首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The Conway Trough is a 40 km × 10 km, 1000 m deep, rectangular, tectonically controlled sedimentary basin situated on an active plate boundary. The basin lies at the junction of the Alpine transform and Hikurangi subduction sectors of the Indo-Australian/Pacific plate boundary. It is incised into Cainozoic sedimentary rocks and contains a thick fill of late Neogene sediment. Study of the continental shelf near the Conway Trough indicates: (1) that transport mechanisms operate in a net north-easterly direction, and (2) that the neritic sediment drift system is confined to within a few kilometres of the shoreface, with the result that (3) large areas of the shelf south of the trough comprise bare bedrock, or relict late Pleistocene sediment. Despite reaching to within 3 km of shore, the Conway Trough receives little modern bedload sediment, as indicated by a paucity of sand fill. However, the trough has intercepted some Holocene bedload, since the main channel contains redeposited graded gravel and sand with a C-14 age of 4670 yr. Satellite imagery and piston cores reveal that abundant mud is provided to the trough, much of it from river sources up to 200 km to the south. Some of this sediment is inferred to move by turbid layer transport through Conway Trough and out via Kaikoura Canyon into nearby Hikurangi Trough. Nonetheless, sedimentation rates in the Conway Trough may be as high as 1-7 m (1000 yr) 1. The Conway Trough forms a modern example of a transform basin, varying Neogene examples of which are found widely in north-eastern South Island. Sedimentation models are constructed to compare transform and transduction basins, particularly with respect to the effects of Pleistocene sea-level changes.  相似文献   

2.
Cold water coral covered carbonate mounds at the south‐west margin of the Rockall Trough form ridges several kilometres long and up to 380 m high. Piston cores obtained at three mound crests reveal the complex internal structure of the mound build up, with alternating unlithified coral‐dominated intervals and lithified intervals. The most recent lithified interval is covered by corals embedded in a fine‐grained matrix, comprising ca 11 000 years of continuous mound evolution. Before this time 230Th/U dating shows the presence of several hiatuses in mound build‐up. Aragonitic coral material is absent or only present as mouldic porosity in the lithified intervals and coccoliths display widespread overgrowth. Downcore X‐ray fluorescence scanning, computer tomography scan images and petrographic observations indicate different degrees of diagenetic alteration. The upper boundary of the most recent lithified interval shows some erosional features, but petrographic observations indicate that initial lithification of the sediments is not related to this erosive event or to long‐term non‐sedimentation, but to earlier sub‐surface diagenesis. Organic matter oxidation and the subsequent lowering of the saturation state of the carbonate system drives dissolution of the unstable aragonitic coral skeletons. Depending on the openness of the system, this can lead to precipitation of a more stable low‐magnesium carbonate. A model is presented describing the sedimentary and diagenetic processes leading to the formation of lithified intervals.  相似文献   

3.
T. P. CRIMES 《Sedimentology》1973,20(1):105-131
The flysch of Paleocene to Eocene age outcropping in an almost unbroken cliff section at the Playa de San Telmo, Zumaya, North Spain, has been the subject of a quantitative sedimentological analysis. It is inferred that sedimentation commenced with deposition of a limestone-red shale sequence below wave base and continued with proximal and then distal turbidite sandstones deposited in what may have been a gradually deepening trough. The trough was probably oriented approximately east-west, parallel to the subsequent main tectonic trend. Sediment transport within the trough appears to have been essentially axial, with calcareous and siliceous sand derived from the east, but some siliceous sand was also laterally transported mainly from a land mass to the north. The sediments contain an abundant and varied suite of trace fossils. Thus, with the depositional environment already defined sedimentologically, it was possible to critically examine the relationship between facies, trace fossil distribution and possible water depth. The facies variations were shown to be reflected in a changing ichnofauna. Spreite such as Zoophycos and Rhizocorallium were present in limestones apparently deposited not far below wave base. These traces are replaced by rosetted, winding and meandering forms in the more proximal turbidite facies. In the more distal facies spiral and patterned trace fossils appear, winding and meandering forms are common but Zoophycos, Rhizocorallium and rosetted traces are absent. It is inferred that these changes reflect faunal distribution on the sea floor rather than preservational factors.  相似文献   

4.
天然气水合物是近年来国际上发现的一种新型能源,大量赋存在海底沉积物中。西沙海槽位于南海北部陆坡区,周边有多个大型深水油气田区。对该区地形地貌、地质构造和沉积条件分析以及地球物理BSR分布表明,西沙海槽是我国海洋天然气水合物资源勘查的一个有利远景区。文章主要研究了位于西沙海槽最大BSR区内的XS-01站位沉积物孔隙水的地球化学特征,发现该站位孔隙水阴阳离子浓度和微量元素组成特征变化显示出可能与天然气水合物有关的明显地球化学异常,与国际上己发现有天然气水合物地区的异常相类似。因此,认为该站位是西沙海槽区最有利的天然气水合物赋存区,值得进一步的勘查工作。  相似文献   

5.
This study explored the relationship between high-Arctic fiord depositional environments and the natural thermoluminescence (TL) signal of sediments. The energy and duration of light exposure during transportation and deposition controls the TL level of silicate mineral grains in the sediment. The TL signal of sediments rapidly decreases within c. 0·5 km of a glacier sediment source. The highest TL levels are from tills and ice-proximal glacial-marine sediments, which receive little or no light exposure during transportation and deposition. Intermediate and consistent TL levels are recorded for ice-distal glacialmarine muds, c. 0·5–5·0 km from the glacier front, reflecting slower sedimentation rates. The lowest TL levels are for littoral and sublittoral sediments which receive extended light exposure with shoaling. The granulometry of the sediments is fairly homogeneous and is not diagnostic of a sedimentary environment with most samples dominated by silt and clay; littoral and ice-proximal samples exhibit peak abundances in sand. These results suggest that the relative TL signal of sediments is sensitive to a depositional environment, particularly for environments proximal (within 0·5 km) to a glacier terminus and in shallow water, less than 15 m deep.  相似文献   

6.
Lake El′gygytgyn is situated in a 3·6 Myr old impact crater in North‐eastern Siberia. Its sedimentary record probably represents the most complete archive of Pliocene and Quaternary climate change in the terrestrial Arctic. In order to investigate the influence of gravitational sediment transport on the pelagic sediment record in the lake centre, two sediment cores were recovered from the lower western lake slope. The cores penetrate a sub‐recent mass movement deposit that was identified by 3·5 kHz echo sounding. In the proximal part of this deposit, deformed sediments reflect an initial debris flow characterized by limited sediment mixture. Above and in front of the debrite, a wide massive densite indicates a second stage with a liquefied dense flow. The mass movement event led to basal erosion of ca 1 m thick unconsolidated sediments along parts of its flow path. The event produced a suspension cloud, whose deposition led to the formation of a turbidite. The occurrence of the turbidite throughout the lake and the limited erosion at its base mainly suggest deposition by ‘pelagic rain’ following Stokes’ Law. Very similar radiocarbon dates obtained in the sediments directly beneath and above the turbidite in the central lake confirm this interpretation. When applying the depositional model for the Late Quaternary sediment record of Lake El′gygytgyn, the recovered turbidites allow reconstruction of the frequency and temporal distribution of large mass movement events at the lake slopes. In total, 28 turbidites and related deposits were identified in two, 12·9 and 16·6 m long, sediment cores from the central lake area covering approximately 300 kyr.  相似文献   

7.
JOHN A. HOWE 《Sedimentology》1996,43(2):219-234
Two sediment wave fields have been identified in the northern Rockall Trough; one from the north-eastern part of the trough, developed on the flank of an elongate sediment drift, and the other at the distal edge of the Barra Fan. Wavelengths in both areas vary from 1 to 2 km and wave heights from 5 to 20 m. The seismic character of both the wave fields is similar with a lower package of well-layered, medium- to high-intensity reflectors migrating upslope, overlain by a dominantly acoustically transparent unit containing irregular, semicontinuous reflectors. Eight cores have been recovered from the two wave fields, seven from the crest-trough areas of the distal Barra Fan wave field, and a single core from the crest of the sediment-drift waves. Lithologically, the cores show that different processes have been active across the two wave fields. Cores from the Barra Fan field contain thin turbidites with thicker, draped hemipelagites and hemiturbidites, corresponding to the well-layered, reflective seismic units and transparent seismic unit, respectively. These waves have been maintained by turbidity currents, perhaps over older, originally bottom-current-formed waves. The single core from the small sediment-drift wave field recovered hemipelagites and glaciomarine sediments grading upwards into muddy-silty contourite deposits, topped by a sandy contourite. These waves were constructed by contour currents. Dating of cores from these two small wave fields revealed that the sequences of thin turbidite and hemipelagite sediments from the Barra Fan correspond to the Late Glacial-Allerød/Bölling Interstadial with the overlying hemipelagite of Younger Dryas-Holocene age. The contourite deposits from the north-east Rockall Trough wave field have been dated as early Holocene, reflecting increasing bottom-current activity at the changeover from a glacial to an interglacial regime.  相似文献   

8.
The Upper Permian (Zechstein) slope carbonates in the Roker Formation (Zechstein 2nd‐cycle Carbonate) in North‐east England consist of turbidites interbedded with laminated lime‐mudstone. Studies of turbidite bed thickness and relative proportion of turbidites (percentage turbidites in 20 cm of section) reveal well‐developed cyclicities consisting of thinning‐upward and thickening‐upward packages of turbidite beds. These packages are on four scales, from less than a metre, up to 50 m in thickness. Assuming that the laminae of the hemipelagic background sediment are annual allows the durations of the cycles to be estimated. In addition, counting the number and thickness of turbidite beds in 20 cm of laminated lime‐mudstone, which is approximately equivalent to 1000 years (each lamina is 200 μm), gives the frequencies of the turbidite beds, the average thicknesses and the overall sedimentation rates through the succession for 1000 year time‐slots. Figures obtained are comparable with modern rates of deposition on carbonate slopes. The cyclicity present in the Roker Formation can be shown to include: Milankovitch‐band ca 100 kyr short‐eccentricity, ca 20 kyr precession and ca 10 kyr semi‐precession cycles and sub‐Milankovitch millennial‐scale cycles (0·7 to 4·3 kyr). Eccentricity and precession‐scale cycles are related to ‘highstand‐shedding’ and relative sea‐level change caused by Milankovitch‐band orbital forcing controlling carbonate productivity. The millennial‐scale cycles, which are quasi‐periodic, probably are produced by environmental changes controlled by solar forcing, i.e. variations in solar irradiance, or volcanic activity. Most probable here are fluctuations in carbonate productivity related to aridity–humidity and/or temperature changes. Precession and millennial‐scale cycles are defined most strongly in early transgressive and highstand parts of the larger‐scale short‐eccentricity cycles. The duration of the Roker Formation as a whole can be estimated from the thickness of the laminated lithotype as ca 0·3 Myr.  相似文献   

9.
Lake Zürich occupies a glacially overdeepened perialpine trough in the northern Middlelands of Switzerland. A total of 154.4 m of Quaternary sediments and 47.3 m of Tertiary Molasse bedrock has been cored from the deepest part of the lake, some 10 km south of the city of Zürich. Some 16.8 m of gravels and sands directly overlying the bedrock include basal till and probably earliest subglacial fluvial and lacustrine deposits. These are overlain by 98.6 m of fine-grained, glacial-aged sediments comprising completely deformed proglacial and/or subglacial lacustrine muds, separated by four basal mud tills. The lack of interglacial sediments, fossils, and other datable material, and the presence of severe sediment deformation and unknown amounts of erosion prevent the establishment of an exact chronostratigraphy for sediments older than the upper mud till. Above it some 8.6 m of lacustrine muds were deposited, folded, faulted, and tilted during the final opening of the lake at about 17,500–17,000 years ago. Superimposed are 30.4 m of final Würm and post-glacial sediments comprising (from oldest): cyclic proglacial mud, thick-bedded and laminated mud, a complex transition zone, laminated carbonate, laminated marl, and diatom-calcite varves. These sediments reflect changing catchment and lacustrine conditions including: glacial proximity, catchment stability, lake inflow characteristics, thermal structure, chemistry, and bed stability. Average sedimentation rates ranged from 11 cm yr−1 immediately after glacier withdrawal, to as low as 0.4 mm yr−1 as the environment stabilized. The lack of coarse outwash deposits separating the fine-grained glaciolacustrine sediments from a corresponding underlying basal till suggests that deglaciation of the deep northern basin of Lake Zürich was by stagnation-zone retreat rather than by retreat of an active ice-front.  相似文献   

10.
A narrow strip of Gondwana basins separates the Rajmahal traps from the peninsular shield in eastern India. This part of the shield margin is associated with a conspicuous gravity high of 100 km wavelength and 48 mGal amplitude over an area of 25,000 km2. Second order residual anomalies due to Gondwana sediments and traps are superposed on this wider gravity high. Gravity interpretation, partly constrained by seismic data, suggests that the wider high is caused by a denser metamorphic layer (amphibolite and granulite) up to 3.5 km thick. The metamorphic layer also extends below the eastern Rajmahal hills where the Gondwanas, traps and younger sediments have covered it. The Gondwanas are downfaulted against the shield edge and are preserved over an irregular basin floor whose deepest part underlies the eastern flank of the Rajmahal hills adjacent to the Bengal basin. It is inferred that the Gondwanas were deposited over a rifted and highly faulted shield margin that was intruded by the Rajmahal traps nearly 100 m.y. ago. High-grade metamorphism along the shield edge presumably preceded the continental rifting, perhaps occurring in the Precambrian as a part of the Eastern Ghats orogeny, along the east coast of India.  相似文献   

11.
冲绳海槽南部沉积层序的粒度特征   总被引:2,自引:1,他引:2  
李军  高抒  孙有斌  曾志刚 《沉积学报》2003,21(3):461-466
对取自冲绳海槽南部的A2 3孔经前处理后的沉积物样品进行了粒度测试,探讨了陆源沉积层序的粒度特征。沉积物平均粒径、分选系数、偏态、峰态等粒度参数的变化显示出A2 3孔的沉积层序以 4 0 0cm为界可分为上、下两段,下段各参数稳定,代表了比较稳定的水动力条件的沉积环境;上段则波动较大,小规模浊流沉积频繁发育,暗示了不稳定的沉积环境。浊流层内粗粒与细粒组分含量及粒度分布的变化具有明显的规律性。通过分析A2 3孔陆源沉积层序的各沉积参数特征,认为冲绳海槽南部的沉积环境和动力在时间尺度上有较大的变化,东海陆架物质向南部海槽的输运可能是以峡谷为通道的重力作用引起的床底沉积作用为主。另外,对陆源碎屑和全样粒度结果的对比,显示了前处理方法对于海洋沉积物粒度分析的重要性.  相似文献   

12.
The South Kerala Sedimentary Basin (SKSB) constitutes one of the most significant landward extensions of the southwest offshore sedimentary basins of India, and is situated between 8o45' and 10o15' N latitudes. With a maximum width of about 20 km and incorporating a 700 m thick sedimentary succession ranging in age from Early Miocene to Holocene, this belt lies almost entirely under water or alluvium-covered coastal plains. In this study, we use two continuously cored bore holes at Eruva (7.25m deep) and Muthukulam (3m deep) separated by a distance of about 7km to investigate the depositional environment as well as paleo ecology of the depocentre and climatic aspects during the Late Pleistocene and Holocene. Results from C14 dating of shell fragments from Eruva (depth zone: 2.10–6.64m) yielded ages in the range of 36.2 to 42.5 kyBP corresponding to the late Pleistocene. Wood fragments in the Muthukulam core sample (depth zone: 1.27–3.00m) gave C14 ages in the range of 3.7 to 7.2 kyBP indicating a Holocene history. The lower half of the Eruva bore hole indicates a marginal marine environment with an abundant supply of terrestrial carbonaceous debris probably corresponding to a period of abnormally high rainfall recorded in many parts of the globe covered by the Asian summer monsoon. The sediments in the upper part of this bore hole indicate a continuation of this environment but with much less input of terrestrial organic carbon. The lower part of the bore hole from this locality, corresponding to the Holocene transgression, is similar to the lower part of Eruva bore hole in the case of TOC. Deposition took place in water bodies with considerable marine influence but receiving high amounts of terrestrial plant debris-mostly in the form of finely divided particles mixed with mud. This transgressive sequence was also deposited during a time when the Asian summer monsoon was abnormally high in intensity as indicated by many examples in India, Africa, Madagascar and elsewhere. It is significant that during the deposition of this part, the sea level was probably the same as present or higher suggesting possible lowering of the stream velocities and resultant deposition of only muddy sediments laden with terrestrial organic material along the coast. The upper part of the section shows a progressively reduced rainfall pattern culminating in a period of very low precipitation with the development of a paleosol, which is traceable all over the SKSB where Late Holocene sediments are available. This period also witnessed aeolian activity modifying the sand ridges in the ridge-runnel systems formed by the Holocene regression.  相似文献   

13.
In western Tasmania, Precambrian sedimentary sequences form the basement for narrow trough accumulations of Eocambrian and younger sequences. The main trough, the meridional Dundas Trough, is flanked to the west by the Rocky Cape region of Precambrian rocks within which major, apparently stratiform, exhalative magnetite-pyrite deposits are intercalated with metabasaltic volcanics and ultramafic bodies.The Eocambrian-Cambrian troughs apparently developed during extension of Precambrian continental crust. Early shallow-water deposition includes thick dolomite units in some troughs. Deepening of the troughs was accompanied by turbidite sedimentation, with minor limestone, and submarine basaltic volcanism with associated minor disseminated native copper. Ultramafic and related igneous rocks were tectonically emplaced in some troughs during a mild compressional phase. They contain only minor platinoids, copper-nickel sulphides and asbestos, but are source rocks for Tertiary secondary deposits of platinoids, chromite and lateritic nickel.In the Dundas Trough, Eocambrian-Early Cambrian rocks are separated by an inferred erosional surface from structurally conformable overlying Middle to Late Cambrian fossiliferous turbidite sequences. The structural conformity continues through overlying Ordovician to Early Devonian terrestrial and shallow-marine stable shelf deposits.A considerable pile of probable Middle Cambrian felsic volcanics accumulated between the sedimentary deposits of the Dundas Trough and the Tyennan region of Precambrian rocks to the east. A lava-dominated belt within the volcanics hosts major volcanogenic massive sulphide deposits, including those of the exhalative type, which in the south are enriched in copper, gold and silver, whereas in the north they are rich in zine, lead, copper, gold and silver. Cambrian movements along faults near the margin of the Tyennan region resulted in erosion of the mineralized volcanics, locally exposing sub-volcanic granitoids. Above the local unconformities occur unmineralized volcaniclastic sequences that pass conformably into Ordovician to Early Devonian shelf deposits. Ordovician limestone locally hosts stratabound disseminated and veined base metal sulphide deposits.Pre-Middle Devonian rocks of western Tasmania differ, for most part, from those in the northeast where deeper marine turbidite quartz-wacke sequences were deposited during the Ordovician and Early Devonian.The Eocambrian to Early Devonian rocks of Tasmania were extensively deformed in the mid-Devonian. The Precambrian regions of western Tasmania behaved as relatively competent blocks controlling early fold patterns. In northeastern Tasmania, folding is of similar age but resulted from movements inconsistent with those affecting rocks of equivalent age in western Tasmania.The final metallogenic event is associated with high-level granitoid masses emplaced throughout Tasmania during the Middle to Late Devonian. In northeastern Tasmania, extensive I-type granodiorite and S-type granite, with alkali-feldspar granites, are associated with mainly endogranitic stanniferous grelsens and wolframite ± cassiterite vein deposits. In contrast, scheelite-bearing skarns and cassiterite stannite pyrrhotite carbonate replacement deposits are dominant in western Tasmania, associated mainly with S-type granites. Several argentiferous lead-zinc vein deposits occur in haloes around tin-tungsten deposits. A number of gold deposits are apparently associated with I-type granodiorite, but some have uncertain genesis.The contrasting regions of western and northeastern Tasmania have probably been brought together by lateral movement along an inferred fracture. Flat-lying, Late Carboniferous and younger deposits rest on the older rocks, and the only known post-Devonian primary mineralization is gold associated with Creta ceous syenite.  相似文献   

14.
Much of our understanding of submarine sediment‐laden density flows that transport very large volumes (ca 1 to 100 km3) of sediment into the deep ocean comes from careful analysis of their deposits. Direct monitoring of these destructive and relatively inaccessible and infrequent flows is problematic. In order to understand how submarine sediment‐laden density flows evolve in space and time, lateral changes within individual flow deposits need to be documented. The geometry of beds and lithofacies intervals can be used to test existing depositional models and to assess the validity of experimental and numerical modelling of submarine flow events. This study of the Miocene Marnoso Arenacea Formation (Italy) provides the most extensive correlation of individual turbidity current and submarine debris flow deposits yet achieved in any ancient sequence. One hundred and nine sections were logged through a ca 30 m thick interval of time‐equivalent strata, between the Contessa Mega Bed and an overlying ‘columbine’ marker bed. Correlations extend for 120 km along the axis of the foreland basin, in a direction parallel to flow, and for 30 km across the foredeep outcrop. As a result of post‐depositional thrust faulting and shortening, this represents an across‐flow distance of over 60 km at the time of deposition. The correlation of beds containing thick (> 40 cm) sandstone intervals are documented. Almost all thick beds extend across the entire outcrop area, most becoming thinly bedded (< 40 cm) in distal sections. Palaeocurrent directions for flow deposits are sub‐parallel and indicate confinement by the lateral margins of the elongate foredeep. Flows were able to traverse the basin in opposing directions, suggesting a basin plain with a very low gradient. Small fractional changes in stratal thickness define several depocentres on either side of the Verghereto (high) area. The extensive bed continuity and limited evidence for flow defection suggest that intrabasinal bathymetric relief was subtle, substantially less than the thickness of flows. Thick beds contain two distinct types of sandstone. Ungraded mud‐rich sandstone intervals record evidence of en masse (debrite) deposition. Graded mud‐poor sandstone intervals are inferred to result from progressive grain‐by‐grain (turbidite) deposition. Clast‐rich muddy sandstone intervals pinch‐out abruptly in downflow and crossflow directions, in a fashion consistent with en masse (debrite) deposition. The tapered shape of mud‐poor sandstone intervals is consistent with an origin through progressive grain‐by‐grain (turbidite) deposition. Most correlated beds comprise both turbidite and debrite sandstone intervals. Intrabed transitions from exclusive turbidite sandstone, to turbidite sandstone overlain by debrite sandstone, are common in the downflow and crossflow directions. This spatial arrangement suggests either: (i) bypass of an initial debris flow past proximal sections, (ii) localized input of debris flows away from available sections, or (iii) generation of debris flows by transformation of turbidity currents on the basin plain because of seafloor erosion and/or abrupt flow deceleration. A single submarine flow event can comprise multiple flow phases and deposit a bed with complex lateral changes between mud‐rich and mud‐poor sandstone.  相似文献   

15.
Seaward of the Bosphorus Strait, the south‐west Black Sea shelf is dominated by the world's largest channel network maintained by a quasi‐continuous saline (ca 35 → 31 psu) underflow. Calculations indicate that >85% of the initial discharge of ca 104 m3s?1 spills overbank before the shelf edge. This paper documents interaction of the overspill with sea bed topography using multibeam bathymetry, echo‐sounder images of the water column, conductivity–temperature–depth profiles and sediment cores. Overbank spill is widespread, particularly through crevasse channels and on the middle shelf where confinement by channel banks is negligible. Towards the outer shelf, the wind‐driven Rim Current advects mud along the shelf, contributing to levée successions and deposition on stoss sides of elongate transverse ridges. Echo‐sounder profiles reveal metre‐scale eddies over megaflutes, and breaking lee waves and internal hydraulic jumps over ridges. Megaflutes reach 600 m long and 7 m deep, yet form where the underflow, outside the flute, is no thicker than ca 2 to 5 m. Two types of elongate seaward‐facing ridges are recognized. Type 1 ridges, 2 to 5 m high, consist of bivalve‐rich muddy sand in low‐angle (3·5° to 6°) cross‐sets created by the underflow. Type 2 ridges, ca 5 m high, have crests up to 2 km long and a buried wedge‐shaped foundation (the ‘ridge‐core’) comprised of facies similar to Type 1 ridges. These ridge‐cores are blanketed on the landward side by stratified muds, and are capped by obliquely oriented ribs supporting a diverse benthic community. This facies distribution is interpreted to result from stoss‐side and lee‐side velocity and turbulence fluctuations induced by internal hydraulic jumps and breaking lee waves in overspilling portions of the underflow. Experimental results published by W.H. Snyder and co‐workers effectively explain ridge evolution and flow across the ridges, and therefore can be applied with confidence to less easily studied deep‐marine settings swept by turbidity currents.  相似文献   

16.
Metresa is a thick, distinctive turburdite within the Menilite Shales in the Carpathians of south-east Poland. It was deposited by a SE-flowing turbidity current derived from the Silesian cordillera and can be traced for 55 km downcurrent; it has a width of at least 15 km. The current contained roughly 3 km3 of sediment and conforms to the definition of a seismoturbidite. Grain-size analyses of samples from the nine localities where Metresa is exposed indicate average velocities decreasing from 2 m s?1 to less than 1 m s?1 over the 55 km. Massive divisions are poorly developed; instead, the turbidite, although graded, tends to be laminated throughout. Flat lamination predominates with intercalated cross-lamination and erosion structures at various levels. Small-scale cross-lamination, presumably associated with ripples, occurs at some upper levels. An exceptional feature is a large-scale wave-like structure somewhat resembling hummocky cross-stratification. The structures are not consistent with the inferred velocities. It is suggested that the stability fields relating structures to stream power (herein called the ‘Allen fields’) are displaced in respect to deposition from waning turbidity currents.  相似文献   

17.
Six closely spaced sediment cores taken below the carbonate compensation depth penetrated fine silty muds and entered sandy sediment at 10–12 m below the seafloor. Foraminiferal assemblages and δ8O analyses on planktonic foraminifera indicated that the surface muds down to 2 m are Holocene and derived from local promontories above the CCD. Below these sediments are about 6 m of clays deposited during the late Wisconsin. These are unfossiliferous and have a possible northern source suggested by the higher chlorite content. Sandy sediments below 9 m in the cores contain well preserved benthic foraminifera from the Scotian Shelf. Glacial δ18O values on planktonic tests indicate the sandy sediments are most likely of latest Wisconsin age. Thus during the recent interglacial, the sand fraction of the southern Sohm Abyssal Plain sediments is mostly locally derived, but during glacial periods the sediments have a distant northern source containing quartz sand that was initially deposited on the Scotian Shelf 1,500 km to the north.  相似文献   

18.
Geochemical and isotopic data for the uppermost 1.2 m of the sediments of the central Santa Monica Basin plain were examined to better understand organic matter deposition and recycling at this site. Isotopic signatures (Δ14C and δ13C) of methane (CH4) and dissolved inorganic carbon (DIC) indicate the occurrence of anaerobic oxidation of CH4 that is fueled by CH4 supplied from a relict reservoir that is decoupled from local organic carbon (Corg) degradation and methanogenesis. This finding was corroborated by a flux budget of pore-water solutes across the basal horizon of the profile. Together these results provide a plausible explanation for the anomalously low ratio between alkalinity production and sulfate consumption reported for these sediments over two decades ago. Shifts in Δ14C and δ13C signatures of Corg have previously been reported across the 20-cm depth horizon for this site and attributed to a transition from oxic to anoxic bottom water that occurred ~350 years BP. However, we show that this horizon also coincides with a boundary between the base of a hemipelagic mud section and the top of a turbidite interval, complicating the interpretation of organic geochemical data across this boundary. Radiocarbon signatures of DIC diffusing upward into surface sediments indicate that remineralization at depth is supported by relatively 14C-enriched Corg within the sedimentary matrix. While the exact nature of this Corg is unclear, possible sources are hemipelagic mud sections that were buried rapidly under thick turbidites, and 14C-rich moieties dispersed within Corg-poor turbidite sections.  相似文献   

19.
This paper is a summary of the present knowledge of the Tertiary stratigraphy of Western Australia. Also included is new information on the Cainozoic of the Carnarvon Basin, a result of petroleum exploration in the area.

Tertiary rocks formed during more than one cycle of deposition in three basins (Eucla, Perth, and Carnarvon), and also as thin units deposited in a single transgression along the south coast. The Tertiary stratigraphy of the Bonaparte Gulf Basin is not well known.

Drilling in the Eucla Basin has encountered up to 400 m of Tertiary in the south central part, with uniform thinning towards the margins. The section begins with a middle‐upper Eocene carbonate unit which represents the dominant event in the Tertiary sedimentation in this basin. More carbonates were deposited in the late Oligocene‐early Miocene and middle Miocene.

Along the south coast, the so‐called Bremer Basin, the Plantagenet Group (up to 100 m) of siltstone, sandstone, spongolite, and minor limestone, was deposited during the late Eocene.

The Perth Basin contains up to 700 m of Tertiary sediment, formed during at least two phases of sedimentation. The upper Paleocene‐lower Eocene Kings Park Formation consists of marine shale, sandstone, and minor limestone, with a thickness of up to 450 m. The Stark Bay Formation (200 m) includes limestone, dolomite, and chert formed during the early and middle Miocene. Events after deposition of the Stark Bay Formation are not well known.

The northern Carnarvon Basin and Northwest Shelf contain by far the most voluminous Tertiary sediment known from Western Australia: 3500 m is known from BOCAL's Scott Reef No. 1. A more usual maximum thickness is 2500 m. Most sediments were laid down in four episodes, separated by unconformities: late Paleocene‐early Eocene; middle‐late Eocene; late Oligocene‐middle Miocene; and late Miocene to Recent.

The Paleocene‐early Eocene cycle consists of about 100–200 m (up to 450 m in the north) of carbonate, shale, and marl of the Cardabia Group containing rich faunas of planktonic foraminifera.

The middle‐late Eocene sediments include diverse rock types. Marine and nonmarine sandstone formed in the Merlinleigh Trough. At the same time, the Giralia Calcarenite (fauna dominated by the large foraminifer Discocyclina) and unnamed, deeper water shale, marl, and carbonate (with rich planktonic foraminiferal faunas) formed in the ocean outside the embayment. Thickness is usually of the order of 100–200 m.

The main cycle of sedimentation is the late Oligocene‐middle Miocene, during which time the Cape Range Group of carbonates formed. This contains dominantly large foraminiferal faunas, of a wide variety of shallow‐water microfacies, but recent oil exploration farther offshore has recovered outer continental shelf facies with abundant planktonic foraminifera. A minor disconformity representing N7 and perhaps parts of N6 and N8 is now thought to be widespread within the Cape Range Group. The last part of this cycle resulted in sedimentation mainly of coarse calcareous marine sandstone (unnamed), and, in the Cape Range area, of the sandstone and calcareous conglomerate of the Pilgramunna Formation. Maximum thickness encountered in WAPET wells is 900 m.

After an unconformity representing almost all the late Miocene, sedimentation began again, forming an upper Miocene‐Recent carbonate unit which includes some excellent planktonic faunas. Thickness is up to 1100 m.

Thin marine sediments of the White Mountain Formation outcrop in the Bonaparte Gulf Basin. They contain some foraminifera and a Miocene age has been suggested.  相似文献   

20.
New deep reflection seismic, bathymetry, gravity and magnetic data have been acquired in a marine geophysical survey of the southern South China Sea, including the Dangerous Grounds, Northwest Borneo Trough and the Central Luconia Platform. The seismic and bathymetry data map the topography of shallow density interfaces, allowing the application of gravity modeling to delineate the thickness and composition of the deeper crustal layers. Many of the strongest gravity anomalies across the area are accounted for by the basement topography mapped in the seismic data, with substantial basement relief associated with major rift development. The total crustal thickness is however quite constant, with variations only between 25 and 30 km across the Central Luconia Platform and Dangerous Grounds. The Northwest Borneo Trough is underlain by thinned crust (25–20 km total crustal thickness) consistent with the substantial water depths. There is no evidence of any crustal suture associated with the trough, nor any evidence of relict oceanic crust beneath the trough. The crustal thinning also does not extend along the complete length of the trough, with crustal thicknesses of 25 km and more modeled on the most easterly lines to cross the trough. Modeled magnetic field variations are also consistent with the study area being underlain by continental crust, with the magnetic field variations well explained by irregular magnetisations consistent with inhomogeneous continental crust, terminating at the basement unconformity as mapped from the seismic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号