首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We present Keck II spectroscopy of optical mHz quasi-periodic oscillations (QPOs) in the light curve of the X-ray pulsar binary Hercules X-1. In the power spectrum it appears as 'peaked noise', with a coherency ∼2, a central frequency of 35 mHz and a peak-to-peak amplitude of 5 per cent. However, the dynamic power spectrum shows it to be an intermittent QPO, with a lifetime of ∼100 s, as expected if the lifetime of the orbiting material is equal to the thermal time-scale of the inner disc. We have decomposed the spectral time series into constant and variable components and used blackbody fits to the resulting spectra to characterize the spectrum of the QPO variability and constrain possible production sites. We find that the spectrum of the QPO is best fitted by a small hot region, possibly the inner regions of the accretion disc, where the ballistic accretion stream impacts on to the disc. The lack of any excess power around the QPO frequency in the X-ray power spectrum, created using simultaneous light curves from RXTE , implies that the QPO is not simply reprocessed X-ray variability.  相似文献   

2.
3.
In this paper, we improve the previous work on the MHD Alfvén wave oscillation model for the neutron star (NS) kHz quasi‐periodic oscillations (QPOs), and compare the model with the updated twin kHz QPO data. For the 17 NS X‐ray sources with the simultaneously detected twin kHz QPO frequencies, the stellar mass M and radius R constraints are given by means of the derived parameter A in the model, which is associated with the averaged mass density of the star as 〈ρ 〉 = 3M /(4πR3) ≃ 2.4 × 1014 (A /0.7)2 g/cm3, and we also compare the MR constraints with the stellar equations of state. Moreover, we also discuss the theoretical maximum kHz QPO frequency and maximum twin peak separation, and some expectations on SAX J1808.4–3658 are mentioned, such as its highest kHz QPO frequency ∼ 870 Hz, which is about 1.4–1.5 times less than those of the other known kHz QPO sources. The estimated magnetic fields for both Z sources (about Eddington accretion rate ) and Atoll sources (∼ 1% ) are approximately ∼109 G and ∼108 G, respectively. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Based on the interpretation of the twin kilohertz Quasi Periodic Oscillations (kHz QPOs) of X-ray spectra of Low Mass X-Ray Binaries (LMXBs) ascribed to the Keplerian and the periastron precession frequencies at the inner disk respectively, we ascribe the low frequency (0.1–10 Hz) Quasi Periodic Oscillations (LFQPO) and HBO (15–60 Hz QPO for Z sources or Atoll sources) to the periastron precession at some outer disk radius. It is assumed that both radii are correlated by a scaling factor of 0.4. The conclusions obtained include: All QPO frequencies increase with increasing accretion rate. The theoretical relations between HBO (LFQPO) frequency and the kHz QPO frequencies are similar to the measured empirical formula.  相似文献   

5.
A 200-second X-ray quasi-periodicity in the 2-8 ke V band from Swift J1644+57 was found by Reis et al.From the onset time of quasi-periodic oscillation(QPO),we show that Swift J1644+57 is a plunging event.This QPO may be related to discrete clumps from the accretion disk falling into a supermassive black hole,then the outflow in the jet may be also discontinuous.We estimate the lifetime of clumps to be about several hundreds seconds and the fraction of clumpy ejecta to be about 30% from the QPO.The other possible model involves the interface between the inflow and jet magnetosphere in the magnetically choked accretion flow.Theory and numerical simulations indicate that a magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface can produce a jet-disk QPO mechanism.This event may be the first evidence of jet-disk QPO.From observations,the two models are comparable.  相似文献   

6.
观测表明, 黑洞双星的B型准周期振荡(Quasi-Periodic Oscillation, QPO)频率与幂律通量之间存在正相关性. 试图基于阿尔文波振荡模型定量解释该相关性. 标准薄吸积盘辐射通量极大值处的阿尔文波振荡产生QPO. 标准薄盘上的软光子与冕或喷流基部的热电子介质发生逆康普顿散射产生幂律通量. 通过吸积率的连续变化, 得到QPO频率与幂律通量关系的分析解和数值解. 模拟得到的相关性在合理的参数范围内与观测值相吻合. QPO频率与幂律通量的正相关性可以理解为, 较强的磁场导致较高的阿尔文波频率和较高的电子温度从而得到较高的幂律通量. 结果表明B型QPO可能与吸积盘或喷流中的环向磁场的活动有关.  相似文献   

7.
The infalling movement of the matter accreted onto a magnetized neutron star is discussed. A one-dimensional accretion column model is presented to describe the variations of the infalling velocity, density and temperature of the infalling plasma. The column can be divided from top down into four zones, impact, deceleration of ideal gas, deceleration of degenerate gas and outflow. As an example, the accretion column for an accretion rate of 1017 g/s and a polar magnetic field of ≈ 108 T was calculated. We discuss thermonuclear reaction inside the column, and consider that it may be related to the quasi-periodic oscillation (QPO) of the X-ray flux in low-mass close binaries.  相似文献   

8.
The X-ray quasi-periodic oscillation (QPO) seen in RE J1034+396 is so far unique amongst active galactic nuclei (AGN). Here, we look at another unique feature of RE J1034+396, namely its huge soft X-ray excess, to see if this is related in any way to the detection of the QPO. We show that all potential models considered for the soft energy excess can fit the 0.3–10 keV X-ray spectrum, but the energy dependence of the rapid variability (which is dominated by the QPO) strongly supports a spectral decomposition where the soft excess is from low-temperature Comptonization of the disc emission and remains mostly constant, while the rapid variability is produced by the power-law tail changing in normalization. The presence of the QPO in the tail rather than in the disc is a common feature in black hole binaries (BHBs), but low-temperature Comptonization of the disc spectrum is not generally seen in these systems. The main exception to this is GRS 1915+105, the only BHB which routinely shows super-Eddington luminosities. We speculate that the super-Eddington accretion rates lead to a change in disc structure, and that this also triggers the X-ray QPO.  相似文献   

9.
We lay out the scientific rationale for and present the instrumental requirements of a high‐resolution adaptiveoptics Echelle spectrograph with two full‐Stokes polarimeters for the Large Binocular Telescope (LBT) in Arizona. Magnetic processes just like those seen on the Sun and in the space environment of the Earth are now well recognized in many astrophysical areas. The application to other stars opened up a new field of research that became widely known as the solarstellar connection. Late‐type stars with convective envelopes are all affected by magnetic processes which give rise to a rich variety of phenomena on their surface and are largely responsible for the heating of their outer atmospheres. Magnetic fields are likely to play a crucial role in the accretion process of T‐Tauri stars as well as in the acceleration and collimation of jet‐like flows in young stellar objects (YSOs). Another area is the physics of active galactic nucleii (AGNs) , where the magnetic activity of the accreting black hole is now believed to be responsible for most of the behavior of these objects, including their X‐ray spectrum, their notoriously dramatic variability, and the powerful relativistic jets they produce. Another is the physics of the central engines of cosmic gamma‐ray bursts, the most powerful explosions in the universe, for which the extreme apparent energy release are explained through the collimation of the released energy by magnetic fields. Virtually all the physics of magnetic fields exploited in astrophysics is somehow linked to our understanding of the Sun's and the star's magnetic fields. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
本文给出了改进的一维吸积柱模型,探讨了在大吸积率下吸积柱的结构及物理性质,并理论推导吸积柱内下落物质的温度、密度及速度的变化.计算结果表明,它自上而下可以分为几个部分:冲击区(辐射压减速区)、理想气体压减速区、简并气体压减速区、外流区.作为例证,详细计算了吸积率M≈10~17g/s,极区磁场强度Bm≈10~8T的中子星吸积柱.探讨了吸积柱内的热核反应,认为它可能与低质量X射线双星的低频QPO(准周期振荡)现象有关.  相似文献   

11.
We report on the numerical discovery of quasi-periodic oscillations (QPOs) associated with accretion through a non-axisymmetric magnetic boundary layer in the unstable regime, when two ordered equatorial streams form and rotate synchronously at approximately the angular velocity of the inner disc. The streams hit the star's surface producing hotspots. Rotation of the spots leads to high-frequency QPOs. We performed a number of simulation runs for different magnetospheric sizes from small to tiny, and observed a definite correlation between the inner disc radius and the QPO frequency: the frequency is higher when the magnetosphere is smaller. In the stable regime, a small magnetosphere forms and accretion through the usual funnel streams is observed, and the frequency of the star is expected to dominate the light curve. We performed exploratory investigations of the case in which the magnetosphere becomes negligibly small and the disc interacts with the star through an equatorial belt. We also performed investigation of somewhat larger magnetospheres where one or two ordered tongues may dominate over other chaotic tongues. In application to millisecond pulsars, we obtain QPO frequencies in the range of 350–990 Hz for one spot. The frequency associated with rotation of one spot may dominate if spots are not identical or antipodal. If the spots are similar and antipodal, then the frequencies are twice as high. We show that variation of the accretion rate leads to drift of the QPO peak.  相似文献   

12.
Results of a fractal analysis of the X-ray light curves from accreting black holes in low-mass binary systems are presented for the object GX 339-4 as an example. The fractal dimension of the light curves is shown to be strongly dependent on the presence of quasi-periodic oscillations (QPOs) in the observations. A correlation between the fractal dimension of the light curves and the frequency of the QPO peak has been revealed. A method supplementary to a Fourier analysis that allows the pattern of accretion disk emission as a function of time scales to be investigated is proposed. The results of this analysis can be explained if the accretion disk is separated by the QPO region into two zones with different emission parameters.  相似文献   

13.
We present high-time-resolution multicolour observations of the quiescent soft X-ray transient V404 Cyg obtained with ULTRACAM. Superimposed on the ellipsoidal modulation of the secondary star are large flares on time-scales of a few hours, as well as several distinct rapid flares on time-scales of tens of minutes. The rapid flares, most of which show further variability and unresolved peaks, cover shorter time-scales than those reported in previous observations. The power density spectrum of the 5-s time-resolution data shows a quasi-periodic oscillation (QPO) feature at 0.78 mHz (=21.5 min). Assuming this periodicity represents the Keplerian period at the transition between the thin and advective disc regions, we determine the transition radius. We discuss the possible origins for the QPO feature in the context of the advection-dominated accretion flow model.
We determine the colour of the large flares and find that the i '-band flux per unit frequency interval is larger than that in the g ' band. The colour is consistent with optically thin gas with a temperature of ∼8000 K arising from a region with an equivalent blackbody radius of at least  2 R  , which covers 3 per cent of the surface of the accretion disc. Our timing and spectral analysis results support the idea that the rapid flares (i.e. the QPO feature) most likely arise from regions near the transition radius.  相似文献   

14.
The origin of large scale magnetic fields in astrophysical rotators, and the conversion of gravitational energy into radiation near stars and compact objects via accretion have been subjects of active research for a half century. Magnetohydrodynamic turbulence makes both problems highly nonlinear, so both subjects have benefitted from numerical simulations.However, understanding the key principles and practical modeling of observations warrants testable semi‐analytic mean field theories that distill the essential physics. Mean field dynamo (MFD) theory and alpha‐viscosity accretion disc theory exemplify this pursuit. That the latter is a mean field theory is not always made explicit but the combination of turbulence and global symmetry imply such. The more commonly explicit presentation of assumptions in 20th century textbook MFDT has exposed it to arguably more widespread criticism than incurred by 20th century alpha‐accretion theory despite complementary weaknesses. In the 21st century however, MFDT has experienced a breakthrough with a dynamical saturation theory that consistently agrees with simulations. Such has not yet occurred in accretion disc theory, though progress is emerging. Ironically however, for accretion engines, MFDT and accretion theory are presently two artificially uncoupled pieces of what should be a single coupled theory. Large scale fields and accretion flows are dynamically intertwined because large scale fields likely play a key role in angular momentum transport. I discuss and synthesize aspects of recent progress in MFDT and accretion disc theory to suggest why the two likely conspire in a unified theory (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
In the present communication of our series of papers dealing with the accretion flows in the pseudo-Kerr geometry, we discuss the effects of viscosity on the accretion flow around a rotating black hole. We find the solution topologies and give special attention to the solutions containing shocks. We draw the parameter space where standing shocks are possible and where the shocks could be oscillating and could produce quasi-periodic oscillations (QPOs) of X-rays observed from black hole candidates. In this model, the extreme locations of the shocks give the upper limits of the QPO frequencies  (νQPO)  which could be observed. We show that both the viscosity of the flow and the spin of the black hole a increase the QPO frequency while, as expected, the black hole mass reduces the QPO frequencies. Our major conclusion is that the highest observed frequency gives a strict lower limit of the spin. For instance, a black hole exhibiting  νQPO∼ 400  and  700 Hz  must have the spin parameters of   a > 0.25  and  >0.75  , respectively, provided viscosity of the flow is small. We discuss the implications of our results in the light of observations of QPOs from black hole candidates.  相似文献   

16.
In the resonance model, high‐frequency quasi‐periodic oscillations (QPOs) are supposed to be a consequence of nonlinear resonance between modes of oscillations occurring within the innermost parts of an accretion disk. Several models with a prescribed mode–mode interaction were proposed in order to explain the characteristic properties of the resonance in QPO sources. In this paper, we examine nonlinear oscillations of a system having a quadratic nonlinearity and we show that this case is particularly relevant for QPOs. We present a very convenient way how to study autoparametric resonances of a fully general system using the method of multiple scales. We concentrate to conservative systems and discuss their behavior near the 3:2 parametric resonance. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The accretion disc eclipse mapping method is an astrotomographic inversion technique that makes use of the information contained in eclipse light curves to probe the structure, the spectrum and the time evolution of accretion discs in cataclysmic variables. This paper presents examples of eclipse mapping results that have been key to improve our understanding of accretion physics. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Double peak kHz QPO frequencies in neutron star sources varies in time by a factor of hundreds Hz while in microquasar sources the frequencies are fixed and located at the line ν 2 = 1.5ν 1 in the frequency‐frequency plot. The crucial question in the theory of twin HFQPOs is whether or not those observed in neutron‐star systems are essentially different from those observed in black holes. In black hole systems the twin HFQPOs are known to be in a 3:2 ratio for each source. At first sight, this seems not to be the case for neutron stars. For each individual neutron star, the upper and lower kHz QPO frequencies, ν 2 and ν 1, are linearly correlated, ν 2 = 1 + B , with the slope A < 1.5, i.e., the frequencies definitely are not in a 1.5 ratio. In this contribution we show that when considered jointly on a frequency‐frequency plot, the data for the twin kHz QPO frequencies in several (as opposed to one) neutron stars uniquely pick out a certain preferred frequency ratio that is equal to 1.5 for the six sources examined so far. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We report results from a spectral and timing analysis of M82 X-1, one of the brightest known ultraluminous X-ray sources. Data from a new 105-ks XMM–Newton observation of M82 X-1, performed in 2004 April, and of archival RossiXTE observations are presented. A very soft thermal component is present in the XMM spectrum. Although it is not possible to rule out a residual contamination from the host galaxy, modelling it with a standard accretion disc would imply a black hole (BH) mass of  ≈103 M  . An emission line was also detected at an energy typical for fluorescent Fe emission. The power density spectrum of the XMM observation shows a variable Quasi-Periodic Oscillation (QPO) at frequency of 113 mHz with properties similar to those discovered by Strohmayer and Mushotzky. The QPO was also found in seven archival RXTE observations, that include those analysed by Strohmayer and Mushotzky, and Fiorito and Titarchuk. A comparison of the properties of this QPO with those of the various types of QPOs observed in Galactic black hole candidates strongly suggests an association with the type-C, low-frequency QPOs. Scaling the frequency inversely to the BH mass, the observed QPO frequency range (from 50 to 166 mHz) would yield a BH mass anywhere in the interval few tens to  1000  M  .  相似文献   

20.
Observations of hundreds of supersoft X‐ray sources (SSSs) in external galaxies have shed light on the diversity of the class and on the natures of the sources. SSSs are linked to the physics of Type Ia supernovae and accretion‐induced collapse, ultraluminous X‐ray sources and black holes, the ionization of the interstellar medium, and tidal disruption by supermassive black holes. The class of SSSs has an extension to higher luminosities: ultraluminous SSSs have luminosities above 1039 erg s–1. There is also an extension to higher energies: quasisoft X‐ray sources (QSSs) emit photons with energies above 1 keV, but few or none with energies above 2 keV. Finally, a significant fraction of the SSSs found in external galaxies switch states between observations, becoming either quasisoft or hard. For many systems “supersoft” refers to a temporary state; SSSs are sources, possibly including a variety of fundamentally different system types, that pass through such a state. We review those results derived from extragalactic data and related theoretical work that are most surprising and that suggest directions for future research (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号