首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
长江三角洲城市发展与人体舒适度的关系   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究城市人体舒适度变化和城市化进程的关系,明确影响人体舒适度的主要城市因子,该文首先利用1981—2010年长江三角洲地区上海、南京、杭州、合肥的气象数据,研究气候舒适度及其变化趋势,并研究了影响人体舒适度的主要城市因子。研究结果表明:上海、南京、杭州、合肥冷不舒适日数均呈减少趋势,热不舒适日数均呈增加趋势,舒适日数变化不大。城市化综合水平与冷不舒适日数倾向率之间达到显著相关水平,与热不舒适日数倾向率之间相关不显著。影响长江三角洲地区人体舒适度的最主要城市因子为总人口数量,其次为建成区面积、总用电量、公共交通实有车辆、人均绿地面积等。  相似文献   

2.
上海气温变化及城市化影响初步分析   总被引:7,自引:1,他引:6  
为研究在全球变化背景下上海市区气温变化规律和城市化进程对其影响,分析了上海市区气温对全球变暖的响应,对比了市区和郊区气温在不同气候背景下的变化趋势,采用与郊区台站对比法分析了上海市区气温城市化效应,研究了城市化进程与气温各分量长期变化趋势之间的关系,将高空与地面观测资料相结合,定量估算了城市化效应对平均气温的贡献,初步讨论了气温的城市化效应成因。研究结果表明:1873~2004年上海市区年平均气温的长期变化趋势为1.31 ℃/(100 a),在1921~1948年和1979~2004年两个时期增温明显,其中第二段增温强于第一段;与郊区站点相比,市区在降温期内降温最小,增温期内升温幅度最大;城市发展导致市区和郊区气温有显著差别且温差逐年加大,其中平均气温和最低气温在秋季的差别最大,最高气温市区和郊区之间差别在夏季最大;城市化进程加快了地面气温升高的速率,其中以最低气温最为明显;在1980年代城市化效应使上海市区年平均温度平均升高0.4 ℃,在1990年代平均升高1.1 ℃。  相似文献   

3.
ABSTRACT

This article explores changing water (in)securities in a context of urbanization and climate change in the peri-urban spaces of four South-Asian cities: Khulna (Bangladesh), Gurugram and Hyderabad (India), and Kathmandu (Nepal). As awareness of water challenges like intensifying use, deteriorating quality and climate change is growing, water security gets more scientific and policy attention. However, in peri-urban areas, the dynamic zones between the urban and the rural, it remains under-researched, despite the specific characteristics of these spaces: intensifying flows of goods, resources, people, and technologies; diversifying uses of, and growing pressures on land and water; and complex and often contradictory governance and jurisdictional institutions. This article analyses local experiences of water (in-)security, conflict and cooperation in relation to existing policies. It uses insights from the analysis of the case studies as a point of departure for a critical reflection on whether a ‘community resilience’ discourse contributes to better understanding these cases of water insecurity and conflict, and to better policy solutions. The authors argue that a community resilience focus risks neglecting important insights about how peri-urban water insecurity problems are experienced by peri-urban populations and produced or reproduced in specific socio-economic, political and policy contexts. Unless supported by in-depth hydro-social research, such a focus may depoliticize basically political questions of water (re) allocation, prioritization, and access for marginalized groups. Therefore, the authors plead for more critical awareness among researchers and policy-makers of the consequences of using a ‘community resilience’ discourse for making sense of peri-urban water (in-)security.

Key policy insights
  • There is an urgent need for more (critical) policy and scientific attention to peri-urban water insecurity, conflict, and climate change.

  • Although a changing climate will likely play a role, more attention is needed to how water insecurities and vulnerabilities in South Asia are socially produced.

  • Researchers and policy-makers should avoid using depoliticized (community) resilience approaches for basically socio-political problems.

  相似文献   

4.
With the development of urbanization, whether precipitation characteristics in Guangdong Province, China, from 1981 to 2015 have changed are investigated using rain gauge data from 76 stations. These characteristics include annual precipitation, rainfall frequency, intense rainfall(defined as hourly precipitation ≥ 20 mm), light precipitation(defined as hourly precipitation ≤ 2.5 mm), and extreme rainfall(defined as hourly rainfall exceeding the 99.9 th percentile of the hourly rainfall distribution). During these 35 years, the annual precipitation shows an increasing trend in the urban areas.While rainfall frequency and light precipitation have a decreasing trend, intense rainfall frequency shows an increasing trend. The heavy and extreme rainfall frequency both exhibit an increasing trend in the Pearl River Delta region, where urbanization is the most significant. These trends in both the warm seasons(May-October) and during the pre-flood season(April-June) appear to be more significant. On the contrary, the annual precipitation amount in rural areas has a decreasing trend. Although the heavy and extreme precipitation also show an increasing trend, it is not as strong and significant as that in the urban areas. During periods in which a tropical cyclone makes landfall along the South China Coast, the rainfall in urban areas has been consistently more than that in surrounding areas. The precipitation in the urban areas and to their west is higher after 1995, when the urbanization accelerated. These results suggest that urbanization has a significant impact on the precipitation characteristics of Guangdong Province.  相似文献   

5.
Although ‘peri-urban’ and ‘rur-urban’ growth patterns are now prominent in previously rural areas of Latin America, there has been little exploration of the implication of these patterns for social vulnerability to hazards and adaptive capacity for hazard management. A case study of flooding in the Upper Lerma River Valley, Mexico, illustrates how livelihood and land use change in these peri-urban spaces have altered residents’ perceptions of risk and loss, while public officials are adhering to a traditional sectoral and structural interpretation of flooding as an agricultural problem, managed by agricultural and water agencies. The current system of treating flooding as an agricultural problem, managed by agricultural and water agencies, does not address the increased role of urbanization as a driver of flooding and water risk in the valley. The resulting mismatch in policy potentially exacerbates regional vulnerability in face of rising flood losses. Enhancing adaptive capacity in this context requires a new vision of the populations and communities of the region as an integrated system, supported by institutions that facilitate cross-scale and intersectoral planning.  相似文献   

6.
城市效应对登陆热带气旋妮妲降水影响的模拟   总被引:2,自引:2,他引:0       下载免费PDF全文
运用中尺度数值模式WRF耦合城市冠层模式(urban canopy model,UCM),对2016年登陆深圳的热带气旋妮妲(1604)(以下简称妮妲)进行数值模拟。高分辨率数值模拟较好地再现了妮妲登陆前后的强度、路径和累积降水。利用城市化过程当中城市冠层对热带气旋降水的敏感性试验结果表明:城市冠层会减弱对流运动和水汽的输送,导致热带气旋登陆后珠江口城市群区域累积降水量略减少。应用最新的土地利用资料进行的城市下垫面敏感性试验结果表明:由于城市下垫面粗糙度增加,造成登陆地面风的减速,强度减弱,潜热通量与2 m高度比湿相应减小;城市下垫面粗糙度增加会加强该区域垂直对流运动以及不稳定能量增加,有利于降水增强,尤其在城市化下垫面处,热带气旋登陆后6 h累积降水增加量最大可超过20 mm。总体而言,对登陆热带气旋降水而言,耦合城市冠层使城市区域热带气旋降水减少,但在数值模拟中城市冠层影响作用不显著。城市化下垫面对登陆热带气旋暴雨的增幅作用明显,在登陆热带气旋降水预报中应重视。  相似文献   

7.
以高山站为背景研究城市化对气温变化趋势的影响   总被引:4,自引:0,他引:4  
本文基于1957~2005年的逐日气象资料,对比分析了中国东部7组高山气象站和山下附近的城市气象站年 与四季气温变化趋势.在此基础上,利用高山站作为气候变化背景场来分析城市化对平均气温、最高气温、最低气温变化趋势影响的性质和程度,及其对气温变化非对称性的影响.结果表明:平均气温和最低气温变化趋势城市站多比高山站大,而最高气温变化趋势高山站多比城市站大;城市站最低气温变化趋势均大于最高气温变化趋势,具有明显的非对称性现象,而高山站这种表现十分微弱.城市站气温变化受到明显的城市化影响,对于平均气温和最低气温以正影响为主,而对于最高气温为负影响为主,说明城市化对气温变化的影响也存在非对称性.城市化影响的非对称性是气温变化非对称性形成的主要因素.  相似文献   

8.
香港城市与郊区气候差异分析   总被引:6,自引:1,他引:5  
香港天文台近年的研究显示,香港的气温上升是由温室效应增强所导致的全球变暖及本地高密度城市发展的共同影响.除温度外,香港因受城市化影响,相对湿度在城市与郊区之间亦有很明显的差异.选取1989-2006年较能代表香港市区与郊区情况的气象站每小时气温和相对湿度数据,初步比较了香港市郊温度和相对湿度差异的日变化和季节变化,并试图分析这些差异变化与城市化影响的关系.结果显示郊区的气温变化幅度比市区大、变化也较突然,市区晚间至清晨气温较郊区为高;日间情况大致逆转,但气温差别幅度不及晚间.一年之中,城市化效应在冬季最为显著,春季则最不明显.市郊相对湿度的差异同样很明显.晚间至清晨市区相对湿度较郊区为低,日间相反.  相似文献   

9.
利用1981-2010年安徽省61个站的逐日风速资料,结合卫星遥感台站分类方法,统计分析了城市化进程对年、季节平均风速、最大风速和小风日数的影响和贡献。结果表明:(1) 近30年安徽省年、季节平均风速和最大风速呈显著减少趋势,小风日数呈显著增加趋势。城市站的变化速率明显大于乡村站,郊区站基本介于二者之间。(2) 2000年开始安徽省城市化进程加快,导致城市站与乡村站平均风速及小风日数距平的差异有明显增大趋势。(3) 城市站与乡村站年平均风速的趋势系数之差为-0.10 (m/s) /10a,城市化对年平均风速减弱的贡献率为40.0%,春季更明显;城市站与乡村站年小风日数的趋势系数之差为15.58 d/10a,城市化对年小风日数增多的贡献率为46.9%,秋、冬季更明显;城市化对年最大风速的影响不明显。  相似文献   

10.
Impact of land use changes on surface warming in China   总被引:29,自引:1,他引:28  
Land use changes such as urbanization, agriculture, pasturing, deforestation, desertification and irrigation can change the land surface heat flux directly, and also change the atmospheric circulation indirectly, and therefore affect the local temperature. But it is difficult to separate their effects from climate trends such as greenhouse-gas effects. Comparing the decadal trends of the observation station data with those of the NCEP/NCAR Reanalysis (NNR) data provides a good method to separate the effects because the NNR is insensitive to land surface changes. The effects of urbanization and other land use changes over China are estimated by using the difference between the station and the NNR surface temperature trends. Our results show that urbanization and other land use changes may contribute to the observed 0.12℃ (10 yr)- 1 increase for daily mean surface temperature, and the 0.20℃ (10 yr)- 1 and 0.03℃ (10 yr)-1 increases for the daily minimum and maximum surface temperatures, respectively. The urban heat island effect and the effects of other land-use changes mayalso play an important role in the diurnal temperature range change. The spatial pattern of the differences in trends shows a marked heterogeneity.The land surface degradation such as deforestation and desertification due to human activities over northern China, and rapidly-developed urbanization over southern China, may have mostly contributed to the increases at stations north of about 38°N and in Southeast China, respectively. Furthermore, the vegetation cover increase due to irrigation and fertilization may have contributed to the decreasing trend of surface temperature over the lower Yellow River Basin. The study illustrates the possible impacts of land use changes on surface temperature over China.  相似文献   

11.
An urbanization bomb? Population growth and social disorder in cities   总被引:1,自引:0,他引:1  
For the first time in history, the majority of the world population now lives in cities. Global urbanization will continue at high speed; the world's urban population is projected to increase by more than 3 billion people between 2010 and 2050. Some of this increase will be the result of high urban fertility rates and reclassification of rural land into urban areas, but a significant portion of future urbanization will be caused by rural-to-urban migration. This migration is expected to be particularly prevalent in countries and regions most affected by the changing climate. While urban populations generally enjoy a higher quality of life, many cities in the developing world have large slums with populations that are largely excluded from access to resources, jobs, and public services. In the environmental security literature, great rural resource scarcity, causing rural to urban migration, is seen as an important source of violent conflict. This study investigates how population growth affects patterns of public unrest in urban centers within the context of crucial intervening factors like democracy, poverty, economic shocks. It utilizes a newly collected event dataset of urban social disturbance covering 55 major cities in Asia and Sub-Saharan Africa since 1960. The empirical analysis provides little support for the notion that high and increasing urban population pressure leads to a higher risk or frequency of social disorder. Instead, we find that urban disorder is primarily associated with a lack of consistent political institutions, economic shocks, and ongoing civil conflict.  相似文献   

12.
Determining whether air temperatures recorded at meteorological stations have been contaminated by the urbanization process is still a controversial issue at the global scale. With support of historical remote sensing data, this study examined the impacts of urban expansion on the trends of air temperature at 69 meteorological stations in Beijing, Tianjin, and Hebei Province over the last three decades. There were significant positive relations between the two factors at all stations. Stronger warming was detected at the meteorological stations that experienced greater urbanization, i.e., those with a higher urbanization rate. While the total urban area affects the absolute temperature values, the change of the urban area (urbanization rate) likely affects the temperature trend. Increases of approximately 10% in urban area around the meteorological stations likely contributed to the 0.13℃ rise in air temperature records in addition to regional climate warming. This study also provides a new approach to selecting reference stations based on remotely sensed urban fractions. Generally, the urbanization-induced warming contributed to approximately 44.1% of the overall warming trends in the plain region of study area during the past 30 years, and the regional climate warming was 0.30℃ (10 yr)-1 in the last three decades.  相似文献   

13.
As the majority of the world’s population is living in urban environments, there is growing interest in studying local urban climates. In this paper, for the first time, the long-term trends (31–162 years) of temperature change have been analyzed for the Greater Toronto Area (GTA). Annual and seasonal time series for a number of urban, suburban, and rural weather stations are considered. Non-parametric statistical techniques such as Mann–Kendall test and Theil-Sen slope estimation are used primarily for the assessing of the significance and detection of trends, and the sequential Mann test is used to detect any abrupt climate change. Statistically significant trends for annual mean and minimum temperatures are detected for almost all stations in the GTA. Winter is found to be the most coherent season contributing substantially to the increase in annual minimum temperature. The analyses of the abrupt changes in temperature suggest that the beginning of the increasing trend in Toronto started after the 1920s and then continued to increase to the 1960s. For all stations, there is a significant increase of annual and seasonal (particularly winter) temperatures after the 1980s. In terms of the linkage between urbanization and spatiotemporal thermal patterns, significant linear trends in annual mean and minimum temperature are detected for the period of 1878–1978 for the urban station, Toronto, while for the rural counterparts, the trends are not significant. Also, for all stations in the GTA that are situated in all directions except south of Toronto, substantial temperature change is detected for the periods of 1970–2000 and 1989–2000. It is concluded that the urbanization in the GTA has significantly contributed to the increase of the annual mean temperatures during the past three decades. In addition to urbanization, the influence of local climate, topography, and larger scale warming are incorporated in the analysis of the trends.  相似文献   

14.
While the land-surface temperature (LST) observed at meteorological stations has significantly increased over the previous few decades, it is still unclear to what extent urbanization has affected these positive trends. Based on the LST data recorded at an urban station in Shijiazhuang in North China, and two rural meteorological stations, the effect of urbanization at the Shijiazhuang station for the period 1965–2012 is examined. We find, (1) a statistically-significant linear trend in annual mean urban–rural LST difference of \(0.27\,^{\circ }\hbox {C}\) \(\hbox {(10 year)}^{-1}\), with an urbanization contribution of 100% indicating that the increase in the annual mean LST at the urban station is entirely caused by urbanization. The urbanization effects in spring, summer and autumn on the trends of mean LST are also significant; (2) the urbanization effect is small for time series of the annual mean minimum LST, and statistically marginal for the trend in annual mean maximum LST [\(0.19\,^{\circ }\hbox {C}\,\hbox {(10 year)}^{-1}\)]; (3) the urbanization effect on the annual mean diurnal LST range (\(\Delta {LST}\)) at the urban station is a strongly significant trend of \(0.23\,^{\circ }\hbox {C (10\,year)}^{-1}\), with an urbanization contribution of 21%. The urbanization effects on trends in the spring and autumn mean \(\Delta {LST}\) are also larger and more significant than for the other seasons; (4) the urbanization effects on the long-term LST trends are remarkably different from those on the near-surface air temperature at the same urban station. Nonetheless, the significant warming of the urban boundary layer is expected to affect the urban environment and ecosystems. However, the problem of data representativeness at an urban station for the monitoring and investigation of large-scale climate change remains.  相似文献   

15.
城市气候效应研究进展   总被引:4,自引:0,他引:4  
城市是人类社会发展的必然产物.随着城市的快速发展,城市气候效应凸显,并对社会经济可持续发展和人体健康等造成影响.基于国内外已有的研究成果,综述了城市气候效应,包括城市热岛效应、雨岛效应、混浊岛效应、于岛效应和雷暴岛效应的研究历史、现状及其与城市化、天气气候变化的相互关系,并对未来城市气候效应的研究方向及技术方法进行了展望.  相似文献   

16.
Many previous studies have focused on the impacts of urbanization on regional mean temperatures. Relatively few have analyzed changes in extreme temperatures. Here, we examine the impact of urbanization on extreme warmest night temperatures from 33 stations in the Bohai area between 1958 and 2009. We compute the Generalized Extreme Value(GEV) distribution of extreme warmest night temperatures and analyze long-term variations in its characteristic parameters. A new classification method based on the factor analysis of changes in extreme night temperatures is developed to detect the efects of urbanization in diferent cities. Of the three parameters that characterize the GEV distribution, the position parameter is the most representative of long-term changes in extreme warmest night temperatures. During the period of rapid urbanization(i.e., after 1978), all three parameters of the GEV distribution are larger for the urban station group than for the reference station group, so are the magnitudes of their variations, and the urban areas have been experiencing higher extreme warmest night temperatures with larger variability. Diferent types of cities in the Bohai area have all experienced an urban heat island efect, with an average urbanization efect of approximately 0.3 per decade.  相似文献   

17.
Projections of greenhouse gas (GHG) emissions are critical to enable a better understanding and anticipation of future climate change under different socio-economic conditions and mitigation strategies. The climate projections and scenarios assessed by the Intergovernmental Panel on Climate Change, following the Shared Socioeconomic Pathway (SSP)-Representative Concentration Pathway (RCP) framework, have provided a rich understanding of the constraints and opportunities for policy action. However, the current emissions scenarios lack an explicit treatment of urban emissions within the global context. Given the pace and scale of urbanization, with global urban populations expected to increase from about 4.4 billion today to about 7 billion by 2050, there is an urgent need to fill this knowledge gap. Here, we estimate the share of global GHG emissions driven by urban areas from 1990 to 2100 based on the SSP-RCP framework. The urban consumption-based GHG emissions are presented in five regional aggregates and based on a combination of the urban population share, 2015 urban per capita CO2eq carbon footprint, SSP-based national CO2eq emissions, and recent analysis of urban per capita CO2eq trends. We find that urban areas account for the majority of global GHG emissions in 2015 (61.8%). Moreover, the urban share of global GHG emissions progressively increases into the future, exceeding 80% in some scenarios by the end of the century. The combined urban areas in Asia and Developing Pacific, and Developed Countries account for 65.0% to 73.3% of cumulative urban consumption-based emissions between 2020 and 2100 across the scenarios. Given these dominant roles, we describe the implications for potential urban mitigation in each of the scenario narratives in order to meet the goal of climate neutrality within this century.  相似文献   

18.
The debate over whether urbanization and related socioeconomic developments affect large-scale surface climate trends is stalemated with incommensurable arguments. Each side can appeal to supporting evidence based on statistical models that do not overlap, yielding inferences that merely conflict but do not refute one another. I argue that such debates are only be resolved in an encompassing framework, in which both types of results can be demonstrated as restricted forms of the same statistical model, and the restrictions can be tested. The issues under debate make such data sets challenging to construct, but I give two illustrative examples. First, insignificant differences in warming trends in urban temperature data during windy and calm conditions are shown in a restricted model whose general form shows temperature data to be strongly affected by local population growth. Second, an apparent equivalence between trends in a data set stratified by a static measure of urbanization is shown to be a restricted finding in a model whose general form indicates significant influence of local socioeconomic development on temperatures.  相似文献   

19.
Although previous studies show that urbanization contributes to less than 10 % of the long-term regional total warming trend of mean surface air temperature in northeast China (Li et al. 2010), the urban heat island (UHI) impact on extreme temperatures could be more significant. This paper examines the urbanization impact on extreme winter minimum temperatures from 33 stations in North China during the period of 1957–2010. We use the Generalized Extreme Value (GEV) distribution to analyze the distribution of extreme minimum temperatures and the long-term variations of the three distributional characteristics parameters. Results suggest that among the three distribution parameters, the position parameter is the most representative in terms of the long-term extreme minimum temperature change. A new classification method based on the intercommunity (factors analysis method) of the temperature change is developed to detect the urbanization effect on winter extreme minimum temperatures in different cities. During the period of rapid urbanization (after 1980), the magnitude of variations of the three distribution parameters for the urban station group is larger than that for the reference station group, indicating a higher chance of occurrence of warmer weather and a larger fluctuation of temperatures. Among different types of cities, the three parameters of extreme minimum temperature distribution of the urban station group are, without exception, higher than those of the reference station group. The urbanization of different types of cities all show a warming effect, with small-size cities have the most evident effects on extreme minimum temperatures.  相似文献   

20.
The new scenario process for climate change research includes the creation of Shared Socioeconomic Pathways (SSPs) describing alternative societal development trends over the coming decades. Urbanization is a key aspect of development that is relevant to studies of mitigation, adaptation, and impacts. Incorporating urbanization into the SSPs requires a consistent set of global urbanization projections that cover long time horizons and span a full range of uncertainty. Existing urbanization projections do not meet these needs, in particular providing only a single scenario over the next few decades, a period during which urbanization is likely to be highly dynamic in many countries. We present here a new, long-term, global set of urbanization projections at country level that cover a plausible range of uncertainty. We create SSP-specific projections by choosing urbanization outcomes consistent with each SSP narrative. Results show that the world continues to urbanize in each of the SSPs but outcomes differ widely across them, with urbanization reaching 60%, 79%, and 92% by the end of century in SSP3, SSP2, and SSP1/SSP4/SSP5, respectively. The degree of convergence in urbanization across countries also differs substantially, with largely convergent outcomes by the end of the century in SSP1 and SSP5 and persistent diversity in SSP3. This set of global, country-specific projections produces urbanization pathways that are typical of regions in different stages of urbanization and development levels, and can be extended to further elaborate assumptions about the styles of urban growth and spatial distributions of urban people and land cover occurring in each SSP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号