首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Andesite and dacite from Barren and Narcondam volcanic islands of Andaman subduction zone are composed of plagioclase, orthopyroxene, clinopyroxene, olivine, titanomagnetite, magnesio-hornblende and rare quartz grains. In this study, we use the results of mineral chemical analyses of the calc-alkaline rock suite of rocks as proxies for magma mixing and mingling processes. Plagioclase, the most dominant mineral, shows zoning which includes oscillatory, patchy, multiple and repetitive zonation and ‘fritted’ or ‘sieve’ textures. Zoning patterns in plagioclase phenocrysts and abrupt fluctuations in An content record different melt conditions in a dynamic magma chamber. ‘Fritted’ zones (An55) are frequently overgrown by thin calcic (An72) plagioclase rims over well-developed dissolution surfaces. These features have probably resulted from mixing of a more silicic magma with the host andesite. Olivine and orthopyroxene with reaction and overgrowth rims (corona) suggest magma mixing processes. We conclude that hybrid magma formed from the mixing of mafic and felsic magma by two-stage processes – initial intrusion of hotter mafic melt (andesitic) followed by cooler acidic melt at later stage.  相似文献   

2.
Plagioclase phenocrysts from mafic enclaves and plagioclase from its host granite possess a pat-tern of complex zonation .A plagioclase phenocryst can generally be divided into three parts:an oscillatory, locally patchy zoned core (An47-19),a ring with dusty, more calcic plagioclase (An64-20) and a normally zoned rim composed of sodic plagioclase (An22-3.3). Major discontinuities in zoning coincide with resorption surfaces that are overgrown by the more calcic plagioclase.The cores of large plagioclase phenocrysts from mafic enclaves and host granite show similar zoning patterns and similar compositions, indicating their crystallization under the same conditions .Steep normal zoning of the rims of plagioclases both from host granite and mafic enclaves illustrates a drastic decrease in An content which is considered to have resulted from the continuous differentiation of hybrid magma and efficient heat loss because of the upward emplacement of the residual magma.Wide rims of plagioclases from the host granite against the discrete rims of plagioclases from mafic enclaves indicate that differentiation and cooling lasted much longer in the host granite than in the mafic enclaves.  相似文献   

3.
Voluminous andesite and dacite lavas of Daisen volcano, SW Japan,contain features suggesting the reverse of normal fractionation(anti-fractionation), in the sense that magma genesis progressedfrom dacite to andesite, accompanied by rises in temperature.A positive correlation exists between phenocryst content (0–40vol. %) and wt % SiO2 (61–67%). Phenocryst-rich dacitescontain hornblende and plagioclase that are generally unaltered,clear, and euhedral. However, phenocryst-poor rocks containsieve-textured plagioclase, resorbed plagioclase, and opacitein which hornblendes are pseudomorphed. Some Daisen rocks containtwo coexisting pyroxenes. Many orthopyroxene phenocrysts fromtwo-pyroxene lavas have high-Ca overgrowth rims (up to 50 µm),a feature consistent with crystallization from a higher-temperaturemagma than the core. Rim compositions are similar from phenocrystto phenocryst in individual samples. Temperatures of 800–900°Care obtained from the cores, whereas temperatures of 1000–1100°Care indicated for the rims. Lavas ranging from aphyric andesite(  相似文献   

4.
High-magnesian andesite occurs at Hachimantai, northern Honshu,Japan. Disequilibrium zoning features indicate that the phenocrystminerals were derived from three different magmas. Chemicalcompositions and zoning profiles are accounted for by two-stagemagma mixing: the first mixing occurred between a crystal-freebasalt magma and a more differentiated olivine basalt magma;the second stage occurred by mixing between the resultant ofthe first-stage mixing and a hypersthene–augite andesitemagma. Mass balance of phenocryst crystals shows that end-membercompositions were c. 52·0 wt % SiO2 and 10·1 wt% MgO for the mafic end-member and 57·0 wt % SiO2 forthe felsic end-member of the second-stage mixing. Phenocrystminerals of the first-stage mixing end-member indicate the similarityof the end-member composition to that of basalts from nearbyvolcanoes. The counterpart aphyric magma in the first-stagemixing was more magnesian than the estimated mafic end-member.Calculations of the phase equilibria of similar basalts fromnearby volcanoes and comparison of results with previous phaseequilibrium experiments showed that the olivine basalt end-memberof the first stage was hydrous and situated at a depth wherethe pressure was less than 2 kbar. Two-pyroxene thermometryestimates are about 1050°C for the pyroxenes derived fromthe felsic end-member of the second-stage mixing, and about1180°C for groundmass pyroxenes. Crystallization temperaturesof 1170–1230°C are estimated for minerals from themafic end-member of the second-stage mixing based on phase equilibriumcalculations. These similar temperature estimates between thegroundmass and the mafic end-member imply achievement of thermalequilibrium between end-members preceding crystallization. Themagma plumbing system of the eastern Hachimantai is illustratedby a recent volcanic event, involving lateral dike intrusiontoward a pressure source. The encounter of a laterally migratingbasalt dike and an andesite magma chamber triggered the magmamixing that produced the high-magnesian andesite. The modelcan account for the relation between the petrological modeland surface distribution of volcanic rocks. The infrequencyof such mixing-derived high-magnesian andesite stems from therarity of high-magnesian basalt as a potential mixing end-memberin northern Honshu. KEY WORDS: high-magnesian andesite; Hachimantai; Northern Honshu; high-magnesian basalt; two-stage magma mixing  相似文献   

5.
The 1995–1999 eruption of the Soufriere Hills volcano,Montserrat, has produced a crystal-rich andesite containingquench-textured mafic inclusions, which show evidence of havingbeen molten when incorporated into the host magma. Individualcrystals in the andesite record diverse histories. Amphibolephenocrysts vary from pristine and unaltered to strongly oxidizedand pseudomorphed by anhydrous reaction products. Plagioclasephenocrysts are commonly reverse zoned, often with dusty sievetextures. Reverse zoned rims are also common on orthopyroxenephenocrysts. Pyroxene geothermometry gives an average temperatureof 858 ± 20°C for orthopyroxene phenocryst cores,whereas reverse zoned rims record temperatures from about 880to 1050°C. The heterogeneity in mineral rim compositions,zoning patterns and textures is interpreted as reflecting non-uniformreheating and remobilization of the resident magma body by intrusionof hotter mafic magma. Convective remobilization results inmixing together of phenocrysts that have experienced differentthermal histories, depending on proximity to the intruding maficmagma. The low temperature and high crystallinity are interpretedas reflecting the presence of a cool, highly crystalline magmabody beneath the Soufriere Hills volcano. The petrological observations,in combination with data on seismicity, extrusion rate and SO2fluxes, indicate that the current eruption was triggered byrecent influx of hot mafic magma. KEY WORDS: Montserrat; eruption; magma mixing; mafic inclusion; sieve texture  相似文献   

6.
The rhyolite of Little Glass Mountain (73–74% SiO2) is a single eruptive unit that contains inclusions of quenched andesite liquid (54–61% SiO2) and partially crystalline cumulate hornblende gabbro (53–55% SiO2). Based on previous studies, the quenched andesite inclusions and host rhyolite lava are related to one another through fractional crystallization and represent an example of a fractionation-generated composition gap. The hornblende gabbros represent the cumulate residue associated with the rhyolite-producing and composition gap-forming fractionation event. This study combines textural (Nomarski Differential Interference Contrast, NDIC, imaging), major element (An content) and trace element (Mg, Fe, Sr, K, Ti, Ba) data on the style of zonation of plagioclase crystals from representative andesite and gabbro inclusions, to assess the physical environment in which the fractionation event and composition gap formation took place. The andesite inclusions (54–61% SiO2) are sparsely phyric with phenocrysts of plagioclase, augite and Fe-oxide±olivine, +/–orthopyroxene, +/–hornblende set within a glassy to crystalline matrix. The gabbro cumulates (53–55% SiO2) consist of an interconnected framework of plagioclase, augite, olivine, orthopyroxene, hornblende and Fe-oxide along with highly vesicular interstitial glass (70–74% SiO2). The gabbros record a two-stage crystallization history of plagioclase+olivine+augite (Stage I) followed by plagioclase+orthopyroxene+ hornblende+Fe-oxide (Stage II). Texturally, the plagioclase crystals in the andesite inclusions are characterized by complex, fine-scale oscillatory zonation and abundant dissolution surfaces. Compositionally (An content) the crystals are essentially unzoned from core-to-rim. These features indicate growth within a dynamic (convecting?), reservoir of andesite magma. In contrast, the plagioclase crystals in the gabbros are texturally smooth and featureless with strong normal zonation from An74 at the core to around An30. K, and Ba abundances increase and Mg abundances decrease steadily towards the rim. Ti, Fe, and Sr abundances increase and then decrease towards the rim. The trace element variations are fully consistent with the two-stage crystallization sequence inferred from the gabbro mineralogy. These results indicate progressive closed-system in situ crystallization in a quiescent magmatic boundary layer environment located along the margins of the andesite magma body. The fractional crystallization that generated the host rhyolite lava is one of inward solidification of a crystallizing boundary layer followed by melt extraction and accumulation of highly evolved interstitial liquid. This mechanism explains the formation of the composition gap between parental andesite and rhyolite magma compositions.  相似文献   

7.
On the Eastern Tauride Belt, the Cretaceous calc-alkaline Karamadazı Granitoid consists of quartz diorite containing mafic microgranular enclaves (MME) and leucocratic granite. The quartz diorite consists of plagioclase (An8-65), hornblende, biotite, K-feldspar, quartz, epidote and titanite. Subrounded MME in the quartz diorite are holocrystalline, fine-grained, quartz diorite to diorite in composition, and display a similar mineral assemblage to their host. Large crystals in MME and quartz diorite show various disequilibrium microstructures indicative of hybridization. Plagioclase crystals exhibit inverse, normal, and oscillatory zoning with maximum core-to-rim An content increase up to 38% in the enclave and 40% in the quartz diorite. Both hornblende and augite exhibit normal and reverse zoning even in the same sample. The new field, textural, mineral compositional, and geochemical evidence leads to the conclusion that MME could have formed through injection of successive pulses of basic magma into upward mobile magma chambers containing cooler, partially crystalline quartz diorite magma. The quartz diorites show similarity to high-Al TTG (tonalites–trondhjemites–granodiorites), with their high Na2O, Sr, LREE, and low Mg#, Cr, HREE contents, and are suggested to be produced by extensive interaction between the crustal and mantle-derived melts through mixing at depth. In contrast, leucogranites have geochemical characteristics distinct from the quartz diorites and MME, and are probably not involved in MME genesis.  相似文献   

8.
Chemical and structural zoning in plagioclase can develop in response to a number of different magmatic processes. We examine plagioclase zonation formed during the transfer of plagioclase from a granodioritic host to a monzodioritic enclave to understand the development of different zonation patterns caused by this relatively simple magma mixing process. The transferred plagioclase records two stages of evolution: crystallization of oscillatory plagioclase in the host granodioritic magma and crystallization of high An zones and low An rims in the hybrid enclave magma. High An zones (up to An72) are formed only in the hybrid enclaves after plagioclase transfer. Plagioclase from a primitive enclave, showing no or only minimal interaction with the host, is An30–43. The implication is that high An zones crystallize only from the hybrid magma and not from the primitive one, probably because of an increase in water content in the hybrid magma. Complex interactions between the two magmas are also recorded in Sr content in plagioclase, which indicates an initial increase in Sr concentration in the melt upon transfer. This is contrary to what is expected from the mixing of low Sr enclave magma with a high Sr granodiorite one. Such Sr distribution in the plagioclase implies that the transfer of the plagioclase took place before the onset of plagioclase crystallization in the enclave magma. Therefore, the mixing between high Sr granodiorite magma and low Sr enclave magma was recorded only in plagioclase rims and not in the high An zones.  相似文献   

9.
High-temperature–pressure experiments were carried outto determine the chlorine–hydroxyl exchange partitioncoefficient between hornblende and melt in the 1992 Unzen dacite.Cl in hornblende and melt was analyzed by electron microprobe,whereas OH in hornblende and melt was calculated assuming anionstoichiometry of hornblende and utilizing the dissociation reactionconstant for H2O + O = 2(OH) in water-saturated melt, respectively.The partition coefficient strongly depends on the Mg/(Mg + Fe)ratio of hornblende, and is expressed as ln K1 = (Cl/OH)hb/(Cl/OH)melt= 2·37 – 4·6[Mg/(Mg + Fe)]hb at 2–3kbar and 800–850°C. The twofold variation in Cl contentin the oscillatory zoned cores of hornblende phenocrysts inthe 1991–1995 dacite cannot be explained by the dependenceof the Cl/OH partition coefficient on the Mg/(Mg + Fe)hb ratio,and requires c. 80% variation of the Cl/OH ratio of the coexistingmelt. Available experimental data at 200 MPa on Cl/OH fractionationbetween fluid and melt suggest that c. 1·2–1·8wt % degassing of water from the magma can explain the required80% variation in the Cl/OH ratio of the melt. The negative correlationbetween Al content and Mg/(Mg + Fe) ratio in the oscillatoryzoned cores of the hornblende phenocrysts is consistent withrepeated influx and convective degassing of the fluid phasein the magma chamber. KEY WORDS: chlorine; element partitioning; hornblende; oscillatory zoning; Unzen volcano  相似文献   

10.
Analyses of Fe–Ti oxides help constrain models of magmastorage region processes for the Soufrière Hills Volcano,Montserrat (W.I.), and provide clear evidence of the natureof transient heating events in the magma storage region. Toconstrain timescales of magma heating and remobilization, theTiO2 zoning patterns in a time series of natural titanomagnetiteswere compared with those produced in controlled phase equilibriumexperiments on the andesite. Most samples of andesite eruptedfrom 1995 to 2002 contain titanomagnetite crystals with uniformcore compositions (TiO2  相似文献   

11.
为揭示华北克拉通北缘中晚三叠世解放营子花岗闪长岩的岩浆混合机制,对寄主岩石和镁铁质包体中斜长石和角闪石开展了电子探针分析.分析结果显示,多斑和少斑包体边部的斜长石斑晶发育An值增加的突变环带,环带的An值为32~46,明显高于核部和边部斜长石的An值(18~31),而核部的An值与寄主岩石中斜长石的An值一致,该特征指...  相似文献   

12.
EWART  A. 《Journal of Petrology》1963,4(3):392-431
Systematic mineralogical and chemical study of the younger Taupovolcanic ash showers, collected from the Terraces Quarry, Taupo,has enabled the showers to be grouped into ten eruptive sequences(numbers refer to the stratigraphical position of the deposits,after Baumgart (1954)): 3; 4; 5–8; 9–13; 14–15;16; 17–18; 19–22; 23–25; 26. The showers arecomposed of rhyolitic pumice and finer glass fragments; accessoryfragments dominantly of rhyolite, with minor dacite, ignimbrite,and andesite; crystals of plagioclase, hypersthene, and magnetite.The proportions of these components provide a useful guide todistinguishing the showers for correlation purposes. Refractiveindices of the glasses show wide variations, even in one pumicefragment, and increase markedly with increased weathering. Correlationof natural glasses by this method must, therefore, be done withextreme care. Vesiculation of pumice from most of the sequences has been studiedquantitatively by measurements of density and porosity (by modalanalysis). These give a measure of the extent of vesiculation,and in the sequences studied it is shown that there is a progressivedecrease in vesiculation with time in each sequence, here attributedto progressive volatile loss. In the large Taupo (3) and Waimihia(15) deposits, there was a rapid initial rise of intensity ofvesiculation. The last phase of several sequences appears tohave been relatively hotter than the earlier magma, as shownby more calcic plagioclase and more magnesian-rich pyroxenes. As a result of differences in nucleation of the various pumices,three general textures can be recognized: (i) finely cellularwith thick intercellular walls; (ii) finely cellular with thinintercellular walls; (iii) coarsely cellular pumice, usuallywith widely varying vesicle size. Glasses from seven members have been chemically analysed, andshow a close similarity. However, they fall into two distinctgroups, comprising the older showers (19, 24, 25) and the youngershowers (3, 5, 8, 15). The former have higher normative quartz,orthoclase, and anorthite. The compositions are rhyolitic. Plagioclase (An36-An48), hypersthene (Mg48-Mg64), and magnetiteform the characteristic mineralogical assemblage. The plagioclasehas well-developed normal oscillatory zoning, which is believedto be due to movement of crystals within the magma into zonesof varying vapour pressure. Many crystals have sharp discontinuitiesof some zones, which are attributed to sharp drops in vapourpressure, possibly due to eruption of preceding members of thesequence. Three chemical analyses of plagioclase are presented. From vesiculation and chemical results, it is believed thatsequences 3, 5–8, 14–15, and 17–18 crystallizedunder a very high vapour pressure, and were probably eruptedas a result of this. Sequences 19–22 and 23–25 crystallizedunder much lower vapour pressure. From the Ab-Or-Q-H2O diagram,a vapour pressure of 2,000–3,000 kg/cm2 is suggested forthe former sequences, equivalent to about 4 miles lithostaticload. Comparison is made between the mineralogy of the Tauporhyolitic glasses and recently published work on some Britishand Icelandic Tertiary rhyolitic glasses.  相似文献   

13.
High-pressure and -temperature experiments on a bulk-rock compositionrepresentative of the groundmass of the Soufrière HillsVolcano andesite have allowed the phase equilibria of the systemto be determined; these are then compared with the natural samples.Experimental conditions varied from 825 to 1100°C and from5 to 225 MPa; the main phases observed were clinopyroxene, crystallinesilica, amphibole and plagioclase. A relationship between plagioclasemicrolite size and anorthite content is identified in samplesof the natural andesite. Large crystals (>60 µm2 inarea) have cores of An60–75, whereas small crystals (<60µm2 in area) have cores of An40–60. Experimentalresults show that if the magma is heated to >950°C thehigh-anorthite microlite crystals can form at magma chamberpressures without any need for a change in bulk composition.It is proposed that convective self-mixing occurs within themagma chamber. Geothermometry of coexisting plagioclase–amphibolepairs confirms the complex crystallization history of the naturalsamples. Analysis of natural glass samples has identified compositionalvariations that can be related to the crystallinity of the sampleand also the groundmass plagioclase composition. Rapidly eruptedpumice samples have high glass contents, lower SiO2 glass compositionsand plagioclase microlites that are large in size (>60 µm2)and have a high anorthite content (>An60). Slowly erupteddome samples are highly crystalline and contain numerous plagioclasemicrolites of variable size and composition. KEY WORDS: glass evolution; experiment; Montserrat; plagioclase; self-mixing  相似文献   

14.
Laminated anorthosite grading outwards into leucogabbro, gabbro,and monzogabbro occurs in a 2.6-km-diameter funnel-shaped intrusion,cut by a quartz alkali syenite plug and concentric syenite andgranite ring-dykes. The anorthosite-gabbro series is laminatedbut not modally or otherwise texturally layered. The lamination,defined by large tabular plagioclase crystals, forms a set ofinwarddipping cones, the dips of which decrease from 60–45?in the central anorthosite to < 25? in the outer gabbros.Rocks close to the outer contact are medium-grained isotropicgabbros. Plagioclase, forming >80% of the series, generallyhas homogeneous labradorite cores (An62–58 in the wholeseries) and thin strongly zoned rims, which follow progressivelylonger solidus paths from the anorthosites to the gabbros. Allrocks contain a late-magmatic alkali feldspar. Plagioclase isthe main or only cumulus phase, the anorthosites being ad- tomesocumulates and the gabbros orthocumulates. Olivine (FO49–41)is more abundant than clinopyroxene in most of the series. Dependingon quartz content, the syenites and granites are hypersolvusor subsolvus and the depth of crystallization was calculatedto be 5 ? 2 km. A Rb/Sr isochron for the syenites and granites gave an age of399 ? 10 Ma with an initial strontium isotopic ratio of 0.7084? 0.0005. Ten samples from the anorthosite-gabbro scries havean average calculated initial ratio of 0.70582 ? 0-00004 at– 400 Ma, showing that the two series are not comagmatic.The anorthosite-gabbro series has parallel REE trends (LaN/YbN{small tilde} 7–10) with decreasing positive Eu anomaliesand increasing total REE contents from anorthosite to gabbro;two monzogabbros have almost no Eu anomaly. The liquid calculatedto be in equilibrium with the lowest anorthosite has almostno Eu anomaly and its normalized REE pattern lies just abovethose for the monzogabbros. The syenites and granites have complementaryREE patterns with negative Eu anomalies. The inferred parental magma was alkalic and leucotroctoliticwith high TiO2 P2O5, Sr and K/Rb and with low MgO, very similarto parental magmas in the Gardar province, South Greenland.It was probably produced at depth by settling of olivine andclinopyroxene but not of plagioclase, which accumulated by flotation.It is suggested that plagioclase crystals from this lower chamberwere progressively entrained (from 0% in the gabbros to 30–40%in the anorthosites), giving rise to the flow lamination inthe upper chamber. The magma in the lower chamber may have beenlayered, because the plagioclase cores in the anorthosite areconsiderably richer in Or than those in the leucogabbros orgabbros. Overall convection did not occur in the upper chamber,whereas compositional convection occurred in the more slowlycooled central anorthositic adcumulates.  相似文献   

15.
Three main groups of plutonic nodules are present in the LesserAntilles arc and are interpreted as (a) phenocryst clusters,(b) metamorphosed wallrock xenoliths and (c) cumulate texturedxenoliths. Large cumulate blocks display felsic-mafic layering,slump structures and auto-intrusive features. The majority ofspecimens are ad- and heteradcumulates with fewer ortho- andcrescumulates. Interstitial scoria and glass are present ina variety of samples. Plagioclase, amphibole, cino- and orthopyroxene,olivine, magnetite, biotite, ilmenite, quartz and apatite arepresent in various proportions in individual blocks. Plagioclaseand amphibole are modally predominant. Significant variationalong the arc is displayed in the rarity of orthopyroxene andabundance of amphibole in the southern islands compared withthe common presence of two pyroxenes in the northern islands. Plagioclase varies from An100–36 with very low orthoclasecomponent, and usually precedes amphibole in a given crystallizationsequence. Only on Grenada are plagioclase-free blocks present.Olivine is restricted to assemblages where coexisting plagioclaseis more calcic than An89 and its composition range is Fo90–59.Clinopyroxene is predominantly calcic augite and cinopyroxene,olivine and plagioclase all coexist stably with amphibole. Ageneral trend of decreasing Ca content in clinopyroxene fromsouth to north in the arc is present. Orthopyroxene ranges from En73–49 and is most common inassemblages where the coexisting plagioclase is more sodic thanAn83 Coexisting pyroxenes define temperatures in the range 800–1050?C. Amphibole compositions include pargasite, magnesiohastingsite,magnesio-hornblende and tschermakitic hornblende. The K contentof the amphiboles increases from north to south in the samesense as the general tholeiitic-calcalkalic-alkalic variationof parental magmas. Magnetite is the dominant spinel phase but ferrian chromiteand chromian magnetite are present in some Grenada cumulatesand pleonaste is found in rare St. Kitts samples. Ilmenite ispresent in blocks from several islands; coexisting Fe-Ti oxidesdefine a temperature range of 710?-950 ?C at of 15.5 to 10.0 bars. Biotite, quartz and apatiteare restricted to evolve cumulate types. Some modification of interstitial scoria/glass compositionsfrom equilibrium melts has occurred in the majority of samples,but general similarity with erupted lava types is importantevidence for the cognate relationship of the cumulate assemblages.The role of H2O is crucial in determining the calcic natureof island arc plutonic plagioclase when compared with relativelydry, layered tholeiitic plutons. Some modal and chemical featuresof cumulate-lava comparisons suggest plagioclase flotation maybe significant. A variety of thermodynamic calculations indicate temperaturesand pressures of crystallization in the range 850–1050?C, 4–10 kb. No evidence exists for systematic along-arcvariations in these parameters. Standard amphibole crystallinesolution models give unsatisfactory results for calculations. Some distinctive contrasts between cumulate and phenocryst modesare present. The abundance of amphibole in equilibrium withbasaltic melts in the plutonic situation compared with its rarityin lavas is striking. Plagioclase coexisting with a given meltis more anorthitic in the plutonic than the phenocryst mode. Least squares fractionation tests demonstrate the possibilityof relating basalt-andesite-dacite suites by fractional crystallizationof the cumulus phases. Trace element systematics of cumulate-lavasuites for individual islands also generally support this hypothesis.The suggestion of sole amphibole fractionation for the generationof andesite from basalt is discarded. * Present address: CRAE, Box 39598, Darwin, N.T. 5798, Australia.  相似文献   

16.
The Oto-Zan lava in the Setouchi volcanic belt is composed ofphenocryst-poor, sparsely plagioclase-phyric andesites (sanukitoids)and forms a composite lava flow. The phenocryst assemblagesand element abundances change but Sr–Nd–Pb isotopiccompositions are constant throughout the lava flow. The sanukitoidat the base is a high-Mg andesite (HMA) and contains Mg- andNi-rich olivine and Cr-rich chromite, suggesting the emplacementof a mantle-derived hydrous (7 wt % H2O) HMA magma. However,Oto-Zan sanukitoids contain little H2O and are phenocryst-poor.The liquid lines of descent obtained for an Oto-Zan HMA at 0·3GPa in the presence of 0·7–2·1 wt % H2Osuggest that mixing of an HMA magma with a differentiated felsicmelt can reasonably explain the petrographical and chemicalcharacteristics of Oto-Zan sanukitoids. We propose a model wherebya hydrous HMA magma crystallizes extensively within the crust,resulting in the formation of an HMA pluton and causing liberationof H2O from the magma system. The HMA pluton, in which interstitialrhyolitic melts still remain, is then heated from the base byintrusion of a high-T basalt magma, forming an H2O-deficientHMA magma at the base of the pluton. During ascent, this secondaryHMA magma entrains the overlying interstitial rhyolitic melt,resulting in variable self-mixing and formation of a zoned magmareservoir, comprising more felsic magmas upwards. More effectiveupwelling of more mafic, and hence less viscous, magmas througha propagated vent finally results in the emplacement of thecomposite lava flow. KEY WORDS: high-Mg andesite; sanukitoid; composite lava; solidification; remelting  相似文献   

17.
Back-scattered electron (BSE)-derived zoning patterns of plagioclase phenocrysts are used to identify magma processes at Bezymianny Volcano, Kamchatka, based on the 2000–2007 sequence of eruptive products. The erupted magmas are two-pyroxene andesites, which last equilibrated at ~915°C temperature, 77–87 MPa pressure, and a water content of ~1.4 wt%. Textural and compositional zoning of individual plagioclase phenocrysts typically includes a repeated core-to-rim sequence of oscillatory zoning (An50–60) truncated by a dissolution surface followed by an abrupt increase in An content (up to An85), which then gradually decreases rimward. This zoning pattern is interpreted to be the result of frequent replenishments of the magma chamber which cause both thermal and chemical interaction between resident and recharge magmas. The outermost 70- to 150-μm-wide zoning patterns of plagioclase phenocrysts are composed of dissolution surface with a subsequent increase in An and Fe contents. Zoning patterns of the rims exhibit correlation among plagioclase phenocrysts within one eruption. Rims are interpreted as a result of crystallization of a batch of magma in the conduit after recharge event.  相似文献   

18.
Dioritic and granodioritic rocks coexist in the Gęsiniec Intrusion in SW Poland showing typical relationships in many mafic–felsic mingling zones worldwide, such as dioritic syn-putonic dykes and microgranular enclaves within granodioritic host. Plagioclase zonation from granodioritic rocks suggests late stage mixing probably with dioritic magma, whereas no magma mixing is recorded in plagioclase from dioritic rocks. The diorites seem to show effects of interaction with evolved, leucocratic melts derived from granodiorite, not with the granodioritic melt itself. We conclude that the diorites’ compositions were modified after their emplacement within the granodioritic host, when the diorites were essentially solidified and injection of evolved melt from granodiorite did not involve marked modification of plagioclase composition. Compositional zoning patterns of plagioclase in diorites can be modeled by closed system fractional crystallization interrupted by resorption induced probably by decompression. Granodioritic plagioclase seems to be affected by the same resorption event. Plagioclase that crystallized in dioritic magma before the resorption does not record interaction between dioritic and granodioritic magmas, suggesting that both magmas evolved separately. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Plagioclase ultraphyric basalts (PUBs) with up to 54% plagioclasephenocrysts were dredged in the rift valley and adjacent flanksof the ultraslow-spreading Mohns and Knipovich ridges. The PUBsshow large variations in crystal morphologies and zoning. Thelarge variations suggest that single basalt samples containa mixture of plagioclase crystals that aggregated at differentlevels in the magma conduits. Resorbed crystals and repeatedreverse zones suggest that the magma reservoirs were replenishedand heated several times. Thin concentric zones with melt inclusions,and sharp reductions in the anorthite content of 3–7%,are common between the reverse zones. These zones, and skeletalcrystals with distinctly lower anorthite contents than massivecrystals, are interpreted to be the result of rapid crystalliztionduring strong undercooling. The changes between short periodsof cooling and longer periods with reheating are explained bymultiple advances of crystal-rich magma into cool regions followedby longer periods of gradual magma inflow and temperature increase.The porphyritic basalts are characterizd by more depleted andmore fractionated compositions than the aphyric basalts, withlower (La/Sm)N, K2O and Mg-numbers. This relationship, and theobservation that PUBs are sampled only close to segment centresalong these ridges, suggests that the PUBs formed by higherdegrees of melting and evolved in more long-lived magma reservoirs.We propose that the zoning patterns of plagioclase crystalsand crystal morphologies of these PUBs reflect the developmentand flow of magma through a stacked sill complex-like conduitsystem, whereas the aphyric equivalents represent later flowof magma through the conduit. The formation of voluminous higher-degreemelts may trigger the development of the magma conduits andexplain the generally depleted compositions of PUB magmas. KEY WORDS: basalt; mineral chemistry; MORB; magma mixing; magma chamber; major element  相似文献   

20.
Crystallization experiments were conducted on dry glasses fromthe Unzen 1992 dacite at 100–300 MPa, 775–875°C,various water activities, and fO2 buffered by the Ni–NiObuffer. The compositions of the experimental products and naturalphases are used to constrain the temperature and water contentsof the low-temperature and high-temperature magmas prior tothe magma mixing event leading to the 1991–1995 eruption.A temperature of 1050 ± 75°C is determined for thehigh-temperature magma based on two-pyroxene thermometry. Theinvestigation of glass inclusions suggests that the water contentof the rhyolitic low-temperature magma could be as high as 8wt % H2O. The phase relations at 300 MPa and in the temperaturerange 870–900°C, which are conditions assumed to berepresentative of the main magma chamber after mixing, showthat the main phenocrysts (orthopyroxene, plagioclase, hornblende)coexist only at reduced water activity; the water content ofthe post-mixing dacitic melt is estimated to be 6 ± 1wt % H2O. Quartz and biotite, also present as phenocrysts inthe dacite, are observed only at low temperature (below 800–775°C).It is concluded that the erupted dacitic magma resulted fromthe mixing of c. 35 wt % of an almost aphyric pyroxene-bearingandesitic magma (1050 ± 75°C; 4 ± 1 wt % H2Oin the melt) with 65 wt % of a phenocryst-rich low-temperaturemagma (760–780°C) in which the melt phase was rhyolitic,containing up to 8 ± 1 wt % H2O. The proportions of rhyoliticmelt and phenocrysts in the low-temperature magma are estimatedto be 65% and 35%, respectively. It is emphasized that the strongvariations of phenocryst compositions, especially plagioclase,can be explained only if there were variations of temperatureand/or water activity (in time and/or space) in the low-temperaturemagma. KEY WORDS: Unzen volcano; magma mixing; experimental study  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号