首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present high-time-resolution multicolour observations of the quiescent soft X-ray transient V404 Cyg obtained with ULTRACAM. Superimposed on the ellipsoidal modulation of the secondary star are large flares on time-scales of a few hours, as well as several distinct rapid flares on time-scales of tens of minutes. The rapid flares, most of which show further variability and unresolved peaks, cover shorter time-scales than those reported in previous observations. The power density spectrum of the 5-s time-resolution data shows a quasi-periodic oscillation (QPO) feature at 0.78 mHz (=21.5 min). Assuming this periodicity represents the Keplerian period at the transition between the thin and advective disc regions, we determine the transition radius. We discuss the possible origins for the QPO feature in the context of the advection-dominated accretion flow model.
We determine the colour of the large flares and find that the i '-band flux per unit frequency interval is larger than that in the g ' band. The colour is consistent with optically thin gas with a temperature of ∼8000 K arising from a region with an equivalent blackbody radius of at least  2 R  , which covers 3 per cent of the surface of the accretion disc. Our timing and spectral analysis results support the idea that the rapid flares (i.e. the QPO feature) most likely arise from regions near the transition radius.  相似文献   

2.
We present an analysis of X-ray and ultraviolet (UV) data of the dwarf nova VW Hyi that were obtained with XMM–Newton during the quiescent state. The X-ray spectrum indicates the presence of an optically thin plasma in the boundary layer that cools as it settles on to the white dwarf. The plasma has a continuous temperature distribution that is well described by a power law or a cooling flow model with a maximum temperature of 6–8 keV. We estimate from the X-ray spectrum a boundary layer luminosity of  8 × 1030 erg s-1  , which is only 20 per cent of the disc luminosity. The rate of accretion on to the white dwarf is  5 × 10−12 M yr−1  , about half of the rate in the disc. From the high-resolution X-ray spectra, we estimate that the X-ray emitting part of the boundary layer is rotating with a velocity of 540 km s−1, which is close to the rotation velocity of the white dwarf but is significantly smaller than the Keplerian velocity. We detect a 60-s quasi-periodic oscillation of the X-ray flux, which is likely to be due to the rotation of the boundary layer. The X-ray and the UV flux show strong variability on a time-scale of ∼1500 s. We find that the variability in the two bands is correlated and that the X-ray fluctuations are delayed by ∼100 s. The correlation indicates that the variable UV flux is emitted near the transition region between the disc and the boundary layer and that accretion rate fluctuations in this region are propagated to the X-ray emitting part of the boundary layer within ∼100 s. An orbital modulation of the X-ray flux suggests that the inner accretion disc is tilted with respect to the orbital plane. The elemental abundances in the boundary layer are close to their solar values.  相似文献   

3.
The simultaneous presence of a strong quasi-periodic oscillation, of period ∼10 s, in the optical and X-ray light curves of the X-ray transient XTE J1118+480 suggests that a significant fraction of the optical flux originates from the inner part of the accretion flow, where most of the X-rays are produced. We present a model of magnetic flares in an accretion disc corona where thermal cyclo-synchrotron emission contributes significantly to the optical emission, while the X-rays are produced by inverse Compton scattering of the soft photons produced by dissipation in the underlying disc and by the synchrotron process itself. Given the observational constraints, we estimate the values for the coronal temperature, optical depth and magnetic field intensity, as well as the accretion rate for the source. Within our model we predict a correlation between optical and hard X-ray variability and an anticorrelation between optical and soft X-rays. We also expect optical variability on flaring time-scales (∼tens of ms), with a power-density spectrum similar to that observed in the X-ray band. Finally, we use both the available optical/extreme-ultraviolet/X-ray spectral energy distribution and the low-frequency time variability to discuss limits on the inner radius of the optically thick disc.  相似文献   

4.
We report results from a spectral and timing analysis of M82 X-1, one of the brightest known ultraluminous X-ray sources. Data from a new 105-ks XMM–Newton observation of M82 X-1, performed in 2004 April, and of archival RossiXTE observations are presented. A very soft thermal component is present in the XMM spectrum. Although it is not possible to rule out a residual contamination from the host galaxy, modelling it with a standard accretion disc would imply a black hole (BH) mass of  ≈103 M  . An emission line was also detected at an energy typical for fluorescent Fe emission. The power density spectrum of the XMM observation shows a variable Quasi-Periodic Oscillation (QPO) at frequency of 113 mHz with properties similar to those discovered by Strohmayer and Mushotzky. The QPO was also found in seven archival RXTE observations, that include those analysed by Strohmayer and Mushotzky, and Fiorito and Titarchuk. A comparison of the properties of this QPO with those of the various types of QPOs observed in Galactic black hole candidates strongly suggests an association with the type-C, low-frequency QPOs. Scaling the frequency inversely to the BH mass, the observed QPO frequency range (from 50 to 166 mHz) would yield a BH mass anywhere in the interval few tens to  1000  M  .  相似文献   

5.
In this paper we report on further observations of the third and fourth kilohertz quasi-periodic oscillations (QPOs) in the power spectrum of the low-mass X-ray binary (LMXB) 4U 1636−53. These kilohertz QPOs are sidebands to the lower kilohertz QPO. The upper sideband has a frequency  55.5 ± 1.7 Hz  larger than that of the contemporaneously measured lower kilohertz QPO. Such a sideband has now been measured at a significance  >6σ  in the power spectra of three neutron-star LMXBs (4U 1636−53, 1728−34 and 1608−52). We also confirm the presence of a sideband at a frequency ∼55 Hz less than the frequency of the lower kilohertz QPO. The lower sideband is detected at a 3.5σ level only when the lower kilohertz QPO frequency is between 800 and 850 Hz. In that frequency interval, the sidebands are consistent with being symmetric around the lower kilohertz QPO frequency. The upper limit to the rms amplitude of the lower sideband is significantly lower than that of the upper sideband for lower kilohertz QPO frequencies >850 Hz. Symmetric sidebands are unique to 4U 1636−53. This might be explained by the fact that lower kilohertz QPO frequencies as high as 800–850 Hz are rare for 4U 1728−34 and 1608−52. Finally, we also measured a low-frequency QPO at a frequency of ∼43 Hz when the lower kilohertz QPO frequency is between 700 and 850 Hz. A similar low-frequency QPO is present in the power spectra of the other two systems for which a sideband has been observed. We briefly discuss the possibility that the sideband is caused by Lense–Thirring precession.  相似文献   

6.
We report on the numerical discovery of quasi-periodic oscillations (QPOs) associated with accretion through a non-axisymmetric magnetic boundary layer in the unstable regime, when two ordered equatorial streams form and rotate synchronously at approximately the angular velocity of the inner disc. The streams hit the star's surface producing hotspots. Rotation of the spots leads to high-frequency QPOs. We performed a number of simulation runs for different magnetospheric sizes from small to tiny, and observed a definite correlation between the inner disc radius and the QPO frequency: the frequency is higher when the magnetosphere is smaller. In the stable regime, a small magnetosphere forms and accretion through the usual funnel streams is observed, and the frequency of the star is expected to dominate the light curve. We performed exploratory investigations of the case in which the magnetosphere becomes negligibly small and the disc interacts with the star through an equatorial belt. We also performed investigation of somewhat larger magnetospheres where one or two ordered tongues may dominate over other chaotic tongues. In application to millisecond pulsars, we obtain QPO frequencies in the range of 350–990 Hz for one spot. The frequency associated with rotation of one spot may dominate if spots are not identical or antipodal. If the spots are similar and antipodal, then the frequencies are twice as high. We show that variation of the accretion rate leads to drift of the QPO peak.  相似文献   

7.
We present a multiwavelength study of the black hole X-ray binary V404 Cyg in quiescence, focusing upon the spectral energy distribution (SED). Radio, optical, ultraviolet (UV) and X-ray coverage is simultaneous. We supplement the SED with additional non-simultaneous data in the optical through infrared where necessary. The compiled SED is the most complete available for this, the X-ray and radio brightest quiescent black hole system. We find no need for a substantial contribution from accretion light from the near-UV to the near-IR, and in particular the weak UV emission constrains published spectral models for V404 Cyg. We confirm that no plausible companion spectrum and interstellar extinction can fully explain the mid-IR, however, and an infrared (IR) excess from a jet or cool disc appears to be required. The X-ray spectrum is consistent with a  Γ∼ 2  power law as found by all other studies to date. There is no evidence for any variation in the hardness over a range of a factor of 10 in luminosity. The radio flux is consistent with a flat spectrum (in   f ν  ). The break frequency between a flat and optically thin spectrum most likely occurs in the mid or far-IR, but is not strongly constrained by these data. We find the radio to be substantially variable but with no clear correlation with X-ray variability.  相似文献   

8.
We analysed simultaneous archival XMM–Newton and Rossi X-ray Timing Explorer observations of the X-ray binary and black hole candidate Swift J  1753.5−0127  . In a previous analysis of the same data, a soft thermal component was found in the X-ray spectrum, and the presence of an accretion disc extending close to the innermost stable circular orbit was proposed. This is in contrast with the standard picture in which the accretion disc is truncated at large radii in the low/hard state. We tested a number of spectral models and found that several of them fit the observed spectra without the need of a soft disc-like component. This result implies that the classical paradigm of a truncated accretion disc in the low/hard state cannot be ruled out by these data. We further discovered a broad iron emission line between 6 and 7 keV in these data. From fits to the line profile we found an inner disc radius that ranges between ∼6 and 16 gravitational radii, which can be in fact much larger, up to ∼250 gravitational radii, depending on the model used to fit the continuum and the line. We discuss the implications of these results in the context of a fully or partially truncated accretion disc.  相似文献   

9.
We have observed the eclipsing low-mass X-ray binary MS 1603.6+2600 with Chandra for 7 ks. The X-ray spectrum is well fit with a single absorbed power law with an index of ∼2. We find a clear sinusoidal modulation in the X-ray light curve with a period of  1.7 ± 0.2 h  , consistent with the period of 1.85 h found before. However, no (partial) eclipses were found. We argue that if the X-ray flare observed in earlier X-ray observations was a type I X-ray burst, then the source can only be an accretion disc corona source at a distance of ∼11–24 kpc (implying a height above the Galactic disc of ∼8–17 kpc). It has also been proposed in the literature that MS 1603.76+2600 is a dipper at ∼75 kpc. We argue that, in this dipper scenario, the observed optical properties of MS 1603.6+2600 are difficult to reconcile with the optical properties one would expect on the basis of comparisons with other high-inclination, low-mass X-ray binaries, unless the X-ray flare was not a type I X-ray burst. In that case, the source can be a nearby soft X-ray transient accreting at a quiescent rate, as was proposed by Hakala et al., or a high-inclination source at ∼15–20 kpc.  相似文献   

10.
We present a detailed study of the 5-Hz quasi-periodic oscillation (QPO) recently discovered in the bright X-ray transient and black hole candidate (BHC) GRS     (Borozdin & Trudolyubov) during a Rossi X-ray Timing Explorer observation taken on 1996 March 31. In total 6.6 ksec of on-source data were obtained, divided in two data sets of 3.4 and 3.2 ksec which were separated by ∼2.6 ksec. The 5-Hz QPO was only present during the second data set. The QPO increased in strength from below 2 per cent rms amplitude for photon energies below 4 keV to ∼5 per cent rms amplitude for energies above 10 keV. The soft QPO photons (below 5 keV) lagged the hard ones (above 10 keV) by almost 1.5 rad. Besides the QPO fundamental, its first overtone was detected. The strength of the overtone increased with photon energy (from < 2 per cent rms below 5 keV to ∼8 per cent rms above 10 keV). Although limited statistics did not allow for an accurate determination of the lags of the first overtone, indications are that also for this QPO the soft photons lagged the hard ones. When the 5-Hz QPO was not detected (i.e., during the first part of the observation), a broad noise component was found for photon energies below 10 keV but it became almost a true QPO (with a Q value of ∼1.9) above that energy, with a frequency of ∼3 Hz. Its hard photons preceded the soft ones in a way reminiscent of the 5-Hz QPO, strongly suggesting that both features are physically related. We discuss our finding in the framework of low-frequency QPOs and their properties in BHCs.  相似文献   

11.
We use data from the Rossi X-ray Timing Explorer to search for harmonics and sidebands of the two simultaneous kilohertz quasi-periodic oscillations (kHz QPOs) in Sco X-1. We do not detect any of these harmonics or sidebands, with 95 per cent confidence upper limits to their power between ∼1 and ∼10 per cent of the power of the upper kHz QPO. The oscillations produced at these frequencies may be attenuated in a scattering corona around the neutron star. We find that upper limits to the unattenuated power of some of the strongest theoretically predicted harmonics and sidebands are as low as ∼2 per cent of the unattenuated power of the high-frequency QPO in Sco X-1.  相似文献   

12.
We have produced the colour–colour diagram of all the observations of 4U 1728–34 available in the Rossi X-ray Timing Explorer public archive (from 1996 to 2002) and found observations filling in a previously reported 'gap' between the island and the banana X-ray states. We have made timing analysis of these gap observations and found, in one observation, two simultaneous kHz quasi-periodic oscillations (QPOs). The timing parameters of these kHz QPOs fit in the overall trend of the source. The 'lower' kHz QPO has a centroid frequency of ∼308 Hz. This is the lowest 'lower' kHz QPO frequency ever observed in 4U 1728–34. The peak frequency separation between the 'upper' and the 'lower' kHz QPO is  Δν= 274 ± 11 Hz  , significantly smaller than the constant value of  Δν∼ 350 Hz  found when the 'lower' kHz QPO frequency is between ∼500 and 800 Hz. This is the first indication in this source for a significant decrease of kHz QPO peak separation towards low frequencies. We compare the result briefly to theoretical models for kHz QPO production.  相似文献   

13.
Gas falling quasi-spherically on to a black hole forms an inner accretion disc if its specific angular momentum l exceeds l ∗∼ r g c , where r g is the Schwarzschild radius. The standard disc model assumes l ≫ l ∗. We argue that, in many black hole sources, accretion flows have angular momenta just above the threshold for disc formation, l ≳ l ∗, and assess the accretion mechanism in this regime. In a range l ∗< l < l cr, a small-scale disc forms in which gas spirals fast into the black hole without any help from horizontal viscous stresses. Such an 'inviscid' disc, however, interacts inelastically with the feeding infall. The disc–infall interaction determines the dynamics and luminosity of the accretion flow. The inviscid disc radius can be as large as 14 r g, and the energy release peaks at 2 r g. The disc emits a Comptonized X-ray spectrum with a break at ∼100 keV. This accretion regime is likely to take place in wind-fed X-ray binaries and is also possible in active galactic nuclei.  相似文献   

14.
We have undertaken an extensive study of X-ray data from the accreting millisecond pulsar XTE J1751 − 305 observed by RXTE and XMM–Newton during its 2002 outburst. In all aspects this source is similar to the prototypical millisecond pulsar SAX J1808.4 − 3658, except for the higher peak luminosity of 13 per cent of Eddington, and the optical depth of the hard X-ray source, which is larger by a factor ∼2. Its broad-band X-ray spectrum can be modelled by three components. We interpret the two soft components as thermal emission from a colder  ( kT ∼ 0.6 keV)  accretion disc and a hotter (∼1 keV) spot on the neutron star surface. We interpret the hard component as thermal Comptonization in plasma of temperature ∼40 keV and optical depth ∼1.5 in a slab geometry. The plasma is heated by the accretion shock as the material collimated by the magnetic field impacts on to the surface. The seed photons for Comptonization are provided by the hotspot, not by the disc. The Compton reflection is weak and the disc is probably truncated into an optically thin flow above the magnetospheric radius. Rotation of the emission region with the star creates an almost sinusoidal pulse profile with an rms amplitude of 3.3 per cent. The energy-dependent soft phase lags can be modelled by two pulsating components shifted in phase, which is naturally explained by a different character of emission of the optically thick spot and optically thin shock combined with the action of the Doppler boosting. The observed variability amplitude constrains the hotspot to lie within 3°–4° of the rotational pole. We estimate the inner radius of the optically thick accreting disc to be about 40 km. In that case, the absence of emission from the antipodal spot, which can be blocked by the accretion disc, gives the inclination of the system as ≳70°.  相似文献   

15.
We present the most complete multiwavelength coverage of any dwarf nova outburst: simultaneous optical, Extreme Ultraviolet Explorer and Rossi X-ray Timing Explorer observations of SS Cygni throughout a narrow asymmetric outburst. Our data show that the high-energy outburst begins in the X-ray waveband 0.9–1.4 d after the beginning of the optical rise and 0.6 d before the extreme-ultraviolet rise. The X-ray flux drops suddenly, immediately before the extreme-ultraviolet flux rise, supporting the view that both components arise in the boundary layer between the accretion disc and white dwarf surface. The early rise of the X-ray flux shows that the propagation time of the outburst heating wave may have been previously overestimated.
The transitions between X-ray and extreme-ultraviolet dominated emission are accompanied by intense variability in the X-ray flux, with time-scales of minutes. As detailed by Mauche & Robinson, dwarf nova oscillations are detected throughout the extreme-ultraviolet outburst, but we find they are absent from the X-ray light curve.
X-ray and extreme-ultraviolet luminosities imply accretion rates of  3 × 1015 g s−1  in quiescence,  1 × 1016 g s−1  when the boundary layer becomes optically thick, and  ∼1018 g s−1  at the peak of the outburst. The quiescent accretion rate is two and a half orders of magnitude higher than predicted by the standard disc instability model, and we suggest this may be because the inner accretion disc in SS Cyg is in a permanent outburst state.  相似文献   

16.
Accreting black holes show a complex and diverse behaviour in their soft spectral states. Although these spectra are dominated by a soft, thermal component which almost certainly arises from an accretion disc, there is also a hard X-ray tail indicating that some fraction of the accretion power is instead dissipated in hot, optically thin coronal material. During such states, best observed in the early outburst of soft X-ray transients, the ratio of power dissipated in the hot corona to that in the disc can vary from ∼ 0 (pure disc accretion) to ∼ 1 (equal power in each). Here we present results of spectral analyses of a number of sources, demonstrating the presence of complex features in their energy spectra. Our main findings are: (1) the soft components are not properly described by a thermal emission from accretion discs: they are appreciably broader than can be described by disc blackbody models even including relativistic effects, and (2) the spectral features near     commonly seen in such spectra can be well described by reprocessing of hard X-rays by optically thick, highly ionized, relativistically moving plasma.  相似文献   

17.
We study the soft X-ray variability of Cygnus X-3. By combining data from the All-Sky Monitor and Proportional Counter Array instruments on the RXTE satellite with EXOSAT /Medium Energy (ME) detector observations, we are able to analyse the power density spectrum (PDS) of the source from 10−9 to 0.1 Hz, thus covering time-scales from seconds to years. As the data on the longer time-scales are unevenly sampled, we combine traditional power spectral techniques with simulations to analyse the variability in this range. The PDS at higher frequencies  (≳10−3 Hz)  are for the first time compared for all states of this source. We find that it is for all states well described by a power law, with index  ∼−2  in the soft states and a tendency for a less steep power law in the hard state. At longer time-scales, we study the effect of the state transitions on the PDS, and find that the variability below  ∼10−7 Hz  is dominated by the transitions. Furthermore, we find no correlation between the length of a high/soft-state episode and the time since the previous high/soft state. On intermediate time-scales, we find evidence for a break in the PDS at time-scales of the order of the orbital period. This may be interpreted as evidence for the existence of a tidal resonance in the accretion disc around the compact object, and constraining the mass ratio to   M 2/ M 1≲ 0.3  .  相似文献   

18.
The X-ray quasi-periodic oscillation (QPO) seen in RE J1034+396 is so far unique amongst active galactic nuclei (AGN). Here, we look at another unique feature of RE J1034+396, namely its huge soft X-ray excess, to see if this is related in any way to the detection of the QPO. We show that all potential models considered for the soft energy excess can fit the 0.3–10 keV X-ray spectrum, but the energy dependence of the rapid variability (which is dominated by the QPO) strongly supports a spectral decomposition where the soft excess is from low-temperature Comptonization of the disc emission and remains mostly constant, while the rapid variability is produced by the power-law tail changing in normalization. The presence of the QPO in the tail rather than in the disc is a common feature in black hole binaries (BHBs), but low-temperature Comptonization of the disc spectrum is not generally seen in these systems. The main exception to this is GRS 1915+105, the only BHB which routinely shows super-Eddington luminosities. We speculate that the super-Eddington accretion rates lead to a change in disc structure, and that this also triggers the X-ray QPO.  相似文献   

19.
We present X-ray/ γ -ray spectra of Cyg X-1 observed during the transition from the hard to the soft state and in the soft state by ASCA , RXTE and CGRO /OSSE in 1996 May and June. The spectra consist of a dominant soft component below ∼2 keV and a power-law-like continuum extending to at least ∼800 keV. We interpret them as emission from an optically thick, cold accretion disc and from an optically thin, non-thermal corona above the disc. A fraction f ≳0.5 of total available power is dissipated in the corona.
We model the soft component by multicolour blackbody disc emission taking into account the torque-free inner-boundary condition. If the disc extends down to the minimum stable orbit, the ASCA RXTE data yield the most probable black hole mass of M X≈10 M and an accretion rate,     , locating Cyg X-1 in the soft state in the upper part of the stable, gas-pressure-dominated, accretion-disc solution branch.
The spectrum of the corona is well modelled by repeated Compton scattering of seed photons from the disc off electrons with a hybrid, thermal/non-thermal distribution. The electron distribution can be characterized by a Maxwellian with an equilibrium temperature of kT e∼30–50 keV, a Thomson optical depth of τ ∼0.3 and a quasi-power-law tail. The compactness of the corona is 2≲ℓh≲7, and a presence of a significant population of electron–positron pairs is ruled out.
We find strong signatures of Compton reflection from a cold and ionized medium, presumably an accretion disc, with an apparent reflector solid angle, Ω/2π∼0.5–0.7. The reflected continuum is accompanied by a broad iron K α line.  相似文献   

20.
We develop a simple, time-dependent Comptonization model to probe the origins of spectral variability in accreting neutron star systems. In the model, soft 'seed photons' are injected into a corona of hot electrons, where they are Compton upscattered before escaping as hard X-rays. The model describes how the hard X-ray spectrum varies when the properties of either the soft photon source or the Comptonizing medium undergo small oscillations. Observations of the resulting spectral modulations can determine whether the variability is due to (i) oscillations in the injection of seed photons, (ii) oscillations in the coronal electron density, or (iii) oscillations in the coronal energy dissipation rate. Identifying the origin of spectral variability should help clarify how the corona operates and its relation to the accretion disc. It will also help in finding the mechanisms underlying the various quasi-periodic oscillations (QPOs) observed in the X-ray outputs of many accreting neutron star and black hole systems. As a sample application of our model, we analyse a kilohertz QPO observed in the atoll source 4U 1608–52. We find that the QPO is driven predominantly by an oscillation in the electron density of the Comptonizing gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号