首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
阐述了农业遥感等数据平台系统的国内外研究现状,分析了有关农业遥感大数据服务的多源遥感数据融合、作物类型精准识别、作物产量估产机理研究以及遥感大数据研究面临的技术问题,提出了气象保障大数据的尺度转换和气候变化对农业生产影响中遇到的问题。该平台的建立需要全面整合专家智慧、遥感技术、大数据、服务方式等研究理论和技术,将深刻改变农业遥感应用模式,提升气象服务能力,推动农业、气象等综合信息的广泛应用与产业化发展。  相似文献   

2.
针对华北地区旱情导致小麦减产的问题,提出了利用Landsat遥感影像信息,结合小麦生长关键时期的降雨量以及种植区距离灌溉水源的位置关系,建立小麦估产模型,通过降雨预报信息估算小麦单产产量,并将其应用在作物种植选择方面,以提高农田的产值与农民的经济效益。  相似文献   

3.
农业遥感研究应用进展与展望   总被引:22,自引:0,他引:22  
得益于中国自主遥感卫星、无人机遥感和物联网等技术的发展,中国农业遥感研究与应用在过去20年取得了显著进步,中国农业遥感信息获取呈现出天地网一体化的趋势;农业定量遥感在关键参数遥感反演技术方法与应用方面取得进展;作物面积、长势、产量、灾害遥感监测的理论与技术方法取得突破,农业遥感技术应用领域不断拓展。本文从农业遥感信息获取、农业定量遥感、农业灾害遥感、作物遥感识别与制图、作物长势遥感监测与产量预测、农业土地资源遥感等方面对中国农业遥感科研与应用进行了总结综述。  相似文献   

4.
农作物种植面积遥感估算的影响因素研究   总被引:3,自引:0,他引:3  
针对不同的农作物种植结构区,研究影响遥感影像分类各因素与农作物种植面积估算精度的定性和定量关系是十分必要的。以Rapid Eye影像提取的早稻种植信息为研究对象,从农作物的种植成数、种植破碎度和地块形状指数3个角度进行了不同空间分辨率下各因素对农作物面积监测的影响研究。结果表明:随着农作物种植成数的降低,种植结构越来越破碎,种植地块趋于狭长分布,各分辨率下农作物面积估算精度均呈递减趋势;要达到85%以上的面积估算精度,当作物种植成数在50%以上时,可选取高于150 m分辨率的遥感数据;当作物种植较为破碎时,需要在提高影像空间分辨率的同时融入其他技术手段;当作物种植地块为狭长分布时,提高影像的空间分辨率并不能保证面积估算精度,必须通过其他技术手段达到精度要求;并最终得到了4种影响因素对面积估算精度的定量评估模型。研究结果为解决不同农作物种植结构区遥感数据的选择、面积估算精度的提高,以及在特定研究区和数据源条件下可达到的面积估算水平等问题提供了理论基础。  相似文献   

5.
基于两个独立抽样框架的农作物种植面积遥感估算方法   总被引:34,自引:15,他引:34  
吴炳方  李强子 《遥感学报》2004,8(6):551-569
通过分析遥感技术在中国农作物种植面积估算中所遇到的难点 ,针对运行化的农作物遥感估产系统对主要农作物种植面积估算的需求 ,提出在农作物种植结构区划的基础上 ,采用整群抽样和样条采样技术相结合的方法 ,进行农作物种植面积估算。整群抽样技术利用遥感影像估算农作物总种植成数 ,样条采样是一种适合中国农作物种植结构特征的采样技术 ,用于调查不同农作物类别在所有播种作物中的分类成数。在中国现有的耕地数据库基础上 ,根据两次抽样获得的成数 ,计算得到具体某一种农作物类别的种植面积。最后给出了 2 0 0 3年早稻种植面积估算的实例。  相似文献   

6.
房华乐  任润东  苏飞  梁勇 《测绘通报》2012,(Z1):255-257
首先概括作物分类与识别、作物生态物理参数估算、作物长势监测、作物估产4个主要研究内容。分析高光谱遥感技术在农业中的应用现状,提出高光谱技术当前存在的问题。最后展望高光谱技术在农业遥感中的应用前景。  相似文献   

7.
作物遥感分类研究进展   总被引:1,自引:0,他引:1  
农作物精细分类是农业资源与环境监测的重要环节,提取不同作物种植信息能够为我国农业生产提供基础数据支撑.本文旨在梳理作物遥感分类关键技术的发展脉络,重点评述了分类特征、尺度问题以及分类方法3个方面的情况,最后讨论和展望了今后作物遥感分类研究的发展方向,希望提供现阶段作物遥感分类研究进展,为作物遥感研究方法的创新和改善提供理论支撑,为后续农业遥感应用提供参考.  相似文献   

8.
针对中国开展的国外农作物产量遥感估测大多依靠中低分辨率耕地信息、省级(州级)或国家级作物产量统计数据的现状,本文以美国玉米为例,探讨利用多年中高分辨率作物分布信息、时序遥感植被指数和县级作物产量统计数据开展国外重点地区作物单产遥感估测技术研究,以期进一步提高中国对国外农作物产量监测精度和精细化水平。首先,利用美国农业部国家农业统计局(NASS/USDA)生产的作物分布数据(CDL)获得多个年份玉米空间分布图,并对相应年份250 m分辨率16天合成的MODIS-NDVI时序数据进行掩膜处理,统计获得每年各县域内玉米主要生育期NDVI均值;其次,以各州为估产区,以多年县级玉米统计单产和县域内玉米主要生育期NDVI均值为基础,建立各州玉米主要生育期NDVI与玉米单产间关系模型;然后,通过主要生育期玉米单产和玉米植被指数间拟合程度,筛选确定各州玉米最佳估产期和最佳估产模型。最终,利用最佳估产模型实现美国各州玉米单产估测和全国玉米单产推算。其中,建模数据覆盖时间为2007年—2010年,验证数据为2011年。结果表明,应用最佳估产模型的2011年美国各州玉米单产估测相对误差在-4.16%—4.92%,均方根误差在148.75—820.93 kg/ha,各州估测结果计算获得全国玉米单产的相对误差仅为2.12%,均方根误差为285.57 kg/ha。可见,本研究的作物单产遥感估测技术方法具有一定可行性,可准确估测全球重点地区作物单产信息。  相似文献   

9.
多时相MODIS影像水田信息提取研究   总被引:5,自引:0,他引:5  
水稻种植及其分布信息是土地覆被变化、作物估产、甲烷排放、粮食安全和水资源管理分析的重要数据源。基于遥感的水田利用监测中,通常采用时序NDVI植被指数法和影像分类法分别进行AVHRR和TM影像的水田信息获取。针对8天合成MODIS陆地表面反射比数据的特点和水稻生长特征,选取水稻种植前的休耕期、秧苗移植期、秧苗生长期和成熟期等多时相MODIS地表反射率影像数据,通过归一化植被指数、增强植被指数及利用对土壤湿度和植被水分含量较敏感的短波红外波段计算得到的陆表水指数进行水田信息获取。将提取结果与基于ETM+影像的国土资源调查水田数据,通过网格化计算处理并进行对比分析,结果表明,利用MODIS影像的8天合成地表反射率数据,进行区域甚至全国的水田利用监测是可行的。  相似文献   

10.
美国农业遥感技术应用现状简介   总被引:16,自引:0,他引:16  
根据1996年中美农业科技交流协议,笔者于1996年7月10日至1996年8月1日带队到美国,对美国大面积农作物遥感估产和农业遥感应用研究情况进行了为期3周的考察。  相似文献   

11.
选择山西太谷一个 5km× 5km的实验区 ,利用样条采样框架结合GVG农情采样系统调查农作物分类成数。同时借助QuickBird甚高分辨率遥感影像进行地面作物种植地块勾绘 ,并派出地面调查队伍进行作物填图 ,统计汇总出的农作物分类成数的真实值。然后将两种不同方法得出的分类成数进行对比 ,发现利用样条采样框架和GVG农情采样系统对于大宗粮食作物分类成数的调查相对误差在 3%以内 ,能够满足中国农情遥感速报系统的运行需要。而对于小成数作物的调查精度较低 ,且存在漏采现象 ,不能满足需求 ,同时也由于漏采现象的存在和图片判读的主观性。利用样条采样框架和GVG农情采样系统获取的大宗作物分类成数略大于真实值 ,存在少量的系统误差 ,需要进行地面验证并加以克服。  相似文献   

12.
Imagery from recently launched high spatial resolution satellite sensors offers new opportunities for crop assessment and monitoring. A 2.8-m multispectral QuickBird image covering an intensively cropped area in south Texas was evaluated for crop identification and area estimation. Three reduced-resolution images with pixel sizes of 11.2 m, 19.6 m, and 30.8 m were also generated from the original image to simulate coarser resolution imagery from other satellite systems. Supervised classification techniques were used to classify the original image and the three aggregated images into five crop classes (grain sorghum, cotton, citrus, sugarcane, and melons) and five non-crop cover types (mixed herbaceous species, mixed brush, water bodies, wet areas, and dry soil/roads). The five non-crop classes in the 10-category classification maps were then merged as one class. The classification maps were filtered to remove the small inclusions of other classes within the dominant class. For accuracy assessment of the classification maps, crop fields were ground verified and field boundaries were digitized from the original image to determine reference field areas for the five crops. Overall accuracy for the unfiltered 2.8-m, 11.2-m, 19.6-m, and 30.8-m classification maps were 71.4, 76.9, 77.1, and 78.0%, respectively, while overall accuracy for the respective filtered classification maps were 83.6, 82.3, 79.8, and 78.5%. Although increase in pixel size improved overall accuracy for the unfiltered classification maps, the filtered 2.8-m classification map provided the best overall accuracy. Percentage area estimates based on the filtered 2.8-m classification map (34.3, 16.4, 2.3, 2.2, 8.0, and 36.8% for grain sorghum, cotton, citrus, sugarcane, melons, and non-crop, respectively) agreed well with estimates from the digitized polygon map (35.0, 17.9, 2.4, 2.1, 8.0, and 34.6% for the respective categories). These results indicate that QuickBird imagery can be a useful data source for identifying crop types and estimating crop areas.  相似文献   

13.
The relative abundance and distribution of trees in savannas has important implications for ecosystem function. High spatial resolution satellite sensors, including QuickBird and IKONOS, have been successfully used to map tree cover patterns in savannas. SPOT 5, with a 2.5 m panchromatic band and 10 m multispectral bands, represents a relatively coarse resolution sensor within this context, but has the advantage of being relatively inexpensive and more widely available. This study evaluates the performance of NDVI threshold and object based image analysis techniques for mapping tree canopies from QuickBird and SPOT 5 imagery in two savanna systems in southern Africa. High thematic mapping accuracies were obtained with the QuickBird imagery, independent of mapping technique. Geometric properties of the mapping indicated that the NDVI threshold produced smaller patch sizes, but that overall patch size distributions were similar. Tree canopy mapping using SPOT 5 imagery and an NDVI threshold approach performed poorly, however acceptable thematic accuracies were obtained from the object based image analysis. Although patch sizes were generally larger than those mapped from the QuickBird image data, patch size distributions mapped with object based image analysis of SPOT 5 have a similar form to the QuickBird mapping. This indicates that SPOT 5 imagery is suitable for regional studies of tree canopy cover patterns.  相似文献   

14.
With the emergence of very high spatial and spectral resolution data set, the resolution gap that existed between remote-sensing data set and aerial photographs has decreased. The decrease in resolution gap has allowed accurate discrimination of different tree species. In this study, discrimination of indigenous tree species (n?=?5) was carried out using ground based hyperspectral data resampled to QuickBird bands and the actual QuickBird imagery for the area around Palapye, Botswana. The purpose of the study was to compare the accuracies of resampled hyperspectral data (resampled to QuickBird sensors) with the actual image (QuickBird image) in discriminating between the indigenous tree species. We performed Random Forest (RF) using canopy reflectance taking from ground-based hyperspectral sensor and the reflectance delineated regions of the tree species. The overall accuracies for classifying the five tree species was 79.86 and 88.78% for both the resampled and actual image, respectively. We observed that resampled data set can be upscale to actual image with the same or even greater level of accuracy. We therefore conclude that high spectral and spatial resolution data set has substantial potential for tree species discrimination in savannah environments.  相似文献   

15.
Identification of tree crowns from remote sensing requires detailed spectral information and submeter spatial resolution imagery. Traditional pixel-based classification techniques do not fully exploit the spatial and spectral characteristics of remote sensing datasets. We propose a contextual and probabilistic method for detection of tree crowns in urban areas using a Markov random field based super resolution mapping (SRM) approach in very high resolution images. Our method defines an objective energy function in terms of the conditional probabilities of panchromatic and multispectral images and it locally optimizes the labeling of tree crown pixels. Energy and model parameter values are estimated from multiple implementations of SRM in tuning areas and the method is applied in QuickBird images to produce a 0.6 m tree crown map in a city of The Netherlands. The SRM output shows an identification rate of 66% and commission and omission errors in small trees and shrub areas. The method outperforms tree crown identification results obtained with maximum likelihood, support vector machines and SRM at nominal resolution (2.4 m) approaches.  相似文献   

16.
In this study, the authors develop an integrated agricultural monitoring system based on the use of high-spatial-resolution remote sensing imagery and Field Server data for a cabbage field in Tsumagoi, Gunma Prefecture, Japan. The use of the integrated system made it possible to verify the accuracy of cabbage coverage estimated from high-spatial-resolution QuickBird imagery using an unmixing method, because the authors were able to remotely examine cabbages growing in real-time using a Field Server web camera linked to their laboratory via the Internet. Using the developed integrated system, they produced a cabbage coverage map that provided information on cabbage growth that could be used for agricultural land management, particularly with regard to the application of fertilizer and forecasting crop production. The results support the validity of using remote sensing technology in conjunction with a Field Server to manage agricultural crop land.  相似文献   

17.
Information on Earth's land surface cover is commonly obtained through digital image analysis of data acquired from remote sensing sensors. In this study, we evaluated the use of diverse classification techniques in discriminating land use/cover types in a typical Mediterranean setting using Hyperion imagery. For this purpose, the spectral angle mapper (SAM), the object-based and the non-linear spectral unmixing based on artificial neural networks (ANNs) techniques were applied. A further objective had been to investigate the effect of two approaches for training sites selection in the SAM classification, namely of the pixel purity index (PPI) and of the direct selection of training points from the Hyperion imagery assisted by a QuickBird imagery and field-based training sites. Object-based classification outperformed the other techniques with an overall accuracy of 83%. Sub-pixel classification based on the ANN showed an overall accuracy of 52%, very close to that of SAM (48%). SAM applied using the training sites selected directly from the Hyperion imagery supported by the QuickBird image and the field visits returned an increase accuracy by 16%. Yet, all techniques appeared to suffer from the relatively low spatial resolution of the Hyperion imagery, which affected the spectral separation among the land use/cover classes.  相似文献   

18.
With the advent of high spatial resolution satellite imagery, automatic and semiautomatic building extractions have turned into one of the outstanding research topics in the field of remote sensing and machine vision. To this date, various algorithms have been presented for extracting the buildings from satellite images. Such methods lend their bases to diverse criteria such as radiometric, geometric, edge detection, and shadow. In this paper, a novel object based approach has been proposed for automatic and robust detections as well as extraction of the building in high spatial resolution images. To fulfill this, we simultaneously made use of both stable and variable features. While the former can be derived from inherent characteristics of the buildings, the latter is extracted using a feature analysis tool. In addition, a novel perspective has been recommended to boost the automation degree of the segmentation part in the object based analysis of remote sensing imagery. The proposed method was applied to a QuickBird imagery of an urban area in Isfahan city and the results of the quantitative evaluation demonstrated that the proposed method could yield promising results. Moreover, in another section of this study, for assessing the algorithm transferability, the rule set was implemented to a part of the WorldView image of Yazd city, proving that the proposed approach is capable of transferability in different types of case studies.  相似文献   

19.
纹理频谱分析的高分辨率遥感影像最佳尺度选择   总被引:2,自引:0,他引:2  
基于对纹理频谱的分析提出了一种高分辨率遥感影像最佳尺度的选择方法。首先,分析四种典型地物在傅里 叶变换频域的频谱响应特性。然后,采用点扩散函数对原始影像进行尺度扩展,进而根据地物纹理的径向与角向曲线 随尺度扩展的变化选择最佳尺度。最后,通过分析四种地物在6个尺度下的纹理特征可分性,说明本文方法能客观反映 出地物的尺度效应,具备最佳尺度选择的可行性。利用支持向量机对QuickBird全色影像进行面向对象的分类,实验结 果表明在最佳尺度下可取得较高精度。  相似文献   

20.
Monitoring crop conditions and forecasting crop yields are both important for assessing crop production and for determining appropriate agricultural management practices; however, remote sensing is limited by the resolution, timing, and coverage of satellite images, and crop modeling is limited in its application at regional scales. To resolve these issues, the Gramineae (GRAMI)-rice model, which utilizes remote sensing data, was used in an effort to combine the complementary techniques of remote sensing and crop modeling. The model was then investigated for its capability to monitor canopy growth and estimate the grain yield of rice (Oryza sativa), at both the field and the regional scales, by using remote sensing images with high spatial resolution. The field scale investigation was performed using unmanned aerial vehicle (UAV) images, and the regional-scale investigation was performed using RapidEye satellite images. Simulated grain yields at the field scale were not significantly different (= 0.45, p = 0.27, and p = 0.52) from the corresponding measured grain yields according to paired t-tests (α = 0.05). The model’s projections of grain yield at the regional scale represented the spatial grain yield variation of the corresponding field conditions to within ±1 standard deviation. Therefore, based on mapping the growth and grain yield of rice at both field and regional scales of interest within coverages of a UAV or the RapidEye satellite, our results demonstrate the applicability of the GRAMI-rice model to the monitoring and prediction of rice growth and grain yield at different spatial scales. In addition, the GRAMI-rice model is capable of reproducing seasonal variations in rice growth and grain yield at different spatial scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号