首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
《Organic Geochemistry》2011,42(12):1489-1501
Mineral–organic associations act as mediators of litter-derived N flow to the mineral soil, but the time scales and pathways involved are not well known. To close that gap, we took advantage of decade old 15N litter labeling experiments conducted in two European forests. We fractionated surface soils by density with limited disaggregating treatment and investigated organic matter (OM) characteristics using δ13C, δ15N and the C/N ratio. Mineral properties were studied by X-ray diffraction and selective dissolution of pedogenic oxides.Three types of associations were isolated: plant debris with few trapped minerals (<1.65 g/cm3), aggregates dominated by phyllosilicates (1.65–2.4 g/cm3), and single mineral grains and pedogenic oxides with little OM (>2.4 g/cm3). A small proportion of 15N tracer was rapidly attached to single mineral grains, while most of it moved from plant debris to aggregates of low density and progressively to aggregates of higher density that contain a more microbially processed OM. After a decade, 60% of the 15N tracer found in the investigated horizon was retained in aggregates, while plant debris still contained 40% of the tracer.We present a conceptual model of OM and N flow through soil mineral–organic associations, which accounts for changes in density, dynamics and chemistry of the isolated structures. It suggests that microbial reworking of OM entrapped within aggregates (1.65–2.4 g/cm3) causes the gradient of aggregate packing and, further on, controls the flow of litter-derived N through aggregates. For associations with denser material (>2.4 g/cm3), mineralogy determines the density of the association, the type of patchy OM attached to mineral surfaces and controls the extent of litter-derived N incorporation.  相似文献   

2.
Large portions of organic N (ON) in soil exist tightly associated with minerals. Mineral effects on the type of interactions, chemical composition, and stability of ON, however, are poorly understood. We investigated mineral-associated ON along a Hawaiian soil chronosequence (0.3-4100 kyr) formed in basaltic tephra under comparable climatic, topographic, and vegetation conditions. Mineral-organic associations were separated according to density (ρ > 1.6 g/cm3), characterized by X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge fine structure (NEXAFS) and analyzed for amino acid enantiomers and amino sugars. The 14C activity of mineral-bound OC was estimated by accelerator mass spectrometry. The close OC-ON relationship (r = 0.96) and XPS results suggest that ON exists incorporated in bulk mineral-bound OM and likely becomes associated with minerals as part of sorbing OM. The youngest site (0.3 kyr), with soils mainly composed of primary minerals (olivine, pyroxene, feldspar) and with little ON, contained the largest proportion of hydrolyzable amino sugars and amino acids but with a small share of acidic amino acids (aspartic acid, glutamic acid). In soils of the intermediate weathering stage (20-400 kyr), where poorly crystalline minerals and metal(hydroxide)-organic precipitates prevail, more mineral-associated ON was present, containing a smaller proportion of hydrolyzable amino sugars and amino acids due to the preferential accumulation of other OM components such as lignin-derived phenols. Acidic amino acids were more abundant, reflecting the strong association of acidic organic components with metal(hydroxide)-organic precipitates and variable-charge minerals. In the final weathering stage (1400-4100 kyr) with well-crystalline secondary Fe and Al (hydr)oxides and kaolin minerals, mineral-organic associations held less ON and were, relative to lignin phenols, depleted in hydrolyzable amino sugars and amino acids, particularly in acidic amino acids. XPS and NEXAFS analyses showed that the majority (59-78%) of the mineral-associated ON is peptide N while 18-34% was aromatic N. Amino sugar ratios and d-alanine suggest that mineral-associated ON comprises a significant portion of bacterial residues, particularly in the subsoil. With increasing 14C age, a larger portion of peptide N was non-hydrolyzable, suggesting the accumulation of refractory compounds with time. The constant d/l ratios of lysine in topsoils indicate fresh proteinous material, likely due to continuous sorption of or exchange with fresh N-containing compounds. The 14C and the d/l signature revealed a longer turnover of proteinous components strongly bound to minerals (not NaOH-NaF-extractable). This study provides evidence that interactions with minerals are important in the transformation and stabilization of soil ON. Mineral-associated ON in topsoils seems actively involved in the N cycling of the study ecosystems, accentuating N limitation at the 0.3-kyr site but increasing N availability at older sites.  相似文献   

3.
A multisite surface complexation (MUSIC) model for ferrihydrite (Fh) has been developed. The surface structure and composition of Fh nanoparticles are described in relation to ion binding and surface charge development. The site densities of the various reactive surface groups, the molar mass, the mass density, the specific surface area, and the particle size are quantified. As derived theoretically, molecular mass and mass density of nanoparticles will depend on the types of surface groups and the corresponding site densities and will vary with particle size and surface area because of a relatively large contribution of the surface groups in comparison to the mineral core of nanoparticles. The nano-sized (∼2.6 nm) particles of freshly prepared 2-line Fh as a whole have an increased molar mass of M ∼ 101 ± 2 g/mol Fe, a reduced mass density of ∼3.5 ± 0.1 g/cm3, both relatively to the mineral core. The specific surface area is ∼650 m2/g. Six-line Fh (5-6 nm) has a molar mass of M ∼ 94 ± 2 g/mol, a mass density of ∼3.9 ± 0.1 g/cm3, and a surface area of ∼280 ± 30 m2/g. Data analysis shows that the mineral core of Fh has an average chemical composition very close to FeOOH with M ∼ 89 g/mol. The mineral core has a mass density around ∼4.15 ± 0.1 g/cm3, which is between that of feroxyhyte, goethite, and lepidocrocite. These results can be used to constrain structural models for Fh. Singly-coordinated surface groups dominate the surface of ferrihydrite (∼6.0 ± 0.5 nm−2). These groups can be present in two structural configurations. In pairs, the groups either form the edge of a single Fe-octahedron (∼2.5 nm−2) or are present at a single corner (∼3.5 nm−2) of two adjacent Fe octahedra. These configurations can form bidentate surface complexes by edge- and double-corner sharing, respectively, and may therefore respond differently to the binding of ions such as uranyl, carbonate, arsenite, phosphate, and others. The relatively low PZC of ferrihydrite can be rationalized based on the estimated proton affinity constant for singly-coordinated surface groups. Nanoparticles have an enhanced surface charge. The charging behavior of Fh nanoparticles can be described satisfactory using the capacitance of a spherical Stern layer condenser in combination with a diffuse double layer for flat plates.  相似文献   

4.
Tissue N contents and δ15N signatures in 175 epilithic mosses were investigated from urban to rural sites in Guiyang (SW China) to determine atmospheric N deposition. Moss N contents (0.85–2.97%) showed a significant decrease from the urban area (mean = 2.24 ± 0.32%, 0–5 km) to the rural area (mean = 1.27 ± 0.13%, 20–25 km), indicating that the level of N deposition decreased away from the urban environment, while slightly higher N contents re-occurred at sites beyond 30 km, suggesting higher N deposition in more remote rural areas. Moss δ15N ranged from −12.50‰ to −1.39‰ and showed a clear bimodal distribution (−12‰ to −6‰ and −5‰ to −2‰), suggesting that there are two main sources for N deposition in the Guiyang area. More negative δ15N (mean = −8.87 ± 1.65‰) of urban mosses mainly indicated NH3 released from excretory wastes and sewage, while the less negative δ15N (from −3.83 ± 0.82‰ to −2.48 ± 0.95‰) of rural mosses were mainly influenced by agricultural NH3. With more negative values in the urban area than in the rural area, the pattern of moss δ15N variation in Guiyang was found to be opposite to cities where N deposition is dominated by NOx–N. Therefore, NHx–N is the dominant N form deposited in the Guiyang area, which is supported by higher NHx–N than NOx–N in local atmospheric deposition. From the data showing that moss is responding to NHx–N/NOx–N in deposition it can be further demonstrated that the variation of moss δ15N from the Guiyang urban to rural area was more likely controlled by the ratio of urban-NHx/agriculture-NHx than the ratio of NHx–N/NOx–N. The results of this study have extended knowledge of atmospheric N sources in city areas, showing that urban sewage discharge could be important in cities co-generic to Guiyang.  相似文献   

5.
Raman spectroscopy is a powerful method for the determination of CO2 densities in fluid inclusions, especially for those with small size and/or low fluid density. The relationship between CO2 Fermi diad split (Δ, cm−1) and CO2 density (ρ, g/cm3) has been documented by several previous studies. However, significant discrepancies exist among these studies mainly because of inconsistent calibration procedures and lack of measurements for CO2 fluids having densities between 0.21 and 0.75 g/cm3, where liquid and vapor phases coexist near room temperature.In this study, a high-pressure optical cell and fused silica capillary capsules were used to prepare pure CO2 samples with densities between 0.0472 and 1.0060 g/cm3. The measured CO2 Fermi diad splits were calibrated with two well established Raman bands of benzonitrile at 1192.6 and 1598.9 cm−1. The relationship between the CO2 Fermi diad split and density can be represented by: ρ = 47513.64243 − 1374.824414 × Δ + 13.25586152 × Δ2 − 0.04258891551 × Δ3 (r2 = 0.99835, σ = 0.0253 g/cm3), and this relationship was tested by synthetic fluid inclusions and natural CO2-rich fluid inclusions. The effects of temperature and the presence of H2O and CH4 on this relationship were also examined.  相似文献   

6.
Organic matter (OM) in mineral-organic associations (MOAs) represents a large fraction of carbon in terrestrial ecosystems which is considered stable against biodegradation. To assess the role of MOAs in carbon cycling, there is a need to better understand (i) the time-dependent biogeochemical evolution of MOAs in soil, (ii) the effect of the mineral composition on the physico-chemical properties of attached OM, and (iii) the resulting consequences for the stabilization of OM. We studied the development of MOAs across a mineralogical soil gradient (0.3-4100 kyr) at the Hawaiian Islands that derived from basaltic tephra under comparable climatic and hydrological regimes. Mineral-organic associations were characterized using biomarker analyses of OM with chemolytic methods (lignin phenols, non-cellulosic carbohydrates) and wet chemical extractions, surface area/porosity measurements (N2 at 77 K and CO2 at 273 K), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The results show that in the initial weathering stage (0.3 kyr), MOAs are mainly composed of primary, low-surface area minerals (olivine, pyroxene, feldspar) with small amounts of attached OM and lignin phenols but a large contribution of microbial-derived carbohydrates. As high-surface area, poorly crystalline (PC) minerals increase in abundance during the second weathering stage (20-400 kyr), the content of mineral-associated OM increased sharply, up to 290 mg C/g MOA, with lignin phenols being favored over carbohydrates in the association with minerals. In the third and final weathering stage (1400-4100 kyr), metastable PC phases transformed into well crystalline secondary Fe and Al (hydr)oxides and kaolin minerals that were associated with less OM overall, and depleted in both lignin and carbohydrate as a fraction of total OM. XPS, the N2 pore volume data and OM-mineral volumetric ratios suggest that, in contrast to the endmember sites where OM accumulated at the surfaces of larger mineral grains, topsoil MOAs of the 20-400-kyr sites are composed of a homogeneous admixture of small-sized PC minerals and OM, which originated from both adsorption and precipitation processes. The chemical composition of OM in surface-horizon MOAs, however, was largely controlled by the uniform source vegetation irrespective of the substrate age whereas in subsoil horizons, aromatic and carboxylic C correlated positively with oxalate-extractable Al and Si and CuCl2-extractable Al concentrations representing PC aluminosilicates and Al-organic complexes (r2 > 0.85). Additionally, XPS depth profiles suggest a zonal structure of sorbed OM with aromatic carbons being enriched in the proximity of mineral surfaces and amide carbons (peptides/proteins) being located in outer regions of MOAs. Albeit the mineralogical and compositional changes of OM, the rigidity of mineral-associated OM as analyzed by DSC changed little over time. A significantly reduced side chain mobility of sorbed OM was, however, observed in subsoil MOAs, which likely arose from stronger mineral-organic bindings. In conclusion, our study shows that the properties of soil MOAs change substantially over time with different mineral assemblages favoring the association of different types of OM, which is further accentuated by a vertical gradient of OM composition on mineral surfaces. Factors supporting the stabilization of sorbed OM were (i) the surface area and reactivity of minerals (primary or secondary crystalline minerals versus PC secondary minerals), (ii) the association of OM with micropores of PC minerals (via ‘sterically’ enhanced adsorption), (iii) the effective embedding of OM in ‘well mixed’ arrays with PC minerals and monomeric/polymeric metal species, (iv) the inherent stability of acidic aromatic OM components, and (iv) an impaired segmental mobility of sorbed OM, which might increase its stability against desorption and microbial utilization.  相似文献   

7.
Cell-Fe(III) mineral aggregates produced by anoxygenic Fe(II)-oxidizing photoautotrophic microorganisms (photoferrotrophs) may be influential in the modern Fe cycle and were likely an integral part of ancient biogeochemical cycles on early Earth. While studies have focused on the environmental conditions under which modern photoferrotrophs grow and the kinetics, physiology and mechanism of Fe(II) oxidation, no systematic analyses of the physico-chemical characteristics of those aggregates, such as shape, size, density and chemical composition, have as yet been conducted. Herein, experimental results show most aggregates are bulbous or ragged in shape, with an average particle size of 10-40 μm, and densities that typically range between 2.0 and 2.4 g/cm3; the cell fraction of the aggregates increased and their density decreased with initial Fe(II) concentration. The mineralogy of the ferric iron phase depended on the composition of the medium: goethite formed in cultures grown by oxidation of dissolved Fe(II) medium in the presence of low phosphate concentrations, while poorly ordered ferrihydrite (or Fe(III) phosphates) formed when amorphous Fe(II) minerals (Fe(II)-phosphates) and high concentrations of phosphate were initially present. Importantly, in all experiments, a fraction of the photoautotrophic cells remained planktonic, demonstrating a constant stoichiometric excess of Fe(III) compared to the autotrophically fixed carbon in the biogenic precipitate. These results not only have an important bearing on nutrient and trace element cycling in the modern water column, but the size, shape and composition of the aggregates can be used to estimate aggregate reactivity during sediment diagenesis over short and geologic time scales.  相似文献   

8.
Sorptive stabilization of organic matter by amorphous Al hydroxide   总被引:3,自引:0,他引:3  
Amorphous Al hydroxides (am-Al(OH)3) strongly sorb and by this means likely protect dissolved organic matter (OM) against microbial decay in soils. We carried out batch sorption experiments (pH 4.5; 40 mg organic C L−1) with OM extracted from organic horizons under a Norway spruce and a European beech forest. The stabilization of OM by sorption was analyzed by comparing the CO2 mineralized during the incubation of sorbed and non-sorbed OM. The mineralization of OM was evaluated based in terms of (i) the availability of the am-Al(OH)3, thus surface OM loadings, (ii) spectral properties of OM, and (iii) the presence of phosphate as a competitor for OM. This was done by varying the solid-to-solution ratio (SSR = 0.02-1.2 g L−1) during sorption. At low SSRs, hence limited am-Al(OH)3 availability, only small portions of dissolved OM were sorbed; for OM from Oa horizons, the mineralization of the sorbed fraction exceeded that of the original dissolved OM. The likely reason is competition with phosphate for sorption sites favouring the formation of weak mineral-organic bindings and the surface accumulation of N-rich, less aromatic and less complex OM. This small fraction controlled the mineralization of sorbed OM even at higher SSRs. At higher SSRs, i.e., with am-Al(OH)3 more available, competition of phosphate decreased and aromatic compounds were sorbed selectively, which resulted in pronounced resistance of sorbed OM against decay. The combined OC mineralization of sorbed and non-sorbed OM was 12-65% less than that of the original DOM. Sorbed OM contributed only little to the overall OC mineralization. Stabilization of OC increased in direct proportion to am-Al(OH)3 availability, despite constant aromatic C (∼30%). The strong stabilization at higher mineral availability is primarily governed by strong Al-OM bonds formed under less competitive conditions. Due to these strong bonds and the resulting strong stabilization, the surface loading, a proxy for the mineral’s occupation by OM, was not a factor in the mineralization of sorbed OM over a wide range of C sorption (0.2-1.1 mg C m−2). This study demonstrates that sorption to am-Al(OH)3 results in stabilization of OM. The mineral availability as well as the inorganic solution chemistry control sorptive interactions, thereby the properties of sorbed OM, and the stability of OM against microbial decay.  相似文献   

9.
Sr isotope data from soils, water, and atmospheric inputs in a small tropical granitoid watershed in the Luquillo Mountains of Puerto Rico constrain soil mineral development, weathering fluxes, and atmospheric deposition. This study provides new information on pedogenic processes and geochemical fluxes that is not apparent in watershed mass balances based on major elements alone. 87Sr/86Sr data reveal that Saharan mineral aerosol dust contributes significantly to atmospheric inputs. Watershed-scale Sr isotope mass balance calculations indicate that the dust deposition flux for the watershed is 2100 ± 700 mg cm−2 ka−1. Nd isotope analyses of soil and saprolite samples provide independent evidence for the presence of Saharan dust in the regolith. Watershed-scale Sr isotope mass balance calculations are used to calculate the overall short-term chemical denudation velocity for the watershed, which agrees well with previous denudation rate estimates based on major element chemistry and cosmogenic nuclides. The dissolved streamwater Sr flux is dominated by weathering of plagioclase and hornblende and partial weathering of biotite in the saprock zone. A steep gradient in regolith porewater 87Sr/86Sr ratio with depth, from 0.70635 to as high as 0.71395, reflects the transition from primary mineral-derived Sr to a combination of residual biotite-derived Sr and atmospherically-derived Sr near the surface, and allows multiple origins of kaolinite to be identified.  相似文献   

10.
Retrograde metamorphism played the dominant role in changing the low-field rock magnetic properties and density of 198 specimens of variably retrograded eclogites from the main borehole of the Chinese Continental Scientific Drilling Project (CCSD) and from surface outcrops in the Donghai area in the southern part of the Sulu UHP belt, China. Bulk magnetic susceptibility (κ) of unretrogressed UHP eclogite is controlled by whole-rock chemical composition and ranges from 397 to 2312 μSI with principal magnetic susceptibility carrying minerals paramagnetic garnet, omphacite, rutile and phengite. Partially retrograded eclogites show large variations in magnetic susceptibility between 804 and 24,277 μSI, with high mean magnetic susceptibility values of 4372 ± 4149 μSI caused by appreciable amounts of Fe-Ti oxide minerals such as magnetite, ilmenite and/or titanohematite produced by retrograde metamorphic reactions. Completely retrograded eclogites have lower susceptibilities of 1094 ± 600 μSI and amphibolite facies mineral assemblages lacking high magnetic susceptibility minerals. Jelínek's corrected anisotropy (Pj) of eclogites ranges from 1.001 to 1.540, and shows a positive correlation with low-field magnetic susceptibility (κ). Arithmetic mean bulk density (ρ) shows a steady decrease from 3.54 ± 0.11 g/cm3 (fresh eclogite) to 2.98 ± 0.06 g/cm3 (completely retrograded eclogite). Retrograde metamorphic changes in mineral composition during exhumation appear to be the major factor causing variations in low field magnetic susceptibility and anisotropy. Retrograde processes must be taken into account when interpreting magnetic surveys and geophysical well logs in UHP metamorphic terranes, and petrophysical properties such as density and low-field magnetic susceptibility could provide a means for semi-quantifying the degree of retrogression of eclogite during exhumation.  相似文献   

11.
Mineral-associated organic matter (OM) represents a large reservoir of organic carbon (OC) in natural environments. The factors controlling the extent of the mineral-mediated OC stabilization, however, are poorly understood. The protection of OM against biodegradation upon sorption to mineral phases is assumed to result from the formation of strong bonds that limit desorption. To test this, we studied the biodegradation of OM bound to goethite (α-FeOOH), pyrophyllite, and vermiculite via specific mechanisms as estimated from OC uptake in different background electrolytes and operationally defined as ‘ligand exchange’, ‘Ca2+ bridging’, and ‘van der Waals forces’. Organic matter extracted from an Oa forest floor horizon under Norway spruce (Picea abies (L.) Karst) was reacted with minerals at dissolved OC concentrations of ∼5-130 mg/L at pH 4. Goethite retained up to 30.1 mg OC/g predominantly by ‘ligand exchange’; pyrophyllite sorbed maximally 12.5 mg OC/g, largely via ‘van der Waals forces’ and ‘Ca2+ bridging’, while sorption of OM to vermiculite was 7.3 mg OC/g, mainly due to the formation of ‘Ca2+ bridges’. Aromatic OM components were selectively sorbed by all minerals (goethite ? phyllosilicates). The sorption of OM was strongly hysteretic with the desorption into 0.01 M NaCl being larger for OM held by ‘Ca2+ bridges’ and ‘van der Waals forces’ than by ‘ligand exchange’. Incubation experiments under aerobic conditions (initial pH 4; 90 days) revealed that OM mainly bound to minerals by ‘ligand exchange’ was more resistant against mineralization than OM held by non-columbic interactions (‘van der Waals forces’). Calcium bridges enhanced the stability of sorbed OM, especially for vermiculite, but less than the binding via ‘ligand exchange’. Combined evidence suggests that the extent and rate of mineralization of mineral-associated OM are governed by desorption. The intrinsic stability of sorbed OM as related to the presence of resistant, lignin-derived aromatic components appears less decisive for the sorptive stabilization of OM than the involved binding mechanisms. In a given environment, the type of minerals present and the solution chemistry determine the operating binding mechanisms, thereby the extent of OM sorption and desorption, and thus ultimately the bioavailability of mineral-associated OM.  相似文献   

12.
Knowledge of the subduction input flux of nitrogen (N) in altered oceanic crust (AOC) is critical in any attempt to mass-balance N across arc-trench systems on a global or individual-margin basis. We have employed sealed-tube, carrier-gas-based methods to examine the N concentrations and isotopic compositions of AOC. Analyses of 53 AOC samples recovered on DSDP/ODP legs from the North and South Pacific, the North Atlantic, and the Antarctic oceans (with larger numbers of samples from Site 801 outboard of the Mariana trench and Site 1149 outboard of the Izu trench), and 14 composites for the AOC sections at Site 801, give N concentrations of 1.3 to 18.2 ppm and δ15NAir of −11.6‰ to +8.3‰, indicating significant N enrichment probably during the early stages of hydrothermal alteration of the oceanic basalts. The N-δ15N modeling for samples from Sites 801 and 1149 (n = 39) shows that the secondary N may come from (1) the sedimentary N in the intercalated sediments and possibly overlying sediments via fluid-sediment/rock interaction, and (2) degassed mantle N2 in seawater via alteration-related abiotic reduction processes. For all Site 801 samples, weak correlation of N and K2O contents indicates that the siting of N in potassic alteration phases strongly depends on N availability and is possibly influenced by highly heterogeneous temperature and redox conditions during hydrothermal alteration.The upper 470-m AOC recovered by ODP Legs 129 and 185 delivers approximately 8 × 105 g/km N annually into the Mariana margin. If the remaining less-altered oceanic crust (assuming 6.5 km, mostly dikes and gabbros) has MORB-like N of 1.5 ppm, the entire oceanic crust transfers 5.1 × 106 g/km N annually into that trench. This N input flux is twice as large as the annual N input of 2.5 × 106 g/km in seafloor sediments subducting into the same margin, demonstrating that the N input in oceanic crust, and its isotopic consequences, must be considered in any assessment of convergent margin N flux.  相似文献   

13.
Aggregation of particulate organic matter (POM) and mineral grains may result in physical protection of organic matter (OM). To test this, phytoplankton cells of the dinoflagellate Scrippsiella trochoidea were inoculated with a natural bacterial assemblage and incubated with or without the clay montmorillonite. Within 5 h, aggregation of phytoplankton OM and clay resulted in transfer of the majority (∼80%) of OM into the >1.6 g cm−3 density fraction. Degradation of particulate organic carbon (POC), particulate nitrogen (PN), dissolved organic carbon (DOC), and dissolved and particulate total hydrolyzable amino acids (THAA), were modeled with a multi-G approach. Quantity of resistant OM was between two and four times larger during clay incubation relative to clay-free incubation. The two incubations did not exhibit significant differences in degradation state of particulate amino acids nor were there indications of preferential sorption of basic amino acids. The results suggest that a considerable fraction of phytoplankton OM can become resistant, at least on a timescale of weeks, mostly due to aggregation of POM and clay mineral grains.  相似文献   

14.
The isotopic compositions of commercially available herbicides were analyzed to determine their respective 15N, 13C and 37Cl signatures for the purposes of developing a discrete tool for tracing and identifying non-point source contaminants in agricultural watersheds. Findings demonstrate that of the agrochemicals evaluated, chlorine stable isotopes signatures range between δ37Cl = −4.55‰ and +3.40‰, whereas most naturally occurring chlorine stable isotopes signatures, including those of road salt, sewage sludge and fertilizers, vary in a narrow range about the Standard Mean Ocean Chloride (SMOC) between −2.00‰ and +1.00‰. Nitrogen stable isotope values varied widely from δ15N = −10.86‰ to +1.44‰ and carbon stable isotope analysis gave an observed range between δ13C = −37.13‰ and −21.35‰ for the entire suite of agro-chemicals analyzed. When nitrogen, carbon and chlorine stable isotope analyses were compared in a cross-correlation analysis, statistically independent isotopic signatures exist suggesting a new potential tracer tool for identifying herbicides in the environment.  相似文献   

15.
Sorption of Ni(II) onto chlorite surfaces was studied as a function of pH (5–10), ionic strength (0.01–0.5 M) and Ni concentration (10−8–10−6 M) in an Ar atmosphere using batch sorption with radioactive 63Ni as tracer. Such studies are important since Ni(II) is one of the major activation products in spent nuclear fuel and sorption data on minerals such as chlorite are lacking. The sorption of Ni(II) onto chlorite was dependent on pH but not ionic strength, which indicates that the process primarily comprises sorption by surface complexation. The maximum sorption was at pH ∼ 8 (Kd = ∼10−3 cm3/g). Desorption studies over a period of 1–2 weeks involving replacement of the aqueous solution indicated a low degree of desorption. The acid–base properties of the chlorite mineral were determined by titration and described using a non-electrostatic surface complexation model in FITEQL. A 2-pK NEM model and three surface complexes, Chl_OHNi2+, Chl_OHNi(OH)+ and Chl_OHNi(OH)2, gave the best fit to the sorption results using FITEQL. The high Kd values and low degree of desorption observed indicate that under expected groundwater conditions, a large fraction of Ni(II) that is potentially leachable from spent nuclear fuel may be prevented from migrating by sorption onto chlorite surfaces.  相似文献   

16.
Determination of the area density of spontaneous fission tracks (ρs) in glass shards of Toba tephra is a reliable way to distinguish between the Youngest Toba Tuff (YTT) and the Oldest Toba Tuff (OTT). The ρs values for YTT, uncorrected for partial track fading, range from 70 to 181 tracks/cm2 with a weighted mean of 108 ± 5 tracks/cm2, based on 15 samples. Corrected ρs values for YTT are in the range of 77–140 tracks/cm2 with a weighted mean of 113 ± 8 tracks/cm2, within the range of uncorrected ρs values. No significant difference in ρs exists between YTT samples collected from marine and continental depositional settings. The uncorrected ρs for OTT is 1567 ± 114 tracks/cm2 so that confusion with YTT is unlikely.  相似文献   

17.
We performed density measurements on a synthetic equivalent of lunar Apollo 17 74,220 “orange glass”, containing 9.1 wt% TiO2, at superliquidus conditions in the pressure range 0.5-8.5 GPa and temperature range 1723-2223 K using the sink/float technique. In the lunar pressure range, two experiments containing pure forsterite (Fo100) spheres at 1.0 GPa and 1727 K, and at 1.3 GPa-1739 K, showed neutral buoyancies, indicating that the density of molten orange glass was equal to the density of Fo100 at these conditions (3.09 ± 0.02 g cm−3). A third tight sink/float bracket using Fo90 spheres corresponds to a melt density of 3.25 ± 0.02 g cm−3 at ∼2.8 GPa and ∼1838 K.Our data predict a density crossover for the molten orange glass composition with equilibrium orthopyroxene at ∼2.8 GPa, equivalent to a depth of ∼600 km in the lunar mantle, and a density of ∼3.25 g cm−3. This crossover depth is close to the orange glass multiple saturation point, representing its minimum formation depth, at the appropriate oxygen fugacity (2.8-2.9 GPa). A density crossover with equilibrium olivine is predicted to fall outside the lunar pressure range (>4.7 GPa), indicating that molten orange glass is always less dense than its equilibrium olivines in the Moon. Our data therefore suggest that that lunar liquids with orange glass composition are buoyant with respect to their source region at P < ∼2.8 GPa, enabling their initial rise to the surface without the need for additional external driving forces.Fitting the density data to a Birch-Murnaghan equation of state at 2173 K leads to an array of acceptable solutions ranging between 16.1 and 20.3 GPa for the isothermal bulk modulus K2173 and 3.6-8 for its pressure derivative K′, with best-fit values K2173 = 18.8 GPa and K′ = 4.4 when assuming a model 1 bar density value of 2.86 g cm−3. When assuming a slightly lower 1 bar density value of 2.84 g cm−3 we find a range for K2173 of 14.4-18.0 and K′ 3.7-8.7, with best-fit values of 17.2 GPa and 4.5, respectively.  相似文献   

18.
The Pichavaram mangrove ecosystem is located between the Vellar and Coleroon Estuaries in south-eastern India. To document the spatial-depth-based variabilities in organic matter (OM) input and cycling, five sediment cores were collected. A comparative study was carried out of grain-size composition, pore water salinity, dissolved organic C (DOC), loss-on-ignition (LOI), elemental ratios (C/N and H/C), pigments (Chl a, Chl b, and total carotenoids), and humification indices. Sand is the major fraction in these cores ranging from 60% to 99% followed by silt and clay; cores from the estuarine margin have high sand content. In mangrove forests, pore-water DOC concentrations are high (32 ± 14 mg L−1), whereas salinity levels are low (50 ± 5.5‰). Likewise, LOI, organic C and N, and pigment concentrations are high in mangroves. OM is mainly derived from upstream terrestrial matter and/or mangrove litter, and marine OM. The humification indices do not vary significantly with depth because of rapid OM turnover. The bulk parameters indicate that the Vellar and Coleroon Estuaries are more affected by anthropogenic processes than mangrove forests. Finally, greater variability and sometimes lack of specific trends in bulk parameters implies that the 2004 tsunami caused extensive mixing in sediments.  相似文献   

19.
The influence of the pedogenic and climatic contexts on the formation and preservation of pedogenic carbonates in a climosequence in the Western Ghats (Karnataka Plateau, South West India) has been studied. Along the climosequence, the current mean annual rainfall (MAR) varies within a 80 km transect from 6000 mm at the edge of the Plateau to 500 mm inland. Pedogenic carbonates occur in the MAR range of 500-1200 mm. In the semi-arid zone (MAR: 500-900 mm), carbonates occur (i) as thick hardpan calcretes on pediment slopes and (ii) as nodular horizons in polygenic black soils (i.e. vertisols). In the sub-humid zone (MAR: 900-1500 mm), pedogenic carbonates are disseminated in the black soil matrices either as loose, irregular and friable nodules of millimetric size or as indurated botryoidal nodules of centimetric to pluricentimetric size. They also occur at the top layers of the saprolite either as disseminated pluricentimetric indurated nodules or carbonate-cemented lumps of centimetric to decimetric size.Chemical and isotopic (87Sr/86Sr) compositions of the carbonate fraction were determined after leaching with 0.25 N HCl. The corresponding residual fractions containing both primary minerals and authigenic clays were digested separately and analyzed. The trend defined by the 87Sr/86Sr signatures of both labile carbonate fractions and corresponding residual fractions indicates that a part of the labile carbonate fraction is genetically linked to the local soil composition. Considering the residual fraction of each sample as the most likely lithogenic source of Ca in carbonates, it is estimated that from 24% to 82% (55% on average) of Ca is derived from local bedrock weathering, leading to a consumption of an equivalent proportion of atmospheric CO2. These values indicate that climatic conditions were humid enough to allow silicate weathering: MAR at the time of carbonate formation likely ranged from 400 to 700 mm, which is 2- to 3-fold less than the current MAR at these locations.The Sr, U and Mg contents and the (234U/238U) activity ratio in the labile carbonate fraction help to understand the conditions of carbonate formation. The relatively high concentrations of Sr, U and Mg in black soil carbonates may indicate fast growth and accumulation compared to carbonates in saprolite, possibly due to a better confinement of the pore waters which is supported by their high (234U/238U) signatures, and/or to higher content of dissolved carbonates in the pore waters. The occurrence of Ce, Mn and Fe oxides in the cracks of carbonate reflects the existence of relatively humid periods after carbonate formation. The carbonate ages determined by the U-Th method range from 1.33 ± 0.84 kyr to 7.5 ± 2.7 kyr and to a cluster of five ages around 20 kyr, i.e. the Last Glacial Maximum period. The young occurrences are only located in the black soils, which therefore constitute sensitive environments for trapping and retaining atmospheric CO2 even on short time scales. The maximum age of carbonates depends on their location in the climatic gradient: from about 20 kyr for centimetric nodules at Mule Hole (MAR = 1100 mm/yr) to 200 kyr for the calcrete at Gundlupet (MAR = 700 mm/yr, Durand et al., 2007). The intensity of rainfall during wet periods would indeed control the lifetime of pedogenic carbonates and thus the duration of inorganic carbon storage in soils.  相似文献   

20.
In order to better investigate the compositions and the origins of fluids associated with diamond growth, we have carried-out combined noble gas (He and Ar), C and N isotope, K, Ca and halogen (Cl, Br, I) determinations on fragments of individual microinclusion-bearing diamonds from the Panda kimberlite, North West Territories, Canada. The fluid concentrations of halogens and noble gases in Panda diamonds are enriched by several orders of magnitude over typical upper mantle abundances. However, noble gas, C and N isotopic ratios (3He/4He = 4-6 Ra, 40Ar/36Ar = 20,000-30,000, δ13C = −4.5‰ to −6.9‰ and δ15N = −1.2‰ to −8.8‰) are within the worldwide range determined for fibrous diamonds and similar to the mid ocean ridge basalt (MORB) source value. The high 36Ar content of the diamonds (>1 × 10−9 cm3/g) is at least an order of magnitude higher than any previously reported mantle sample and enables the 36Ar content of the subcontinental lithospheric mantle to be estimated at ∼0.6 × 10−12 cm3/g, again similar to estimates for the MORB source. Three fluid types distinguished on the basis of Ca-K-Cl compositions are consistent with carbonatitic, silicic and saline end-members identified in previous studies of diamonds from worldwide sources. These fluid end-members also have distinct halogen ratios (Br/Cl and I/Cl). The role of subducted seawater-derived halogens, originally invoked to explain some of the halogen ratio variations in diamonds, is not considered an essential component in the formation of the fluids. In contrast, it is considered that large halogen fractionation of a primitive mantle ratio occurs during fluid-melt partitioning in forming silicic fluids, and during separation of an immiscible saline fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号