首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Fetch Limited Drag Coefficients   总被引:5,自引:1,他引:5  
Measurements made at a tower located 2 km off the coast of Denmark inshallow water during the Risø Air Sea Experiment (RASEX) are analyzedto investigate the behaviour of the drag coefficient in the coastal zone.For a given wind speed, the drag coefficient is larger during conditions ofshort fetch (2-5 km) off-shore flow with younger growing waves than it isfor longer fetch (15-25 km) on-shore flow. For the strongest on-shorewinds, wave breaking enhances the drag coefficient. Variation of the neutral drag coefficient in RASEX is dominated byvariation of wave age, frequency bandwidth of the wave spectra and windspeed. The frequency bandwidth is proportional to the broadness of the waveheight spectra and is largest during conditions of light wind speeds. Usingthe RASEX data, simple models of the drag coefficient and roughness length are developed in terms of wind speed, wave age and bandwidth. An off-shoreflow model of the drag coefficient in terms of nondimensional fetch isdeveloped for situations when the wave state is not known.  相似文献   

2.
One-dimensional theory of the wave boundary layer   总被引:2,自引:0,他引:2  
Results obtained in a 2-D modeling of the statistical structure of the wave boundary layer (WBL) are used for elaboration of the general approach to 1-D modeling taking into account the spectral properties of wave drag for an arbitrary wave field. In the case of the wave field described by the JONSWAP spectrum, the momentum and energy spectral density exchange, vertical profiles of the wave-induced momentum flux and dependence of total roughness parameter and drag coefficient on peak frequency are given. The reasons that the total roughness parameter increases with decreasing fetch are explained. The role of wind waves as an active element of the ocean-atmosphere dynamic system is also discussed.  相似文献   

3.
Estimates of the geostrophic drag coefficient and the Rossby similarity functions, A and B obtained from data collected by an instrumented aircraft over the sea are presented. The average value of the geostrophic drag coefficient is 0.027 and is independent of the geostrophic windspeed. The dependence of the similarity functions A and B on boundary-layer parameters is investigated. The function A is found to depend on baroclinicity parameters, while B depends on the parameter u */fh (where u * is the surface friction velocity, f is the Coriolis parameter, and h is the boundary-layer depth). Using the geostrophic drag coefficient found here and the results of surface drag coefficient studies, a relationship between geostrophic windspeed and surface windspeed is obtained which shows good agreement with empirical data.  相似文献   

4.
Geometric and aerodynamic roughness of sea ice   总被引:2,自引:0,他引:2  
The aerodynamic drag of Arctic sea ice is calculated using surface data, measured by an airborne laser altimeter and a digital camera in the marginal ice zone of Fram Strait. The influence of the surface morphology on the momentum transfer under neutral thermal stratification in the atmospheric boundary layer is derived with the aid of model concepts, based on the partitioning of the surface drag into a form drag and a skin drag. The drag partitioning concept pays attention to the probability density functions of the geometric surface parameters. We found for the marginal ice zone that the form drag, caused by floe edges, can amount to 140% of the skin drag, while the effect of pressure ridges never exceeded 40%. Due to the narrow spacing of obstacles, the skin drag is significantly reduced by shadowing effects on the leeward side of floe edges. For practical purposes, the fractional sea-ice coverage can be used to parameterize the drag coefficientC dn, related to the 10 m-wind. C dnincreases from 1.2 · 10-3 over open water to 2.8 · 10-3 for 55% ice coverage and decreases to 1.5 · 10-3 for 100% ice coverage.Aircraft turbulence measurements are used to compare the model values of C dnwith measureents. The correlation between measured and modelled drag coefficients results in r 2 = 0.91, where r is the correlation coefficient.  相似文献   

5.
We report the spatio-temporal variability of surface-layer turbulent fluxes of heat, moisture and momentum over the Bay of Bengal (BoB) and the Arabian Sea (AS) during the Integrated Campaign for Aerosols, gases Radiation Budget (ICARB) field experiment. The meteorological component of ICARB conducted during March – May 2006 onboard the oceanic research vessel Sagar Kanya forms the database for the present study. The bulk transfer coefficients and the surface-layer fluxes are estimated using a modified bulk aerodynamic method, and then the spatio-temporal variability of these air-sea interface fluxes is discussed in detail. It is observed that the sensible and latent heat fluxes over the AS are marginally higher than those over the BoB, which we attribute to differences in the prevailing meteorological conditions over the two oceanic regions. The values of the wind stress, sensible and latent heat fluxes are compared with those obtained for the Indian Ocean Experiment (INDOEX) period. The variation of drag coefficient (C D ), exchange coefficients of sensible heat and moisture (C H = C E ) and neutral drag coefficient (C DN ) with wind speed is also discussed.
  相似文献   

6.
A large-eddy model has been used to simulate the dry atmospheric boundary layer across the range of stabilities between free convection and neutral shear flow. Results for the similarity coefficients, A i , B i and C i are presented. The results are also used to evaluate the performance of a local mixing length model, and of two modified exchange coefficient models which attempt to incorporate some non-local effects.  相似文献   

7.
For the first time, the exchange coefficient of heat CH has been estimated from eddy correlation of velocity and virtual temperature fluctuations using sonic anemometer measurements made at low wind speeds over the monsoon land atJodhpur (26°18' N, 73°04' E), a semi arid station. It shows strong dependence on wind speed, increasing rapidly with decreasing wind speed, and scales according to a power law CH = 0.025U10 -0.7 (where U10 is the mean wind speed at 10-m height). A similar but more rapid increase in the drag coefficient CDhas already been reported in an earlier study. Low winds (<4 m s-1) are associated with both near neutral and strong unstable situations. It is noted that CH increases with increasing instability. The present observations best describe a low wind convective regime as revealed in the scaling behaviour of drag, sensible heat flux and the non-dimensional temperature gradient. Neutral drag and heat cofficients,corrected using Monin–Obukhov (M–O) theory, show a more uniform behaviour at low wind speeds in convective conditions, when compared with the observed coefficients discussed in a coming paper.At low wind convective conditions, M-O theory is unable to capture the observed linear dependence of drag on wind speed, unlike during forced convections. The non-dimensional shear inferred from the present data shows noticeable deviations from Businger's formulation, a forced convection similarity. Heat flux is insensitive to drag associated with weak winds superposed on true free convection. With heat flux as the primary variable, definition of new velocity scales leads to a new drag parameterization scheme at low wind speeds during convective conditionsdiscussed in a coming paper.  相似文献   

8.
Predictions of the surface drag in turbulent boundary-layer flow over two-dimensional sinusoidal topography from various numerical models are compared. For simple 2D terrain, the model results show that the drag increases associated with topography are essentially proportional to (slope)2 up to the steepness at which the flow separates. For the purposes of boundary-layer parameterisation within larger-scale models, we propose a representation of the effects of simple 2D topography via an effective roughness length, z 0 eff. The form of the varation of z 0 eff with terrain slope and topographic wavelength is established for small slopes from the model results and a semi-empirical formula is proposed.  相似文献   

9.
A model was developed to predict the modification with fetch in offshore flow of mixing ratio, air–water exchange flux, and near-surface vertical gradients in mixing ratio of a scalar due to air–water exchange. The model was developed for planning and interpretation of air–water exchange flux measurements in the coastal zone. The Lagrangian model applies a mass balance over the internal boundary layer (IBL) using the integral depth scale approach, previously applied to development of the nocturnal boundary layer overland. Surface fluxes and vertical profiles in the surface layer were calculated using the NOAA COARE bulk algorithm and gas transfer model (e.g., Blomquist et al. 2006, Geophys Res Lett 33:1–4). IBL height was assumed proportional to the square root of fetch, and estimates of the IBL growth rate coefficient, α, were obtained by three methods: (1) calibration of the model to a large dataset of air temperature and humidity modification over Lake Ontario in 1973, (2) atmospheric soundings from the 2004 New England Air Quality Study and (3) solution of a simplified diffusion equation and an estimate of eddy diffusivity from Monin–Obukhov similarity theory (MOST). Reasonable agreement was obtained between the calibrated and MOST values of α for stable, neutral, and unstable conditions, and estimates of α agreed with previously published parametrizations that were valid for the stable IBL only. The parametrization of α provides estimates of IBL height, and the model estimates modification of scalar mixing ratio, fluxes, and near-surface gradients, under conditions of coastal offshore flow (0–50 km) over a wide range in stability.  相似文献   

10.
Abstract

Airborne measurements in the atmospheric boundary layer (ABL) above the marginal ice zone (MIZ) on the Newfoundland Shelf reveal strong lateral variations in mean wind, temperature and the vertical fluxes of heat and momentum under conditions of cold, off‐ice wind. Flux measurements in (and near) the surface layer indicate that the neutral 10‐m drag coefficient depends on ice concentration, ranging from 2 × 10‐3 at 10% coverage to 5 × 10‐3 at 90%. Furthermore, cross‐ice‐edge transects consistently show increasing wind speed, temperature and heat flux in the off‐ice direction, but the momentum flux may either increase or decrease, depending on the relative importance of surface buoyancy flux and roughness. For the conditions encountered in this experiment, it appears surface wave maturity does not have a significant influence on the drag coefficient in fetch‐limited regimes near the ice edge.  相似文献   

11.
A semi-empirical model for estimating gas fluxes at the air-water interface in a neutrally stratified atmosphere is presented. Gas transfer velocity is assumed to depend on local friction velocity, whose variation with over-water fetch is estimated from Walmsleyet al.'s (1989) Guidelines. As guidance for limnologists estimating CO2 and CH4 fluxes from lakes and ponds in the Hudson Bay Lowlands region, we present model results of the variation of gas transfer velocity with over-water fetch,k(x), for comparison with the customary constant valuek 0. Gas fluxes are estimated over well mixed, circular and elliptical lakes and ponds. The results of accounting for fetch dependence, wind direction, pond shapes and sizes lead to correction factors to fluxes obtained withk 0. Recent studies of gas transfer velocity for gases of low solubility from lakes are reviewed, and the problem of time averaging on quantities determined from experimental measurements is also discussed.  相似文献   

12.
Geostrophic drag coefficients are obtained from direct measurements of the momentum flux and from an objective analysis of the synoptic pressure field by the method of least squares. At a site in the Kiel Bight, a mean geostrophic drag coefficient c g = 0.0223 was obtained with near neutral/ slightly unstable conditions and a surface Rossby Number of 1.2 × 109.Contribution of the sonderforschungsbereich Meeresforschung Hamburg der Deutschen Forschungsgemeinschaft, Hamburg, F.R.G.  相似文献   

13.
The roughness of wind waves   总被引:12,自引:0,他引:12  
In this paper, a new dynamic roughness equation for airflow over wind waves is proposed, based on relationships of dimensionless parameters and the 1986 HEXMAX field data. The equation can be considered as a modification of the Charnock formula. The data are also compared with the parameterizations of Toba and Koga, and of Hsu, and the consequences of the new equation for aerodynamic drag are discussed. In the new equation, the drag coefficient is expressed as a function of both wind speed and wave age c p/u*. This testifies to the strong wave-age dependence of the drag, found in several experimental studies. It is also in good agreement with results of a theoretical model of the airflow-seawave interaction, proposed by Janssen (1989).Also: Dept. of Applied Physics, Techn. Univ. Delft, the Netherlands.  相似文献   

14.
应用印痕函数研究测风塔资料代表性   总被引:3,自引:0,他引:3       下载免费PDF全文
影响测风塔代表性的因素很多,为了合理地确定测风塔观测结果能够代表的区域范围,需要通过适当的方法综合考虑这些因素。湍流通量代表性研究中常用的印痕函数是风速、稳定度、下垫面粗糙度等的函数,可以定量地刻画单点观测结果的代表性。利用印痕函数方法对中国风能资源观测网中来自不同下垫面的44个测风塔2010年的观测结果进行了测风塔资料的代表性分析。首先,根据两层(10、70 m)的风速和温度计算稳定度参数Lp并确定中性层结,粗糙度的计算选取了中性层结条件下满足对数风廓线的资料。然后,利用中性层结下70 m高度主导风向和风向频率较大方位的资料分析了两种印痕函数方法(Schuepp和Hsieh方法)的适用性及代表性范围与粗糙度的关系。两种方法得到的印痕函数对应距离(即代表性范围)比较接近。但是,在复杂山地Schuepp方法已不适用。当粗糙度小于10 m时,粗糙度与印痕函数对应距离的关系可用对数-线性函数描述。根据经验推荐了利用印痕函数积分90%对应的距离以及下垫面显著变化位置来确定测风塔代表范围。但是,印痕函数积分阈值仍需要通过示踪实验或数值模拟检验。  相似文献   

15.
A new nonlinear analytical model for canopy flow over gentle hills is presented. This model is established based on the assumption that three major forces (pressure gradient, Reynolds stress gradient, and nonlinear canopy drag) within canopy are in balance for gentle hills under neutral conditions. The momentum governing equation is closed by the velocity-squared law. This new model has many advantages over the model developed by Finnigan and Belcher (Quart J Roy Meteorol Soc 130: 1–29 2004, hereafter referred to as FB04) in predicting canopy wind velocity profiles in forested hills in that: (1) predictions from the new model are more realistic because surface drag effects can be taken into account by boundary conditions, while surface drag effects cannot be accounted for in the algebraic equation used in the lower canopy layer in the FB04 model; (2) the mixing length theory is not necessarily used because it leads to a theoretical inconsistency that a constant mixing length assumption leads to a nonconstant mixing length prediction as in the FB04 model; and (3) the effects of height-dependent leaf area density (a(z)) and drag coefficient (C d ) on wind velocity can be predicted, while both a(z) and C d must be treated as constants in FB04 model. The nonlinear algebraic equation for momentum transfer in the lower part of canopy used in FB04 model is height independent, actually serving as a bottom boundary condition for the linear differential momentum equation in the upper canopy layer. The predicting ability of the FB04 model is largely restricted by using the height-independent algebraic equation in the bottom canopy layer. This study has demonstrated the success of using the velocity-squared law as a closure scheme for momentum transfer in forested hills in comparison with the mixing length theory used in FB04 model thus enhancing the predicting ability of canopy flows, keeping the theory consistent and simple, and shining a new light into land-surface parameterization schemes in numerical weather and climate models.  相似文献   

16.
Observations over grassland of the turbulent kinetic energy in a band of frequencies in the inertial subrange of the spectrum of the streamwise wind component are related to the stress indicated by the wind profiles. The object is to determine the effective Kolmogoroff constant, UB , which accords with the assumption of balance between turbulent energy production and dissipation. The mean from 60 half-hour runs made under stability conditions ranging from neutral to moderate instability is UB = 0.62.This result is compared with those from other studies; four over grassland and six over the sea or a lake. There is no significant difference between the means of the land and sea values, but the latter are more scattered, partly because of difficulties in securing suitable exposure of the instruments for the stress measurements. The mean value from all ten sets of observations is UB = 0.59 ± 0.025. So the dissipation method should be capable of giving the drag coefficient of the sea in strong winds with an uncertainty of no more than about 10%.  相似文献   

17.
The vertical turbulent fluxes have been determined during the Atlantic Trade Wind Experiment (ATEX) both by direct and profile methods. The drag coefficient obtained from direct measurements was c D = 1.39 × 10–3. A distortion of the wind profile due to wave action could be demonstrated, this produced an increased drag coefficient estimated by the profile method. The dissipation technique using the downwind spectrum gave a lower drag coefficient of 1.26 × 10–3, probably due to non-isotropic conditions (the ratio of vertical to downwind spectrum at high frequencies scattered considerably with an average of 1 instead of 4/3).From direct measurements, the sensible heat flux showed a poor correlation with the bulk parameter product U, contrary to the heat flux obtained from profiles. It is shown that this is due to the higher frequency part of the cospectrum, say above 0.25 Hz, which contributes more than 50 % of the total flux. Determination of the heat flux from temperature fluctuations by the dissipation method would be in agreement with the direct determination only if the corresponding Kolmogoroff constant were 2.1 instead of 0.8.For the vertical flux of water vapor obtained from profiles, the bulk transfer coefficient was 1.28 × 10–3.This work was supported by the Deutsche Forschungsgemeinschaft, Schwerpunktprogramm Meeresforschung and later the Sonderforschungsbereich Meeresforschung Hamburg.  相似文献   

18.
The influence of an internal boundary layer and a roughness sublayer on flux–profile relationships for momentum and sensible heat have been investigated for a closed beech forest canopy with limited fetch conditions. The influence was quantified by derivation of local scaling functions for sensible heat flux and momentum (h and m) and analysed as a function of atmospheric stability and fetch. For heat, the influences of the roughness sublayer and the internal boundary layer were in agreement with previous studies. For momentum, the strong vertical gradient of the flow just above the canopy top for some wind sectors led to an increase in m, a feature that has not previously been observed. For a fetch of 500 m over the beech forest during neutral atmospheric conditions, there is no height range at the site where profiles can be expected to be logarithmic with respect to the local surface. The different influence of the roughness sublayer on h and m is reflected in the aerodynamic resistance for the site. The aerodynamic resistance for sensible heat is considerably smaller than the corresponding value for momentum.  相似文献   

19.
Modification of a turbulent flow upstream of a change in surface roughness has been studied by means of a stream function-vorticity model.A flow reduction is found upstream of a step change in surface roughness when a fluid flows from a smooth onto a rough surface. Above that layer and above the region of flow reduction downstream of a smooth-rough transition, a flow acceleration is observed. Similar flow modification can be seen at a rough-smooth transition with the exception that flow reduction and flow acceleration are reversed. Within a fetch of –500 < x/z 0< + 500 (z 0 is the maximum roughness length, the roughness transition is located at x/z 0 = 0), flow reduction (flow acceleration) upstream of a roughness transition is one order of magnitude smaller than the flow reduction (flow acceleration) downstream of a smooth-rough (rough-smooth) transition. The flow acceleration (flow reduction) above that layer is two orders of magnitude.The internal boundary layer (IBL) for horizontal mean velocity extends to roughly 300z 0 upstream of a roughness transition, whereas the IBL for turbulent shear stress as well as the distortion of flow equilibrium extend almost twice as far. For the friction velocity, an undershooting (overshooting) with respect to upstream equilibrium is predicted which precedes overshooting (undershooting) over new equilibrium just behind a roughness transition.The flow modification over a finite fetch of modified roughness is weaker than over a corresponding fetch downstream of a single step change in roughness and the flow stays closer to upstream equilibrium. Even in front of the first roughness change of a finite fetch of modified roughness, a distortion of flow equilibrium due to the second, downwind roughness change can be observed.  相似文献   

20.
From wind profile and wave measurements performed during the JONSWAP II experiment, relations between the dimensionless profile slope and the significant wave height are derived. It is shown that the wind profile is distorted by the waves especially in the vicinity of the water surface. The wave influence on the profile seems to be restricted to heights below about three wave heights. Above this level, the dimensionless profile slope is an approximately constant value corresponding to a drag coefficient of about 1.15 × 10–3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号