首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diverse and well‐preserved palynomorph assemblages recovered from the Deurne Sands, a local member of the Upper Miocene Diest Formation near Antwerp, allow the recognition of dinoflagellate cyst biozones defined in the North Atlantic realm (East Coast, USA) and the North Sea region (Nieder Ochtenhausen well, northern Germany). Based on the dinoflagellate cyst assemblages and the calcareous microfossils, the deposition of the Deurne Sands took place at some time during middle to late Tortonian (Late Miocene). These sands can be correlated biostratigraphically with the Dessel Sands in the Campine area of northern Belgium. This correlation demonstrates the existence of two separate and contemporary depositional areas in northern Belgium during early Late Miocene times. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Louwye  S.  De Coninck  J.  Verniers  J. 《Geologie en Mijnbouw》1999,78(1):31-46
The occurrence of organic-walled dinoflagellate cysts (dinocysts) in the Diest Formation, a largely decalcified succession with a poor fossil content, and in the adjacent strata of Lower Miocene and Lower Pliocene formations, allowed a biostratigraphic evaluation of these deposits and an assessment of the hiatus between the lithostratigraphic units. The Diest Formation was deposited during Tortonian – Messinian times. Dinocyst biozones defined in the North Sea region and the U.S.A. East Coast are recognised within the Diest Formation, although environmental factors seem to have influenced the presence of some key zonal species in the shallow-marine deposits of northern Belgium. The two members of the Diest Formation studied, i.e., the Dessel Sands and the Diest Sands, appear to be strongly diachronous. The depocentre was located in the Campine area during the early Tortonian and shifted to the area north of Antwerp during late Tortonian to Messinian times. The age assessment provides a correlation of the sequence boundaries of Haq et al. (1987) at the top of the Diest Formation with SB 5.5.  相似文献   

3.
伦坡拉盆地丁青湖组沉积时代的确定对于研究青藏高原中部的古高度和古气候具有重要的地质意义,但由于没有精确的年龄数据,其顶部是否跨入了新近系,一直以来都存在争论。作者在伦坡拉盆地西部鄂加卒地区开展野外调查过程中,在该剖面中部和上部新发现两套凝灰岩夹层,对凝灰岩进行了LA-ICP-MS锆石U-Pb定年,获得了两件凝灰岩样品的形成年龄分别为24.05±0.24Ma(MSWD=1.07,n=24)和22.64±0.33Ma(MSWD=0.45,n=17),时代分别为晚渐新世和早中新世。根据凝灰岩锆石U-Pb年龄和前人研究成果,将鄂加卒剖面的细碎屑岩地层重新厘定为丁青湖组,并将丁青湖组的沉积时代定为渐新世-中中新世。根据丁青湖组地层厚度及沉积速率估算,该组沉积持续时间在21~23Ma之间,其顶部地层的年龄在11~13Ma左右。由此可见,伦坡拉盆地接受连续沉积一直持续到了中中新世,这比过去普遍认识的晚始新世-渐新世时期青藏高原中部的古高度和古气候变化时间更晚。前人在该地区发现的近无角犀化石、攀鲈鱼化石、棕榈科叶片化石以及孢粉化石等研究结果共同证实,青藏高原中部渐新世晚期的古海拔高度低于~2500~3000 m。因此,该区晚渐新世-早中新世温暖潮湿的气候特征很可能是受到了印度洋气流穿透的影响,而且该影响可能一直持续到了中中新世,从而造就了该时期青藏高原生物的多样性。  相似文献   

4.
In northwest Anatolia, there is a mosaic of different morpho-tectonic fragments within the western part of the right-lateral strike-slip North Anatolian Fault (NAF) Zone. These were developed from compressional and extensional tectonic regimes during the paleo- and neo-tectonic periods of Turkish orogenic history. A NE-SW-trending left-lateral strike-slip fault system (Adapazari-Karasu Fault) extends through the northern part of the Sakarya River Valley and began to develop within a N–S compressional tectonic regime which involved all of northern Anatolia during Middle Eocene to early Middle Miocene times. Since the end of Middle Miocene times, this fault system forms a border between a compressional tectonic regime in the eastern area eastwards from the northern part of the Sakarya River Valley, and an extensional tectonic regime in the Marmara region to the west. The extension caused the development of basins and ridges, and the incursions of the Mediterranean Sea into the site of the future Sea of Marmara since Late Miocene times. Following the initiation in late Middle Miocene times and the eastward propagation of extension along the western part of the NAF, a block (North Anatolian Block) began to form in the northern Anatolia region since the end of Pliocene times. The Adapazari-Karasu Fault constitutes the western boundary of this block which is bounded by the NAF in the south, the Northeast Anatolian Fault in the east, and the South Black Sea Thrust Fault in the north. The northeastward movement of the North Anatolian Block caused the formation of a marine connection between the Black Sea and the Aegean/Mediterranean Sea during the Pleistocene.  相似文献   

5.
Erratic clasts with a mass of up to 15 kg are described from preglacial shallow marine and coastal deposits (Wroxham Crag Formation) in northeast Norfolk. Detailed examination of their petrology has enabled them to be provenanced to northern Britain and southern Norway. Their clustered occurrence in coastal sediments in Norfolk is believed to be the product of ice-rafting from glacier incursions into the North Sea from eastern Scotland and southern Norway, and their subsequent grounding and melting within coastal areas of what is now north Norfolk. The precise timing of these restricted glaciations is difficult to determine. However, the relationship of the erratics to the biostratigraphic record and the first major expansion of ice into the North Sea suggest these events occurred during at least one glaciation between the late Early Pleistocene and early Middle Pleistocene (c. 1.1–0.6 Ma). In contrast to the late Middle (Anglian) and Late Pleistocene (Last Glacial Maximum) glaciations, where the North Sea was largely devoid of extensive marine conditions, the presence of far-travelled ice-rafted materials implies that earlier cold stage sea-levels were considerably higher.  相似文献   

6.
The Lower–Middle Miocene Berchem Formation of northern Belgium is an essentially sandy sequence with a varying glauconite content and often abundant shelly intervals. The formation was deposited in a shallow marine environment and rests unconformably on stiff Rupelian clays or Chattian sands. The lithological recognition of the four members (Edegem Sands, Kiel Sands, Antwerpen Sands and Zonderschot Sands members) of the Berchem Formation solely based on lithological criteria proved to be difficult, especially in boreholes. The geometry of the Formation in the subsurface of northern Belgium remained largely unknown. Diverse and well preserved dinoflagellate cyst associations have been recovered from the four members in seven boreholes and two outcrops, and allow a refinement of the biostratigraphy of these deposits. A Miocene biozonation defined in mid‐latitude shallow marine deposits in the Atlantic Coastal Plain of the USA (Salisbury Embayment, Maryland) is readily applicable to this material, and has led to a detailed stratigraphic assessment of each member. Three detailed profiles depicting the distribution of the biozones in the subsurface of northern Belgium allow the reconstruction of the geometry and depositional history of the Berchem Formation. The oldest Miocene deposits are of early Burdigalian age and they testify to a transgression, which invaded Belgium from a north–northwestern direction. The maximum flooding took place during early Serravallian times. The upper boundary of the formation is a major erosional surface of late Serravallian or (slightly) younger age. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
合肥盆地中生代地层时代与源区的碎屑锆石证据   总被引:3,自引:0,他引:3  
王薇  朱光  张帅  刘程  顾承串 《地质论评》2017,63(4):955-977
合肥盆地位于大别造山带北侧、郯庐断裂带西侧,其发育过程与这两大构造带演化密切相关。本次工作对合肥盆地南部与东部出露的中生代砂岩与火山岩进行了锆石年代学研究,从而限定了各组地层的沉积时代,确定了火山岩喷发时间,指示了沉积物的源区。这些年代学数据表明,合肥盆地南部的中生代碎屑岩自下而上分别为下侏罗统防虎山组、中侏罗统圆筒山组或三尖铺组、下白垩统凤凰台组与周公山组(或黑石渡组)与上白垩统戚家桥组,其间缺失上侏罗统。盆地东部白垩系自下而上为下白垩统朱巷组与响导铺组和上白垩统张桥组。该盆地出露的毛坦厂组或白大畈组火山岩喷发时代皆为早白垩世(130~120 Ma)。盆地南部的下——中侏罗统及白垩系源区皆为大别造山带,分别对应该造山带的后造山隆升与造山后伸展隆升。而盆地东部白垩系的源区始终为东侧的张八岭隆起带,后者属于郯庐断裂带伸展活动中的上升盘。  相似文献   

8.
天山东段地区二叠系芦草沟组的沉积时代、沉积环境和构造背景存在争议。根据芦草沟组中发现的标准化石桃树园吐鲁番鳕、托姆介介形虫和孢粉化石组合,结合沉积地层中大量碎屑锆石最年轻峰值年龄261 Ma,认为芦草沟组的沉积时代为瓜德鲁普世(中二叠世)而非乌拉尔世(早二叠世)。近年来,在芦草沟组中发现典型海相指示矿物海绿石、海相或海陆交互相托姆介介形虫,加之超高盐度咸化湖盆的证实,认为芦草沟组主体为湖相沉积,但部分沉积时段受到海侵(泛)事件影响。天山东段地区准噶尔盆地、三塘湖盆地、吐哈盆地二叠系芦草沟组具有相似的岩石组合、动物群面貌和构造特征,但不同盆地古盐度、古气候、古氧化还原条件、古水深、初级生产力及热液输入强度等具有差异,分析认为芦草沟组形成于相似的伸展裂谷构造背景,但不同盆地之间沉积特征具有差异、不具备统一的沉积中心,为一系列弥散性裂谷盆地群。  相似文献   

9.
Cenozoic marine strata occur in the western, eastern, and central parts of the North Patagonian Andes between ∼43°S and 44°S. Correlation of these deposits is difficult because they occur in small and discontinuous outcrops and their ages are uncertain. In order to better understand the age and sedimentary environment of these strata, we combined U–Pb (LA-MC-ICPMS) geochronology on detrital zircons with sedimentologic and paleontologic (foraminifers and molluscs) studies. Sedimentologic analyses suggest that the Puduhuapi Formation on the western flank of the Andean Cordillera was deposited in a deep-marine setting, the Vargas Formation in the central part of the Andes was deposited at outer-neritic or bathyal depths, and the La Cascada Formation on the eastern flank of the range was deposited in a shallow-marine environment. Geochronologic and paleontologic results indicate that the three marine units were deposited during the late Oligocene-early Miocene interval, although it is not clear whether this occurred during one or more marine incursions in the area. The alluvial(?) conglomeratic deposits of the La Junta Formation, exposed in the proximity of the Vargas Formation outcrops, have a maximum depositional age of ∼26 Ma and could have been deposited during the initial stage of subsidence that affected this region prior to the marine transgression over this area. The occurrence of both Pacific and Atlantic molluscan taxa in the La Cascada and Vargas formations suggests that a marine strait connected both oceans during the accumulation of these units. The new data on the age of the Puduhuapi, Vargas, and La Cascada formations indicate that these units may correlate with lower Miocene marine deposits in the forearc of central and southern Chile (Navidad Formation and equivalent units) and on the eastern flank of the Patagonian Andes (Río Foyel Formation and equivalent units). A late Oligocene−early Miocene age for these marine deposits is a reliable maximum age for the deformation and uplift of the North Patagonian Andes.  相似文献   

10.
In the Thrace Peninsula, Neogene units were deposited in two areas, the Enez Basin in the south and the Thrace Basin in the north. In the southwesternmost part of the peninsula, upper lower–lower upper Miocene continental to shallow marine clastics of the Enez Formation formed under the influence of the Aegean extensional regime. During the last stage of the transpressional activity of the NW-trending right-lateral strike–slip Balkan–Thrace Fault, which had controlled the initial early middle Eocene deposition in the Thrace Basin, a mountainous region extending from Bulgaria eastwards to the northern Thrace Peninsula of Turkey developed. A river system carried erosional clasts of the metamorphic basement southwards into the limnic depositional areas of the Thrace Basin during middle Miocene time. Deposition of fluvial, lacustrine, and terrestrial strata of the Ergene Formation, which conformably and transitionally overlie the Enez Formation, began in the late middle Miocene in the southwest part and in the late Miocene in the north‐northeast part of the basin. Activity along the NE-trending right-lateral strike–slip faults (the Xanthi–Thrace Fault Zone) extending from northeast Greece northeastwards through the Thrace Peninsula of Turkey to the southern shelf of the western Black Sea Basin began during the middle Miocene in the northern Aegean, at the beginning of the late Miocene in the southwest part, and at the end of the late Miocene in the northeast part of the Thrace region. Although the Neogene deposits in the Thrace Basin were evaluated as the products of a northerly fault, our data indicate that the NW-trending northerly fault zone became effective only during the initial stage of the basin development. The later stage deposition in the basin was controlled by the NE-trending Xanthi–Thrace Fault Zone, and the deposits of this basin progressively evolved north/northeastwards during the late Miocene. During the late early Miocene–late Miocene interval, extension within the Thrace region was part of the more regional Aegean extensional realm, but from latest Miocene time, it has been largely decoupled from the Aegean extensional realm to the south.  相似文献   

11.
The earliest marine sediments of eastern Corsica, linked to the birth of the Corsica Basin, are represented by granitic breccia of the Saint-Antoine Formation and pelagic marls of the Alzelle Formation. They are dated as Mid-Burdigalian by nannoplankton and planktonic foraminifera (relative age and grade datings between 18.7 and 18.3 Ma). The Aghione Formation (Latest Burdigalian–Langhian) lies upon the Alzelle Formation. A component of the major East-Corsican faults, the Saint-Antoine Fault, underwent extensional activity during the Burdigalian and until the Late Miocene, when occurred the uplift of the Castagniccia antiform. To cite this article: M.-D. Loÿe-Pilot et al., C. R. Geoscience 336 (2004).  相似文献   

12.
The northern Yangtze foreland basin system was formed during the Mesozoic continental collision between the North and South China plates along the Mianlue suture. In response to the later phase of intra-continental thrust deformation, an extensive E–W-trending molasse basin with river, deltaic, and lake deposits was produced in front of the southern Qinling–Dabieshan foreland fold-and-thrust belt during the Early–Middle Jurassic (201–163 Ma). The basin originated during the Early Jurassic (201–174 Ma) and substantially subsided during the Middle Jurassic (174–163 Ma). A gravelly alluvial fan depositional system developed in the lower part of the Baitianba Formation (Lower Jurassic) and progressively evolved into a meandering river fluvial plain and lake systems to the south. The alluvial fan conglomerates responded to the initial uplift of the southern Qinling–Dabieshan foreland fold-and-thrust belt after the oblique collision between the Yangtze and North China plates during the Late Triassic. The Qianfoya Formation (lower Middle Jurassic) mainly developed from shore-shallow lacustrine depositional systems. The Shaximiao Formation (upper Middle Jurassic) predominantly consists of thick-bedded braided river delta successions that serve as the main body of the basin-filling sequences. The upward-coarsening succession of the Shaximiao Formation was controlled by intense thrusting in the southern Qinling–Dabieshan fold-and-thrust belt. Palaeogeographic reconstructions indicated an extensive E–W foredeep depozone along the fold-and-thrust belt during the Middle Jurassic (174–163 Ma) that was nearly 150 km wide. The depozone extended westward to the Longmenshan and further east to the northern middle Yangtze plate. The northern Yangtze foreland basin was almost completely buried or modified by the subsequent differential thrusting of Dabashan and its eastern regions (Late Jurassic to Cenozoic).  相似文献   

13.
Twenty paleogeographic maps are presented for Middle Eocene (Lutetian) to Late Pliocene times according to the stratigraphical data given in the companion paper by Berger et al. this volume. Following a first lacustrine-continental sedimentation during the Middle Eocene, two and locally three Rupelian transgressive events were identified with the first corresponding with the Early Rupelian Middle Pechelbronn beds and the second and third with the Late Rupelian Serie Grise (Fischschiefer and equivalents). During the Early Rupelian (Middle Pechelbronn beds), a connection between North Sea and URG is clearly demonstrated, but a general connection between North Sea, URG and Paratethys, via the Alpine sea, is proposed, but not proved, during the late Rupelian. Whereas in the southern URG, a major hiatus spans Early Aquitanian to Pliocene times, Early and Middle Miocene marine, brackish and freshwater facies occur in the northern URG and in the Molasse Basin (OMM, OSM); however, no marine connections between these basins could be demonstrated during this time. After the deposition of the molasse series, a very complex drainage pattern developed during the Late Miocene and Pliocene, with a clear connection to the Bresse Graben during the Piacenzian (Sundgau gravels). During the Late Miocene, Pliocene and Quaternary sedimentation persisted in the northern URG with hardly any interruptions. The present drainage pattern of the Rhine river (from Alpine area to the lower Rhine Embayment) was not established before the Early Pleistocene.  相似文献   

14.
碳酸盐岩(台地)的消亡是沉积学研究的前沿和热点科学问题。南海东北部珠江口盆地东沙隆起所发育的下中新统珠江组碳酸盐岩是我国海相碳酸盐岩的最高层位,东沙台地珠江组碳酸盐岩的生长、繁盛和消亡过程提供了中国南海乃至世界范围内一个典型的受构造、海平面变化和物源共同控制的研究实例。依据采自钻井岩心钙质超微化石和浮游有孔虫化石带将珠江组的上界置于钙质超微化石带NN4与NN5的界线,即中、下中新统界线,下界置于浮游有孔虫N4的底部附近,即位于中新统与渐新统界线。有孔虫属为N4-N8带,钙质超微化石为NN2-NN4带,底界年龄为23.03Ma,顶界年龄为15.97Ma,地震反射上位于T40-T60之间。而其中碳酸盐岩地层最早于21Ma左右开始生长,最晚于16.5Ma被泥岩淹没。早期的东沙隆起北低南高,21Ma以后,东沙隆起沉降而丧失了向珠一凹陷提供物源的功能,沉降较快的东沙隆起北北部地区发育碳酸盐岩;初期为一套碳酸岩缓坡沉积,20Ma以后隆起整体被淹没,开始了大规模的碳酸盐岩建造,实现了由碳酸盐岩缓坡向台地的转变,随沉降向南推移,隆起逐渐转变为北高南低,整个碳酸盐岩台地持续向东南方向退缩,台地沉积逐渐萎缩为局部礁滩复合体,北部古地貌的高部位残存零星点礁;16.5Ma以后,沉降中心向珠二凹陷迁移,北部、北西部碎屑物质持续向东沙隆起前积导致台地消亡。结合珠江组沉积时期的地质事件的分析,本文认为早期碳酸盐岩的消亡是由于这一时期的全球海平面下降到最低位,引起区域上的物源供给加快,灰岩直接被北部沉积物退覆淹没所致;20±0.5Ma~18.3±0.5Ma的碳酸盐岩的消亡时间受制于沉降造成的相对海平面的变化,基底的火山作用及沉降中心的迁移等事件,最晚一期碳酸盐岩(流花地区碳酸盐岩)的消亡应该是构造反转后,北部物源对凹陷的持续填平补齐作用引起碳酸盐岩的生长环境变化所致。由此看,陆源碎屑的注入、沉降中心的迁移、相对海平面的升降及原始古地貌形态是碳酸盐岩生长发育及消亡的主要控制因素。  相似文献   

15.
目前对珠江口盆地中生代以来的演化过程及其与沉积环境演变的响应关系尚缺乏系统性认识.基于珠江口盆地中-新生代岩浆活动、断陷结构样式及其改造、典型构造变形样式、沉积中心的转换等特征的对比分析,将盆地中-新生代的构造演化划分为4个阶段、7个期次:(1)中侏罗世-晚白垩世早期(~170~90 Ma)为古太平洋板块俯冲主控的陆缘岩浆弧-弧前盆地演化阶段;(2)晚白垩世-始新世中期(~90~43 Ma)为太平洋板块俯冲后撤背景下弧后周缘前陆/造山后塌陷-主动裂谷演化阶段;(3)始新世中期-中中新世(~43~10 Ma)为华南挤出-古南海俯冲拖曳主导的被动陆缘演化阶段;(4)晚中新世以来(~10~0 Ma)为菲律宾板块NWW向仰冲主导的挤压张扭演化阶段.~90 Ma、~43 Ma、~10 Ma分别实现了由安第斯型俯冲向西太平洋型俯冲、由主动裂谷向被动陆缘伸展、由被动陆缘伸展向挤压张扭的转换.在此过程中,伴随着古南海和南海的发育-消亡,新生代裂陷期沉积环境由东向西、由南向北逐渐海侵,裂后期由南向北阶段性差异沉降,由陆架浅水向陆坡深水转换,这使得珠一/三、珠二、珠四坳陷的石油地质条件具有显著的分带差异性...  相似文献   

16.
准噶尔盆地东部(准东)油气勘探成效差,是否发育规模有效烃源岩是必须回答的关键科学问题。通过地球化学法、ΔlgR法、井震结合对准东地区二叠系平地泉组烃源岩进行识别和评价,探讨烃源岩的空间分布。研究表明,平地泉组烃源岩以暗色泥岩为主,丰度为中等-好,以半深湖-深湖相泥页岩为优,优质烃源岩在平二段富集。平面上烃源岩富集在准东北部的克拉美丽山前带和南部的博格达山前带,中间被奇台凸起所分割。南、北带内部烃源岩的丰度受次级凹陷分割,表现出西高(TOC>1.5%)东低(0.5%相似文献   

17.
The Hanjiang Formation of Langhian age(middle Miocene) in the Pearl River Mouth Basin (PRMB),South China Sea consists of deltaic siliciclastic and neritic shelf carbonate rhythmic alternations,which form one of the potential reservoirs of the basin.To improve stratigraphic resolutions for hydrocarbon prospecting and exploration in the basin,the present study undertakes spectral analysis of high-resolution natural gamma-ray(NCR) well-logging record to determine the dominant frequency components and test whether Milankovitch orbital signals are recorded in rhythmic successions.Analytical results indicate the orbital cycles of precession(~19 ka and~23 ka), obliquity(~41 ka),and eccentricity(~100 ka and~405 ka),which provide the strong evidence for astronomically driven climate changes in the rhythmic alternation successions.Within biochronological constraint,a high-resolution astronomical timescale was constructed through the astronomical tuning of the NGR record to recent astronomically calculated variation of Earth’s orbit. The astronomically tuned timescale can be applied to calculate astronomical ages for the geological events and bioevents recognized throughout the period.The first downhole occurrences of foraminifers Globorotalia peripheroronda and Globigerinoides sicanus are dated at 14.546 Ma and 14.919 Ma,respectively,which are slightly different from earlier estimates in the South China Sea. When compared with the global sea-level change chart,the astronomical estimate for the sequences recognized based on microfossil distributions have the same end time but the different initiation time. This is probably due to the local or regional tectonic activities superimposed on eustatic rise which postponed the effect of global sea-level rising.Astronomical timescale also resolves the depositional evolution history for the Langhian Stage(middle Miocene) with a variation that strongly resembles that of Earth’s orbital eccentricity predicted from 13.65 Ma to 15.97 Ma.We infer that the main factor controlling the variability of the sedimentation rate in the Hanjiang Formation is related to the~405-ka-period eccentricity.  相似文献   

18.
《International Geology Review》2012,54(11):1417-1442
ABSTRACT

The Ordos Basin, situated in the western part of the North China Craton, preserves the 150-million-year history of North China Craton disruption. Those sedimentary sources from Late Triassic to early Middle Jurassic are controlled by the southern Qinling orogenic belt and northern Yinshan orogenic belt. The Middle and Late Jurassic deposits are received from south, north, east, and west of the Ordos Basin. The Cretaceous deposits are composed of aeolian deposits, probably derived from the plateau to the east. The Ordos Basin records four stages of volcanism in the Mesozoic–Late Triassic (230–220 Ma), Early Jurassic (176 Ma), Middle Jurassic (161 Ma), and Early Cretaceous (132 Ma). Late Triassic and Early Jurassic tuff develop in the southern part of the Ordos Basin, Middle Jurassic in the northeastern part, while Early Cretaceous volcanic rocks have a banding distribution along the eastern part. Mesozoic tectonic evolution can be divided into five stages according to sedimentary and volcanic records: Late Triassic extension in a N–S direction (230–220 Ma), Late Triassic compression in a N–S direction (220–210 Ma), Late Triassic–Early Jurassic–Middle Jurassic extension in a N–S direction (210–168 Ma), Late Jurassic–Early Cretaceous compression in both N–S and E–W directions (168–136 Ma), and Early Cretaceous extension in a NE–SW direction (136–132 Ma).  相似文献   

19.
I. Zak  R. Freund 《Tectonophysics》1981,80(1-4):27-38
The Dead Sea depression sensu stricto, forms the deepest continental part of the Dead Sea rift, a transfer which separates the Levanthine and Arabian plates. It is occupied by three distinct sedimentary bodies, deposited in basins whose depocenters are displaced northward with time. They are: the continental red beds of the Hazeva Formation (Miocene), the Bira-Lido-Gesher marls and the exceptionally thick rocksalt of the Sedom Formation (Pliocene—Early Pleistocene), and the successive Amora, Lisan and Dead Sea evaporites and clastics (Early Pleistocene—Recent). Lengthwise and crosswise asymmetries of these sedimentary basins and their respective depocenters are due to: leftlateral shear combined with anticlockwise rotation of the Arabian (eastern) plate; steeper faulting of the crustal eastern margin than of the western sedimentary margin, and modification of depositional pattern by twice filling up of basins, by Hazeva red beds during Late Miocene pause of shear and by Sedom rocksalt during Pliocene marine ingression.  相似文献   

20.
宁夏中南部中新世构造活动的地质证据及其意义   总被引:3,自引:0,他引:3  
张进  马宗晋  肖文霞  任文军 《地质学报》2006,80(11):1650-1660
通过区域性新生界的对比及不整合面分布的研究,发现宁夏地区中新世曾发生过两次构造运动,一次发生于早中新世,另一次发生于中中新世晚期,但以后者明显,分布也最广。其中前者集中在六盘山以西地区,后者分布在查汗布拉格—三关口—青铜峡—固原(查-固)断裂沿线。宁夏中北部大部分红柳沟组是在受中新世构造运动影响的环境下沉积的。发生于早中新世的构造运动集中体现在六盘山以西的地区和甘肃部分地区,该期运动使渐新统清水营组变形,由于这些现象多发生于海原断裂附近,因此推测在早中新世海原断裂就可能已活动了。而发生于中中新世晚期的运动体现在如下几个方面,在贺兰山中南段西侧发现了中中新世晚期的逆冲推覆活动,堆积了厚度较大的同构造沉积(红柳沟组);在查-固断裂沿线发现了由于中中新世晚期的构造活动而形成的红柳沟组与清水营组之间的角度不整合面,这些说明在该期青藏高原的变形前锋已到达查-固断裂,也就是鄂尔多斯西缘地区,早新生代盆地因此解体;与此同时盆地内部红柳沟组向上逐渐变粗,也说明中中新世晚期较强烈的构造运动已影响到了该区,香山地区开始隆起并分割了早先的盆地,使之成为背驮盆地。宁夏中南部并入到青藏高原东北缘逆冲构造楔之中,该逆冲构造楔中新世向北东扩展的原因可能是由于高原北部在同期显著的隆升运动使得逆冲楔顶角超过临界值,而向前扩展的,查-固断裂是早期类似于目前海原断裂的青藏高原变形前缘,整个高原东北部的扩展并不是前展式,而是一种没有特定顺序的变形。上述这些现象否定了前人认为宁夏地区第三系的变形发生在上新世末期—更新世以后的观点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号