首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This paper is based on statistical analysis of hourly tide measurements for some 285 equivalent full years from the stations of Weymouth, Bournemouth, Portsmouth, Newhaven, Dover and Sheerness in the UK, and of Cherbourg, Le Havre, Dieppe, Boulogne, Calais and Dunkirk in France. For each tidal value, surge heights have been determined and correlated with hourly or three-hourly wind and air pressure data from nearby meteorological stations. Major surges in the area are generally produced by storms associated with wind from north-west or south-west that tend to push oceanic water into the Channel. Recent medium-term climate evolution does not seem to increase the flooding risk at French stations, where surge-related winds tend to decrease in frequency and speed (Cherbourg, Dieppe and Boulogne) or show little change (Le Havre). However, the long-term risk of flooding will increase through the loss in land elevation due to a continuation of the local relative sea-level rise, especially if this effect will be enhanced by an acceleration in the global sea-level rise predicted by climatic models. The northern side of the Channel (Weymouth, Bournemouth and Portsmouth) is mainly exposed to southerly winds that show variable trends. It is also apparently affected by strong subsidence trends during the last two decades. If lasting, such trends can only increase long-term flooding risk. The flooding risk has not increased near the eastern end of the Channel. The duration of significant cyclonic events tends to decrease near Cherbourg but tends to increase near Weymouth, with no conclusive trends in other stations (Portsmouth, Calais and Dunkirk), where extreme surges may occur also in relatively high-air-pressure situations. In conclusion, medium-term coastal flooding risk seems to increase especially at Weymouth, Bournemouth and Portsmouth, and also, but less so, at Le Havre and Sheerness. In addition, few extreme surges occurred during the last decades at the time of spring high tide, which would seem to be a fortunate coincidence or, in some cases, an effect of tide–surge interaction. The risk of occurrence of less favourable random events in the near future is therefore of concern, and flood potential would greatly increase if the global sea-level rise expected in the near future is also considered.  相似文献   

2.
Positive storm surges (PSS) lasting for several days can raise the water level producing significant differences between the observed level and the astronomical tide. These storm events can be more severe if they coincide with a high tide or if they bracket several tidal cycles, particularly in the case of the highest astronomical tide. Besides, the abnormal sea-level elevation near the coast can cause the highest waves generated to attack the upper beach. This combination of factors can produce severe erosion, threatening sectors located along the coastline. These effects would be more serious if the storm surge height and duration increase as a result of a climatic change. The Mar del Plata (Argentina) coastline and adjacent areas are exposed to such effects. A statistical characterization of PSS based on their intensity, duration and frequency, including a surge event classification, was performed utilizing tide-gauge records over the period 1956–2005. A storm erosion potential index (SEPI) was calculated from observed levels based on hourly water level measurements. The index was related to beach profile responses to storm events. Also, a return period for extreme SEPI values was calculated. Results show an increase in the average number of positive storm surge events per decade. Considering all the events, the last decade (1996–2005) exhibits an average 7% increase compared to each one of the previous decades. A similar behavior was found for the decadal average of the heights of maximum annual positive storm surges. In this case the average height of the last two decades exceeds that of the previous decades by approximately 8 cm. The decadal average of maximum annual duration of these meteorological events shows an increase of 2 h in the last three decades. A possible explanation of the changes in frequency, height and duration of positive storm surges at Mar del Plata would seem to lie in the relative mean sea-level rise.  相似文献   

3.
The joint probability method (JPM) to estimate the probability of extreme sea levels (Pugh and Vassie, Extreme sea-levels from tide and surge probability. Proc. 16th Coastal Engineering Conference, 1978, Hamburg, American Society of Civil Engineers, New York, pp 911–930, 1979) has been applied to the hourly records of 13 tide-gauge stations of the tidally dominated Atlantic coast of France (including Brest, since 1860) and to three stations in the southwest of the UK (including Newlyn, since 1916). The cumulative total length of the available records (more than 426 years) is variable from 1 to 130 years when individual stations are considered. It appears that heights estimated with the JPM are almost systematically greater than the extreme heights recorded. Statistical analysis shows that this could be due: (1) to surge–tide interaction (that may tend to damp surge values that occur at the time of the highest tide levels), and (2) to the fact that major surges often occur in seasonal periods that may not correspond to those of extreme astronomical tides. We have determined at each station empirical ad hoc correction coefficients that take into account the above two factors separately, or together, and estimated return periods for extreme water levels also at stations where only short records are available. For seven long records, for which estimations with other computing methods (e.g. generalized extreme value [GEV] distribution and Gumbel) can be attempted, average estimations of extreme values appear slightly overestimated in relation to the actual maximum records by the uncorrected JPM (+16.7 ± 7.2 cm), and by the Gumbel method alone (+10.3 ± 6.3 cm), but appear closer to the reality with the GEV distribution (−2.0 ± 5.3 cm) and with the best-fitting correction to the JPM (+2.9 ± 4.4 cm). Because the GEV analysis can hardly be extended to short records, it is proposed to apply at each station, especially for short records, the JPM and the site-dependent ad hoc technique of correction that is able to give the closest estimation to the maximum height actually recorded. Extreme levels with estimated return times of 10, 50 and 100 years, respectively, are finally proposed at all stations. Because astronomical tide and surges have been computed (or corrected) in relation to the yearly mean sea level, possible changes in the relative sea level of the past, or foreseeable in the future, can be considered separately and easily added to (or deduced from) the extremes obtained. Changes in climate, on the other hand, may modify surge and tide distribution and hence return times of extreme sea levels, and should be considered separately. Parts of this paper have been presented orally at the session “Geophysical extremes: scaling aspects and modern statistical approaches” of the EGU General Assembly, Vienna, 2–6 April 2006.  相似文献   

4.
A recently extended and spatially rich English Channel sea level dataset has been used to evaluate changes in extreme still water levels throughout the 20th century. Sea level records from 18 tide gauges have been rigorously checked for errors and split into mean sea level, tidal and non-tidal components. These components and the interaction between surge and tide have been analysed separately for significant trends before determining changes in extreme sea level. Mean sea level is rising at 0.8–2.3 mm/year, depending on location. There is a small increase (0.1–0.3 mm/year) in the annual mean high water of astronomical tidal origin, relative to mean sea level, and an increase (0.2–0.6 mm/year) in annual mean tidal range. There is considerable intra- and inter-decadal variability in surge intensity with the strongest intensity in the late 1950s. Storm surges show a statistically significant weak negative correlation to the winter North Atlantic Oscillation index throughout the Channel and a stronger significant positive correlation at the boundary with the southern North Sea. Tide–surge interactions increase eastward along the English Channel, but no significant long-term changes in the distribution of tide–surge interaction are evident. In conclusion, extreme sea levels increased at all of the 18 sites, but at rates not statistically different from that observed in mean sea level.  相似文献   

5.
In this study, we compare simulated storm surges run on the two-dimensional operational storm surge/tide forecast system (regional tide/storm surge model (RTSM), based on Princeton ocean model) of the Korean Meteorological Administration and the three-dimensional regional ocean modeling system (ROMS), using observational data from 30 coastal tidal stations of three typhoons that struck Korea in 2007. A maximum positive bias of 6.8 cm was found for Typhoon Manyi predicted by ROMS, while a maximum negative bias of −7.4 cm was shown for Typhoon Nari predicted by RTSM. For all three typhoons, the total averaged root mean square error was 10 cm for the two models. Although the statistical results for the storm surge comparison between the observations and RTSM predictions were better than those for ROMS, with the exception of Typhoon Nari, the spatial and temporal variations of ROMS were larger than those of RTSM.  相似文献   

6.
The research presented in this paper involves the application of the joint probability method to the estimation of extreme water levels resulting from astronomical tides and surge residuals and the investigation of the effects of tide–surge interactions on extreme water levels. The distribution of tide peaks was analysed from field records (<20 years) and a 46-year dataset of monthly maximum tidal amplitudes. Large surges were extracted from both field records and a numerical model hindcast covering the 48 largest storm events in the Irish Sea over the period 1959–2005. Extreme storm surges and tides were independently modelled using the generalised extreme value statistical model, and derived probability distributions were used to compute extreme water levels. An important, and novel, aspect of this research is an analysis of tide–surge interactions and their effects on total water level; where interactions exist, they lead to lower total water levels than in the case of independency. The degree of decrease varies with interaction strength, magnitude of surge peak at a particular phase of tide and the distribution of peaks over a tidal cycle. Therefore, including interactions in the computation of extreme levels may provide very useful information at the design stage of coastal protection systems.  相似文献   

7.
In real-time operational coastal forecasting systems for the northwest European shelf, the representation accuracy of tide–surge models commonly suffers from insufficiently accurate tidal representation, especially in shallow near-shore areas with complex bathymetry and geometry. Therefore, in conventional operational systems, the surge component from numerical model simulations is used, while the harmonically predicted tide, accurately known from harmonic analysis of tide gauge measurements, is added to forecast the full water-level signal at tide gauge locations. Although there are errors associated with this so-called astronomical correction (e.g. because of the assumption of linearity of tide and surge), for current operational models, astronomical correction has nevertheless been shown to increase the representation accuracy of the full water-level signal. The simulated modulation of the surge through non-linear tide–surge interaction is affected by the poor representation of the tide signal in the tide–surge model, which astronomical correction does not improve. Furthermore, astronomical correction can only be applied to locations where the astronomic tide is known through a harmonic analysis of in situ measurements at tide gauge stations. This provides a strong motivation to improve both tide and surge representation of numerical models used in forecasting. In the present paper, we propose a new generation tide–surge model for the northwest European Shelf (DCSMv6). This is the first application on this scale in which the tidal representation is such that astronomical correction no longer improves the accuracy of the total water-level representation and where, consequently, the straightforward direct model forecasting of total water levels is better. The methodology applied to improve both tide and surge representation of the model is discussed, with emphasis on the use of satellite altimeter data and data assimilation techniques for reducing parameter uncertainty. Historic DCSMv6 model simulations are compared against shelf wide observations for a full calendar year. For a selection of stations, these results are compared to those with astronomical correction, which confirms that the tide representation in coastal regions has sufficient accuracy, and that forecasting total water levels directly yields superior results.  相似文献   

8.
《Continental Shelf Research》2007,27(10-11):1548-1567
A two-way nested coupled tide-surge prediction model was established and applied in the Taiwan Strait and adjacent sea area in this study. This two-dimensional (2D) model had a fine horizontal resolution and took into account the interaction between storm surges and astronomical tides, which made it suitable for depicting the complicated physical properties of storm surges in the Taiwan Strait. A two-way nesting technique and an open boundary condition developed from Flather's radiation condition and Røed and Smedstad's local mode idea, were successfully implemented in the model. A simulation experiment showed that the open boundary condition could be used in the coupled tide-surge model and that the performance of the two-way nested model was slightly superior in accuracy to that of the one-way nested one.The fluctuations of storm surge residuals with tidal period at Sansha and Pingtan tide stations during the period of typhoon Dan in 1999 were well reproduced by the model, with the coupling effect between storm surges and tides indicating that the effect of astronomical tides upon typhoon surges should be considered in a storm-surge prediction model for the Taiwan Strait. The forecast experiment during typhoon Talim in 2005 showed that the storm surge prediction outputs by the model were better in the early 20 h of the forecast period of each model run than those in the later period due to the prediction accuracy of the typhoon track, maximum winds, and central air pressures.  相似文献   

9.
Based on tide gauge observations spanning almost 200 years, homogeneous time series of the mean relative sea level were derived for nine sites at the southern coast of the Baltic Sea. Our regionally concentrated data were complemented by long-term relative sea-level records retrieved from the data base of the Permanent Service for Mean Sea Level (PSMSL). From these records relative sea-level change rates were derived at 51 tide gauge stations for the period between 1908 and 2007. A minimum observation time of 60 years is required for the determination of reliable sea-level rates. At present, no anthropogenic acceleration in sea-level rise is detected in the tide gauge observations in the southern Baltic. The spatial variation of the relative sea-level rates reflects the fingerprint of GIA-induced crustal uplift. Time series of extreme sea levels were also inferred from the tide gauge records. They were complemented by water level information from historic storm surge marks preserved along the German Baltic coast. Based on this combined dataset the incidence and spatial variation of extreme sea levels induced by storm surges were analysed yielding important information for hazard assessments. Permanent GPS observations were used to determine recent crustal deformation rates for 44 stations in the Baltic Sea region. The GPS derived height change rates were applied to reduce the relative sea-level changes observed by tide gauges yielding an estimate for the eustatic sea-level change. For 13 tide gauge-GPS colocation sites a mean eustatic sea-level trend of 1.3 mm/a was derived for the last 100 years.  相似文献   

10.
The effectiveness of simulating surge inundation using the Eulerian–Lagrangian circulation (ELCIRC) model over multi-scale unstructured grids was examined in this study. The large domain model grid encompasses the western North Atlantic Ocean, the Gulf of Mexico, and the Caribbean Sea to appropriately account for remote and resonance effects during hurricane events and simplify the specification of the open boundary condition. The U.S. East and Gulf Coasts were divided into 12 overlapping basins with fine-resolution (up to 30 × 30 m) grids to model overland surge flooding. These overlapping basins have different fine-resolution grids near the coastal region, but have an identical coarse-resolution grid in the offshore region within the large model domain. Thus, the storm surge prediction can be conducted without reducing computation efficiency by executing multiple model runs with local fine-resolution grids where potential hurricane landfalls may occur. The capability of the multi-scale approach was examined by simulating storm surge caused by Hurricanes Andrew (1992) and Isabel (2003) along the South Florida coast and in the Chesapeake Bay. Comparisons between simulated and observed results suggest that multi-scale models proficiently simulated storm surges in the Biscayne Bay and the Chesapeake Bay during two hurricanes. A series of sensitivity tests demonstrated that the simulation of surge flooding was improved when LiDAR topographic data and special bottom drag coefficient values for mangrove forests were employed. The tests also showed that appropriate representation of linear hydrologic features is important for computing surge inundation in an urban area.  相似文献   

11.
An investigation of the response of the mid-high, mid and low latitude critical frequency foF2 to the geomagnetic storm of 15 July 2000 is made. Ground-based hourly foF2 values (proportional to square root of peak electron density of F2-layer) from four chains of ionospheric stations located in the geographic longitude ranges 10°W–35°E, 60°E–120°E, 130°E–170°E, 250°E–295°E are used. Relative deviations of foF2 are considered. The main ionospheric effects for the considered storm are: long-duration negative disturbances at mid-high latitudes in summer hemisphere in sectors where the storm onset occurred in the afternoon/night-time hours; short-duration positive disturbances in the summer hemisphere at mid-high latitudes in the pre-sunset hours during the end of main phase-first stage of the recovery; small and irregular negative disturbances in the low latitude winter hemisphere which predominate during the main phase and first part of the recovery, and positive disturbances in both hemispheres at mid-high and mid latitudes prior to the storm onset irrespective of the local time. In addition, the validity of some physical mechanisms proposed to explain the F2 region behaviour during disturbed conditions is considered. gus-mansilla@hotmail.com  相似文献   

12.
13.
With the long-term goal of developing an operational forecast system for total water level, we conduct a hindcast study of global storm surges for Fall 2014 using a baroclinic ocean model based on the NEMO framework. The model has 19 vertical levels, a horizontal resolution of 1/12°, and is forced by hourly forecasts of atmospheric wind and air pressure. Our first objective is to evaluate the model’s ability to predict hourly sea levels recorded by a global array of 257 tide gauges. It is shown that the model can provide reasonable predictions of surges for the whole test period at tide gauges with relatively large tidal residuals (i.e., gauges where the standard deviation of observed sea level, after removal of the tide, exceeds 5 cm). Our second objective is to quantify the effect of density stratification on the prediction of global surges. It is found that the inclusion of density stratification increases the overall predictive skill at almost all tide gauges. The increase in skill for the instantaneous peak surge is smaller. The location for which the increase in overall skill is largest (east coast of South Africa) is discussed in detail and physical reasons for the improvement are given.  相似文献   

14.
19-year tidal data of the 3 stations, Huludao, Qinhuangdao and Kanmen, have totally been analysed, and the amplitudes and phases of 472 tidal constituents have been calculated with a resolution of Δσ⩾ 0.002 2°/h. Based on the draconitic tide, the anornalistic tide and pole tide obtained, the ultra-long-period variations of the mean sea level have been predicted. The annual tidal analysis of 19-year data at the above-mentioned stations and at Tanggu, Longkou has been carried out. The stability of the annual tidal analysis has been investigated with regard to the astronomical factors, the nonlinear effects and the variations of sea-bottom topography.  相似文献   

15.
The southwest coast of England was subjected to an unusually energetic sequence of Atlantic storms during the 2013/2014 winter, with the 8‐week period from mid‐December to mid‐February representing the most energetic period since at least 1953. A regional analysis of the hydrodynamic forcing and morphological response of these storms along the SW coast of England highlighted the importance of both storm‐ and site‐specific conditions. The key factor that controls the Atlantic storm wave conditions along the south coast of southwest England is the storm track. Energetic inshore wave conditions along this coast require a relatively southward storm track which enables offshore waves to propagate up the English Channel relatively unimpeded. The timing of the storm in relation to the tidal stage is also important, and coastal impacts along the macro‐tidal southwest coast of England are maximised when the peak storm waves coincide with spring high tide. The role of storm surge is limited and rarely exceeds 1 m. The geomorphic storm response along the southwest coast of England displayed considerable spatial variability; this is mainly attributed to the embayed nature of the coastline and the associated variability in coastal orientation. On west‐facing beaches typical of the north coast, the westerly Atlantic storm waves approached the coastline shore‐parallel, and the prevailing storm response was offshore sediment transport. Many of these north coast beaches experienced extensive beach and dune erosion, and some of the beaches were completely stripped of sediment, exposing a rocky shore platform. On the south coast, the westerly Atlantic storm waves refract and diffract to become southerly inshore storm waves and for the southeast‐facing beaches this results in large incident wave angles and strong eastward littoral drift. Many south coast beaches exhibited rotation, with the western part of the beaches eroding and the eastern part accreting. © 2015 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

16.
The coastal zones are facing the prospect of changing storm surge statistics due to anthropogenic climate change. In the present study, we examine these prospects for the North Sea based on numerical modelling. The main tool is the barotropic tide-surge model TRIMGEO (Tidal Residual and Intertidal Mudflat Model) to derive storm surge climate and extremes from atmospheric conditions. The analysis is carried out by using an ensemble of four 30-year atmospheric regional simulations under present-day and possible future-enhanced greenhouse gas conditions. The atmospheric regional simulations were prepared within the EU project PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects). The research strategy of PRUDENCE is to compare simulations of different regional models driven by the same global control and climate change simulations. These global conditions, representative for 1961–1990 and 2071–2100 were prepared by the Hadley Center based on the IPCC A2 SRES scenario. The results suggest that under future climatic conditions, storm surge extremes may increase along the North Sea coast towards the end of this century. Based on a comparison between the results of the different ensemble members as well as on the variability estimated from a high-resolution storm surge reconstruction of the recent decades it is found that this increase is significantly different from zero at the 95% confidence level for most of the North Sea coast. An exception represents the East coast of the UK which is not affected by this increase of storm surge extremes.  相似文献   

17.
A two-dimensional coupled tide-surge model was used to investigate the effects of tide-surge interactions on storm surges along the coast of the Bohai Sea, Yellow Sea, and East China Sea. In order to estimate the impacts of tide-surge interactions on storm surge elevations, Typhoon 7203 was assumed to arrive at 12 different times, with all other conditions remaining constant. This allowed simulation of tide and total water levels for 12 separate cases. Numerical simulation results for Yingkou, Huludao, Shijiusuo, and Lianyungang tidal stations were analyzed. Model results showed wide variations in storm surge elevations across the 12 cases. The largest difference between 12 extreme storm surge elevation values was of up to 58 cm and occurred at Yingkou tidal station. The results indicate that the effects of tide-surge interactions on storm surge elevations are very significant. It is therefore essential that these are taken into account when predicting storm surge elevations.  相似文献   

18.
A study of the geomagnetic storm of July 13–14, 1982, and its ionospheric response is presented using the low-latitude magnetic index, Dst, and interpreted using solar wind interplanetary data: proton number density, solar wind flow speed, interplanetary magnetic field southward component B Z , and solar wind dynamic pressure. The F2 region structure response to the geomagnetic storm was studied using foF2 data obtained during the storm from a network of various ionosonde stations. Our results appear to show simultaneous abrupt depletion of foF2 that occurred at all latitudes in both the East Asian and African/European longitudinal zone during the period: 18:00–19:00 UT on July 13 and is as result of an abrupt increase in the dynamic pressure between 16:00 and 17:00 UT. The dynamic pressure increased from 3.21 to 28.07 nPa within an hour. The aforementioned abrupt depletion of foF2 simultaneously resulted in an intense negative storm with peak depletion of foF2 at about 19:00 at all the stations in the East Asian longitudinal zone. In the African/European longitudinal zone, this simultaneous abrupt depletion of foF2 resulted in intense negative storm that occurred simultaneously at the low latitude stations with peak depletion at about 20:00 UT on July 13, while the resulting negative storm at the mid latitude stations recorded peak depletion of foF2 simultaneously at about 2:00 UT on July 14. The present results indicate that most of the stations in the three longitudinal zones showed some level of simultaneity in the depletion of foF2 between 18:00 UT on July 13 and 2:00 UT on July 14. The depletion of foF2 during the main phase of the storm was especially strongly dependent on the solar wind dynamic pressure.  相似文献   

19.
An unstructured grid storm surge model of the west coast of Britain, incorporating a high-resolution representation of the Mersey estuary is used to examine storm surge dynamics in the region. The focus of the study is the major surge that occurred during the period 11–14 November 1977, which has been investigated previously using uniform grid finite difference models and a finite element model of the west coast of Britain. However, none of these models included the Mersey estuary. Comparison of solutions in the eastern Irish Sea with those computed with these earlier models showed that, away from the Liverpool Bay region, the inclusion of the Mersey estuary had little effect. However, at the entrance to the Mersey, its inclusion did influence the solution. By including a detailed representation of the Mersey estuary within the model, it was possible to conduct a detailed study of storm surge propagation in the Mersey, which had never previously been performed. This detailed study showed for the first time that the surge’s temporal variability within the estuary is influenced by surge elevation at its entrance. This varies with time as a function of spatial and temporal variations of wind stress over the west coast of Britain. Within the Mersey, calculations show that the spatial variability is mainly determined by changes in bottom topography, which had not been included in earlier finite difference models. However, since water depth is influenced by variations in tidal elevation, this, together with tide surge interaction through bottom friction and momentum advection, influences the surge. The ability of the finite element model to vary the mesh in near-shore regions to such an extent that it can resolve the Mersey and hence the impact of the Mersey estuary upon the Liverpool Bay circulation shows that it has distinct advantages over earlier finite difference models. In the absence of detailed measurements within the Mersey at the time of the surge, it was not possible to validate predicted surge elevations within the Mersey. However, significant insight into physical processes influencing the surge propagation down the estuary, its reflection and spatial/temporal variability could be gained.  相似文献   

20.
The Pertuis Charentais are shallow coastal embayments formed by the islands of Oleron and Re in the north-eastern Bay of Biscay. The low-lying coasts of the Pertuis Charentais are susceptible to extensive flooding caused by the storm surges generated in the North Atlantic. Numerical modelling of the 24 October 1999 surge event is performed in the present study in order to elucidate the impact of the wind-wave-tide-surge interactions on the surge propagation in the Pertuis Charentais. A 2D numerical model is constructed to simulate the wave and tide-surge propagation on a high-resolution finite-element grid by using the TELEMAC and TOMAWAC software. The effect of the wave-induced enhancement on the sea surface drag and on the bottom friction is evaluated by using the models of Janssen (1991) and Christoffersen and Jonsson (1985), respectively. The radiation stress is estimated by employing the approach of Longuet-Higgins and Stewart (1964). It is demonstrated that the peak surge in the night on 23–24 October has been amplified inside the Pertuis Charentais by about 20 cm due to the wind-wave interactions with the tide-surge currents. These interactions are strongest at the entrance to the Pertuis Charentais where the sea surface drag coefficient is significantly increased by the wind-wave coupling. The effect of the wave-tide-surge interactions is large enough to be included in the flood forecasting systems of this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号