首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This article presents some advantages using a shape-preserving total variation diminishing (TVD) advection scheme in an ecosystem model. The superbee flux-limiter has been used to the second-order Lax–Wendroff advection scheme to make it TVD. We performed simulations for three shelf sea regions with different characteristic time scales, namely, the North Sea, the Barents Sea, and the Baltic Sea. To explore the advantages, we also performed reference runs with the much simpler and computationally cheaper upwind advection scheme. Frontal structures are much better resolved with the TVD scheme. The bottom salinity in the Baltic Sea stays at realistic values throughout the 10-year simulation with the TVD scheme, while with the upwind scheme, it drifts towards lower values and the permanent haline stratification in the Baltic is almost completely eroded within one seasonal cycle. Only when applying TVD for both the vertical and horizontal advections the model succeeded to preserve haline stratification in the decadal simulation. Lower trophic level patterns are far better reproduced with the TVD scheme, and for the estimated cod larval survival, the advantages seem to be even stronger. Simulations using the TVD-derived prey fields identified distinct regions such as Dogger Bank to favor potential larvae survival (PLS), which did not appear as particularly favorable in the upstream simulations. The TVD scheme needs about 25?% more time on the central processing unit (CPU) in case of a pure hydrodynamic setup with only two scalar state variables (Barents Sea application). The additional CPU time cost increases for a coupled physical–biological model application with a large number of state variables. However, this is more than compensated by all the advantages found, and, hence, we conclude that it is worthwhile to use the TVD scheme in our ecosystem model.  相似文献   

2.
Here we present results of a 1-year realistic North Sea simulation from the new model GETM (general estuarine transport model) and assess the capabilities of this model by comparing them to model results from the well-known HAMSOM (Hamburg shelf sea and ocean model) model, in situ data from the North Sea project and satellite-derived sea-surface temperature data. The annual cycle and the spatial variability of stratification and mixing in the North Sea is simulated. It is shown that the new model is successful in reproducing the general temporal and spatial dynamics of the North Sea. The major advantages of GETM for achieving improved results in this simulation are the implementation of general vertical coordinates, of a state-of-the-art turbulence model and of higher-order advection schemes. By exploiting the full capabilities of these features a more realistic simulation could be achieved. We found that the greatest differences in the model results are produced by applying advection schemes of different complexity. Here we are able to demonstrate that better advection schemes lead to stronger horizontal gradients and stronger vertical stratification during summer. When comparing these results to measurements from the North Sea project and to satellite data, we find that these stronger gradients are more realistic. Therefore, we consider it as essential to use such high-order advection schemes if the spatial variability of estuarine or shelf seas like the North Sea is to be resolved adequately. The advanced turbulence closure scheme also contributed to more realistic simulation of the vertical stratification. Finally, general vertical coordinates better resolve the shallow regions, but are also useful for the deeper regions, as they allow a better estimation of sea-surface temperature compared to traditional coordinates.Responsible Editor: Phil Dyke  相似文献   

3.
—?A crustal velocity model has been developed for Fennoscandia, the Baltic shield and adjacent areas. This model represents a simplified average of various models developed for parts of this region. We show that P-wave travel times calculated with this model provide an excellent fit to observations at the Fennoscandian, KRSC and IRIS station networks for a set of seismic events with known or very well-constrained locations. The station-event paths cover large parts of Western Russia and the Barents Sea, thus indicating that this model, which we denote the Barents model, is appropriate for this entire region. We show by examples that significant improvements in event location precision can be achieved compared to using the IASPEI model. We finally use the Barents model to calculate locations of recent small seismic events in the Novaya Zemlya region of interest in a CTBT monitoring context.  相似文献   

4.
Total variation diminishing (TVD) advection schemes are known to produce results that are free from some of the numerical artifacts (no overshooting, no spurious oscillation, small diffusion) that can spoil the physical significance of the results. When two or more tracers are advected separately using a TVD scheme, the sum of these variables can however exhibit some inappropriate behaviors. The total variation of the sum will not necessarily be non- increasing and local artificial oscillations and extrema can appear. We show that these can be avoided with only minor perturbations of the original solution by adjusting the slope limiters used for the different variables. If the sum of these variables has some physical significance, for instance as refinement of a larger model compartment, the correction procedure introduced in this paper should be used to ensure a physically meaningful solution.  相似文献   

5.
The physical and biological environment of the Barents Sea is characterised by large variability on a wide range of scales. Results from a numerical ocean model, SINMOD, are presented showing that the physical variability is partly forced by changes in annual net ice import. The mean contribution from ice import in the simulation period (1979–2007) is about 40% of the total amount of ice melted each year. The annual ice import into the Barents Sea varies between 143 and 1,236 km3, and this causes a substantial variability in the amount of annual ice melt in the Barents Sea. This in turn impacts the freshwater content. The simulated freshwater contribution from ice is 0.02 Sv on average and 0.04 Sv at maximum. When mixed into a mean net Atlantic Water (AW) inflow of 1.1 Sv with a salinity of 35.1, this freshwater addition decreases the salinity of the modified AW to 34.4 and 33.9 for the mean and maximum freshwater fluxes, respectively. Ice import may thus be important for the Barents Sea production of Arctic Ocean halocline water which has salinity of about 34.5. The changes in the ice melt the following summer due to ice import also affect the formation of dense water in the Barents Sea by changing stratification, altering the vertical mixing rates and affecting heat loss from the warm AW. The model results thus indicate that ice import from the Arctic has a great impact on water mass modification in the Barents Sea which in turn impacts the ventilation of the Arctic Ocean.  相似文献   

6.
Tides and wind-driven mixing play a major role in promoting post-bloom productivity in subarctic shelf seas. Whether this is also true in the high Arctic remains unknown. This question is particularly relevant in a context of increasing Arctic Ocean stratification in response to global climatic change. We have used a three-dimensional ocean-sea ice-plankton ecosystem model to assess the contribution of tides and strong wind events to summer (June-August 2001) primary production in the Barents Sea. Tides are responsible for 20% (60% locally) of the post-bloom primary production above Svalbard Bank and east of the Kola Peninsula. By contrast, more than 9% of the primary production is due to winds faster than 8 m s−1 in the central Barents Sea. Locally, this contribution reaches 25%. In the marginal ice zone, both tides and wind events have only a limited effect on primary production (<2%). Removing tides or winds faster than 8 m s−1 promotes a regime more sustained by regenerated production with a f-ratio (i.e. the proportion of nitrate-based “new” primary production in the total primary production) that decreases by up to 26% (east of the Kola Peninsula) or 35% (central Barents Sea), respectively. When integrated over all Barents Sea sub-regions, tides and strong wind events account, respectively, for 6.8% (1.55 Tg C; 1 Tg C=1012 g C) and 4.1% (0.93 Tg C) of the post-bloom primary production (22.6 Tg C). To put this in context, this contribution to summer primary production is equivalent to the spring bloom integrated over the Svalbard area. Tides and winds are significant drivers of summer plankton productivity in the Barents Sea.  相似文献   

7.
We present and analyse a fully coupled physical–biogeochemical model of the uptake and release of carbon dioxide in the Baltic Sea. The modelling includes the interaction between physical (stratification, temperature, salinity, penetration of solar radiation, and ice), chemical (total alkalinity, pH, dissolved inorganic carbon, oxygen, and nutrients), and biological processes (plankton and dissolved organic carbon (DOC)). These processes have been built into an advanced process-oriented coupled basin ocean model that has been extensively explored and validated for the Baltic Sea.  相似文献   

8.
Global atmosphere-ocean general circulation models are the tool by which projections for climate changes due to radiative forcing scenarios have been produced. Further, regional atmospheric downscaling of the global models may be applied in order to evaluate the details in, e.g., temperature and precipitation patterns. Similarly, detailed regional information is needed in order to assess the implications of future climate change for the marine ecosystems. However, regional results for climate change in the ocean are sparse. We present the results for the circulation and hydrography of the Barents Sea from the ocean component of two global models and from a corresponding pair of regional model configurations. The global models used are the GISS AOM and the NCAR CCSM3. The ROMS ocean model is used for the regional downscaling of these results (ROMS-G and ROMS-N configurations, respectively). This investigation was undertaken in order to shed light on two questions that are essential in the context of regional ocean projections: (1) How should a regional model be set up in order to take advantage of the results from global projections; (2) What limits to quality in the results of regional models are imposed by the quality of global models? We approached the first question by initializing the ocean model in the control simulation by a realistic ocean analysis and specifying air-sea fluxes according to the results from the global models. For the projection simulation, the global models’ oceanic anomalies from their control simulation results were added upon initialization. Regarding the second question, the present set of simulations includes regional downscalings of the present-day climate as well as projected climate change. Thus, we study separately how downscaling changes the results in the control climate case, and how scenario results are changed. For the present-day climate, we find that downscaling reduces the differences in the Barents Sea between the original global models. Furthermore, the downscaled results are closer to observations. On the other hand, the downscaled results from the scenario simulations are significantly different: while the heat transport into the Barents Sea and the salinity distribution change modestly from control to scenario with ROMS-G, in ROMS-N the heat transport is much larger in the scenario simulation, and the water masses become much less saline. The lack of robustness in the results from the scenario simulations leads us to conclude that the results for the regional oceanic response to changes in the radiative forcing depend on the choice of AOGCM and is not settled. Consequently, the effect of climate change on the marine ecosystem of the Barents Sea is anything but certain.  相似文献   

9.
We examine multi-year conductivity-temperature-depth (CTD) data to better understand temperature and salinity variability over the central Bering Sea shelf. Particular consideration is given to observations made annually from 2002 to 2007 between August and October, although other seasons and years are also considered. Vertical and horizontal correlation maps show that near-surface and near-bottom salinity anomalies tend to fluctuate in phase across the central shelf, but that temperature anomalies are vertically coherent only in the weakly or unstratified inner-shelf waters. We formulate heat content (HC) and freshwater content (FWC) budgets based on the CTD observations, direct estimates of external fluxes (surface heat fluxes, ice melt, precipitation (P), evaporation (E) and river discharge), and indirect estimates of advective contributions. Ice melt, PE, river discharge, and along-isobath advection are sufficient to account for the mean spring-to-fall increase in FWC, while summer surface heat fluxes are primarily responsible for the mean seasonal increase in HC, although interannual variability in the HC at the end of summer appears related to variability in the along-isobath advection during the summer months. On the other hand, FWC anomalies at the end of summer are significantly correlated with the mean wind direction and cross-isobath Ekman transport averaged over the previous winter. Consistent with the latter finding, salinities exhibit a weak but significant inverse correlation between the coastal and mid-shelf waters. The cross-shelf transport likely has significant effect on nutrient fluxes and other processes important to the functioning of the shelf ecosystem. Both the summer and winter advection fields appear to result from the seasonal mean position and strength of the Aleutian Low. We find that interannual thermal and haline variability over the central Bering Sea shelf are largely uncoupled.  相似文献   

10.
The aim of this study is to intervalidate observations and numerical simulation results for the turbulent dissipation rate under strong wind conditions in the Northern North Sea during one week in October 1998. The observations were obtained by spatially and temporally averaging measurements of small-scale shear with a free-falling shear probe. The 1D numerical model used for this study is based on a state-of-the-art two-equation k− turbulence model with an algebraic second-moment closure scheme. It is discussed by means of annual and seasonal model simulations how the influence of heat and salt advection and internal waves can be accounted for. After these precautions, the agreement between observations and simulations of the turbulent dissipation rate are fairly good. Remaining differences cannot only be explained by problems such as undersampling and noise level, but also by idealising model assumptions.  相似文献   

11.
Global coupled climate models are generally capable of reproducing the observed trends in the globally averaged atmospheric temperature. However, the global models do not perform as well on regional scales. Here, we present results from a 20-year, high-resolution ocean model experiment for the Atlantic and Arctic Oceans. The atmospheric forcing is taken from the final 20 years of a twentieth-century control run with a coupled atmosphere–ocean general circulation model. The ocean model results from the regional ocean model are validated using observations of hydrography from repeat cruises in the Barents Sea. Validation is performed for average quantities and for probability distributions in space and time. The validation results reveal that, though the regional model is forced by a coupled global model that has a noticeable sea ice bias in the Barents Sea, the hydrography and its variability are reproduced with an encouraging quality. We attribute this improvement to the realistic transport of warm, salty waters into the Barents Sea in the regional model. These lateral fluxes in the ocean are severely underestimated by the global model. The added value with the regional model that we have documented here lends hope to advance the quality of oceanic climate change impact studies.  相似文献   

12.
W. P. Budgell 《Ocean Dynamics》2005,55(3-4):370-387
A dynamic–thermodynamic sea ice model has been coupled to a three-dimensional ocean general circulation model for the purpose of conducting ocean climate dynamical downscaling experiments for the Barents Sea region. To assess model performance and suitability for such an application, the coupled model has been used to conduct a hindcast for the period 1990–2002. A comparison with available observations shows that the model successfully tracks seasonal and inter-annual variability in the ocean temperature field and that the simulated horizontal and vertical distribution of temperature are in good agreement with observations. The model results follow the seasonal and inter-annual variability in sea ice cover in the region, with the exception that the model results show too much ice melting in the northern Barents Sea during summer. The spatial distribution of the winter simulated sea ice cover is in close agreement with observations. Modelled temperatures and ice concentrations in the central Barents Sea are biased too high and too low, respectively. The probable cause is too high inflow of Atlantic Water into the Barents. The seasonal and inter-annual fluctuations in temperature and sea ice cover in the central Barents are, however, in excellent agreement with observations. Salt release during the freezing process in the numerical simulation exhibits considerable inter-annual variability and tends to vary in an opposite manner to the net inflow volume flux at the western entrance of the Barents Sea. Overall, the model produces realistic ice-ocean seasonal and inter-annual variability and should prove to be a useful tool for dynamical downscaling applications.  相似文献   

13.
The exceptional Oder flood in summer 1997 was a unique event in order to investigate the impacts on and the consequences for the ecosystem of the Baltic Sea of about 6.5 km3 additional water loaded with nutrients and contaminants and discharged within only 5 weeks. About 15 institutions participated in this investigation in both the Szczecin Lagoon and the Pomeranian Bight. The Baltic Sea Research Institute Warnemünde studied the water and nutrient inflow, the spreading of the Oder discharge, and the impact of the discharge on the ecosystem. The main topic of the presented investigations is a detailed study of the spatial and temporal spreading of the extreme river discharge in the Pomeranian Bight and the southern Baltic Sea by satellite data, ship observations and continuous buoy measurements as well as numerical modelling. The meteorological conditions were characterized by mainly easterly winds which guided the outflowing riverine water along the German coast into the Arkona Sea. The spatial and temporal development of the distribution patterns of the Oder discharge was monitored by about 80 Sea Surface Temperature (SST) images of NOAA satellites. Shipborne measurements showed that the vertical extent of the Oder plume ranged between 5 and 7 metres. The concentrations of inorganic nutrients, except higher silicate, were comparable to typical winter/early spring values (seasonal maximum) in this region. The high dilution effect of the flood water reduced the concentration of contaminants and thus, prevented a direct negative impact of trace metals and chlorinated organic compounds on the marine environment. Coupled physical-biochemical modelling in combination with SST-images demonstrated the temporal development and satellite data in the visible spectral range delivered the maximum extent of discharged river water into the southern Arkona Sea where a further western transport was limited by the upwelling region off Hiddensee. Thus, all detected effects of the Oder flood were confined to the Pomeranian Bight and the southern Arkona Sea, without long-term consequences for the ecosystem.  相似文献   

14.
There is an increasing understanding and requirement to take into account the effects of invasive alien species (IAS) in environmental quality assessments. While IAS are listed amongst the most important factors threatening marine biodiversity, information on their impacts remains unquantified, especially for phytoplankton species. This study attempts to assess the impacts of invasive alien phytoplankton in the Baltic Sea during 1980-2008. A bioinvasion impact assessment method (BPL - biopollution level index) was applied to phytoplankton monitoring data collected from eleven sub-regions of the Baltic Sea. BPL takes into account abundance and distribution range of an alien species and the magnitude of the impact on native communities, habitats and ecosystem functioning. Of the 12 alien/cryptogenic phytoplankton species recorded in the Baltic Sea only one (the dinoflagellate Prorocentrum minimum) was categorized as an IAS, causing a recognizable environmental effect.  相似文献   

15.
Only recently, medium intensity inflow events into the Baltic Sea have gained more awareness because of their potential to ventilate intermediate layers in the Southern Baltic Sea basins. With the present high-resolution model study of the Western Baltic Sea a first attempt is made to obtain model based realistic estimates of turbulent mixing in this area where dense bottom currents resulting from medium intensity inflow events are weakened by turbulent entrainment. The numerical model simulation which is carried out using the General Estuarine Transport Model (GETM) during nine months in 2003 and 2004 is first validated by means of three automatic stations at the Drogden and Darss Sills and in the Arkona Sea. In order to obtain good agreement between observations and model results, the 0.5×0.50.5×0.5 nautical mile bathymetry had to be adjusted in order to account for the fact that even at that scale many relevant topographic features are not resolved. Current velocity, salinity and turbulence observations during a medium intensity inflow event through the Øresund are then compared to the model results. Given the general problems of point to point comparisons between observations and model simulations, the agreement is fairly good with the characteristic features of the inflow event well represented by the model simulations. Two different bulk measures for mixing activity are then introduced, the vertically integrated decay of salinity variance, which is equal to the production of micro-scale salinity variance, and the vertically integrated turbulent salt flux, which is related to an increase of potential energy due to vertical mixing of stably stratified flow. Both measures give qualitatively similar results and identify the Drogden and Darss Sills as well as the Bornholm Channel as mixing hot spots. Further regions of strong mixing are the dense bottom current pathways from these sills into the Arkona Sea, areas around Kriegers Flak (a shoal in the western Arkona Sea) and north–west of the island of Rügen.  相似文献   

16.

As well known, the methods of remote sensing and Bowen Ratio for retrieving surface flux are based on energy balance closure; however, in most cases, surface energy observed in experiment is lack of closure. There are two main causes for this: one is from the errors of the observation devices and the differences of their observational scale; the other lies in the effect of horizontal advection on the surface flux measurement. Therefore, it is very important to estimate the effects of horizontal advection quantitatively. Based on the local advection theory and the surface experiment, a model has been proposed for correcting the effect of horizontal advection on surface flux measurement, in which the relationship between the fetch of the measurement and pixel size for remote sensed data was considered. By means of numerical simulations, the sensitivities of the main parameters in the model and the scaling problems of horizontal advection were analyzed. At last, by using the observational data acquired in agricultural field with relatively homogeneous surface, the model was validated.

  相似文献   

17.
In recent years, various attempts have been made to estimate the amount of numerical mixing in numerical ocean models due to discretisation errors of advection schemes. In this study, a high-resolution coastal model using the ocean circulationmodel GETM is applied to the Western Baltic Sea, which is characterised by energetic and episodic inflows of dense bottom waters originating from the Kattegat. The model is equipped with an easy-to-implement diagnostic method for obtaining the numerical mixing which has recently been suggested. In this diagnostic method, the physical mixing is defined as the mean tracer variance decay rate due to turbulent mixing. The numerical mixing due to discretisation errors of tracer advection schemes is defined as the decay rate between the advected square of the tracer variance and the square of the advected tracer, which can be directly compared to the physical variance decay. The source and location of numerical mixing is further investigated by comparing different advection schemes and analysing the amount of numerical mixing in each spatial dimension during the advection time step. The results show that, for the setup used, the numerically and physically induced mixing have the same orders of magnitude but with different vertical and horizontal distributions. As the main mechanism for high numerical mixing, vertical advection of tracers with strong vertical gradients has been identified. The main reason for high numerical mixing is due to bottom-following coordinates when density gradients, especially for regions of steep slopes, are advected normal to isobaths. With the bottom-following coordinates used here, the horizontal gradients are reproduced by a spurious sawtooth-type profile where strong advection through, but not along, the vertical coordinate levels occurs. Additionally, the well known relation between strong tracer gradients and high velocities on the one and high numerical mixing on the other hand is approved quantitatively within this work.  相似文献   

18.
A finite volume upwind numerical scheme for the solution of the linear advection equation in multiple dimensions on Cartesian grids is presented. The small-stencil, Modified Discontinuous Profile Method (MDPM) uses a sub-cell piecewise constant reconstruction and additional information at the cell interfaces, rather than a spatial extension of the stencil as in usual methods. This paper presents the MDPM profile reconstruction method in one dimension and its generalization and algorithm to two- and three-dimensional problems. The method is extended to the advection–diffusion equation in multiple dimensions. The MDPM is tested against the MUSCL scheme on two- and three-dimensional test cases. It is shown to give high-quality results for sharp gradients problems, although some scattering appears. For smooth gradients, extreme values are best preserved with the MDPM than with the MUSCL scheme, while the MDPM does not maintain the smoothness of the original shape as well as the MUSCL scheme. However the MDPM is proved to be more efficient on coarse grids in terms of error and CPU time, while on fine grids the MUSCL scheme provides a better accuracy at a lower CPU.  相似文献   

19.
The western Baltic Sea infront of the German coast is a highly variable dynamical system, dominated by a complex and small-scale morphometry, the water exchange between the Baltic and North Seas, and driven by local wind. Neither data collection, nor satellite images or model simulations alone were able to explain the observed spatial patterns and transport processes. Therefore, all these methods were combined to explain the dynamical features and to systematise them according to the typical local wind pattern and time series. The aim was to develop an instrument for regional authorities which supports the interpretation of coastal water monitoring data and forms a basis for an improved monitoring strategy. Satellite data of sea surface temperature and ocean colour from the sensors NOAA-AVHRR and SeaWiFS were applied for synoptic investigations in the entire region and Landsat-7-ETM+ for regional studies. Model simulations were performed for the western Baltic using a 3D model MOM-3 and for the Szczecin Lagoon using 2D model FEMFLOW. For the first time, regional particularities in the coastal dynamical features and processes are derived for the main wind directions and for transitions between dominant wind situations west and east as derived from wind statistics. The simulated transport of particles released from different coastal and open sea sources indicate the affected areas during changing forcing conditions. The results support the interpretation of acquired coastal monitoring data as well as the assessment and optimisation of the monitoring programme.  相似文献   

20.
The Curonian Lagoon is the biggest fresh water basin in Lithuania influenced by the exchange of the fresh Nemunas and other smaller rivers’ water and saline water of the Baltic Sea. The lagoon ecosystem is influenced by fresh, brackish and brackish water masses. A long-term water balance of the Curonian Lagoon was calculated for the period of 1960–2009. The sum river inflow is 21.784 km3/year, precipitation—1.199 km3/year, evaporation—1.007 km3/year, inflow of brackish water from the Baltic Sea to the Curonian Lagoon—6.171 km3/year, and fresh water runoff from the Curonian Lagoon to the Baltic Sea—27.642 km3/year. The lagoon water balance elements have been influenced by climate change. The water balance forecasting has been performed for the period of 2011–2100. The climate change impact on the water balance of the Lagoon has been evaluated using Global Climate Models (ECHAM5 and HadCM3), greenhouse gas emission scenarios (A2, A1B and B1), and hydrological modelling by Hydrologiska Byrans Vattenbalansavdelning (HBV) software. One scenario was selected for the prediction of the Baltic Sea water level. Considerable changes of the Curonian Lagoon water balance are forecasted in the 21st century. Increase of weather temperature and changes in precipitation will influence the elements of water balance of the Curonian Lagoon. In the period of 2011–2100, the river inflow and outflow from the Baltic Sea into the Lagoon will decrease respectively by 20.4 and 16.6% in comparison with the baseline period (1961–1990). The amount of precipitation and evaporation will increase respectively by 3.8 and 25.1%, while inflow from the Baltic Sea into the Curonian Lagoon will increase up to 39.7% in comparison with the baseline period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号