规模化、高精度化,使用光学扫描法测试岩石热导率,获得了批量的、高精度的岩石热导率数据,新增了17口钻井的测温剖面。研究表明:柴达木盆地现今地温梯度平均为(28.6±4.6) ℃/km,地温梯度分布具有西部高,中、东部低的特点。柴达木盆地现今大地热流值平均(55.1±7.9) mW/m2,盆地不同构造单元大地热流分布存在差异。大地热流分布特征表明:柴达木盆地总体属于温盆,热流值低于我国大陆地区大地热流平均值,但高于西部的塔里木、准噶尔盆地。柴达木盆地现今地温场分布特征受地壳深部结构、岩石热导率性质及盆地构造等因素的控制。  相似文献   

20.
A detailed deep 3D geological model is an important basis for many types of exploration and resource modelling. Renewed interest in the structure of the Sydney Basin, driven primarily by sequestration studies, geothermal studies and coal seam gas exploration, has highlighted the need for a model of deep basin geology, structure and thermal state. Here, we combine gravity modelling, seismic reflection surveys, borehole drilling results and other relevant information to develop a deep 3D geological model of the Sydney Basin. The structure of the Sydney Basin is characteristic of a typical intracontinental rift basin, with a deep north–south orientated channel in the Lachlan Fold Belt basement, filled with up to 4 km of rift volcanics, and overlain with Permo-Triassic sediments up to 4 km thick. The deep regional architecture presented in this study will form the framework for more detailed geological, hydrological and geothermal models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号