首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A method is proposed to establish regional design hyetographs for facilitating the determination of design hyetographs at ungauged sites. The method is applied to the central area of Taiwan. First, the single‐station design hyetographs at all rain gauges are analysed using principal components analysis and cluster analysis. The principal components analysis shows that there are six dominant factors, and the cluster analysis indicates that the time to peak rainfall has the largest influence on the classification of hyetographs. It also shows that the single‐station hyetographs in the study area can be classified into three clusters. Finally, the homogeneous regions for these three clusters are delineated and the corresponding regional design hyetographs are proposed. Once the homogeneous regions and the regional hyetographs are available, the design hyetograph at the point of interest can be easily determined. The proposed method is expected to be useful for providing the design hyetographs at ungauged sites. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
A simulation experiment for optimal design hyetograph selection   总被引:1,自引:0,他引:1  
The aim of this work is to assess the accuracy of literature design hyetographs for the evaluation of peak discharges during flood events. Five design hyetographs are examined in a set of simulations, based upon the following steps: (i) an ideal river basin is defined, characterized by a Beta distribution shaped unit hydrograph (UH); (ii) 1000 years of synthetic rainfall are artificially generated; (iii) a discharge time‐series is obtained from the convolution of the rainfall time‐series and the UH, and the reference T‐years flood is computed from this series; (iv) for the same return period T, the parameters of the intensity–duration–frequency (IDF) curve are estimated from the 1000 years of synthetic rainfall; (v) five design hyetographs are determined from the IDF curves and are convolved with the discrete UH to find the corresponding design hydrographs; (vi) the hydrograph peaks are compared with the reference T‐years flood and the advantages and drawbacks of each of the five approaches are evaluated. The rainfall and UH parameters are varied, and the whole procedure is repeated to assess the sensitivity of results to the system configuration. We found that all design hyetographs produce flood peak estimates that are consistently biased in most of the climatic and hydrologic conditions considered. In particular, significant underestimation of the design flood results from the adoption of any rectangular hyetograph used in the context of the rational formula. In contrast, the Chicago hyetograph tends to overestimate peak flows. In two cases it is sufficient to multiply the result by a constant scaling factor to obtain robust and nearly unbiased estimates of the design floods. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
The primary purpose of this study is to develop regional models of the lower part of flow duration curves (LPFDCs) to synthesize low‐flow characteristics at ungauged sites in southern Taiwan. Because of the close relationship between low streamflow regimes and hydrogeological features, the model development first involved delimiting homogeneous hydrogeological regions by using two‐step cluster analysis. Each homogeneous region was then discriminated by an equation developed on the basis of its hydrogeological features, which was then used to determine which of three sets of regional LPFDC models would be appropriate for a particular ungauged site. Each of the three sets of regional LPFDC models were developed using both conventional multivariate statistical regression and fuzzy regression. Thirty‐four stream‐gauged watersheds located in southern Taiwan provide the data set. The study results reveal that the regional LPFDC models developed in this study could be applied reasonably at ungauged sites. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Reliable estimation of low flows at ungauged catchments is one of the major challenges in water‐resources planning and management. This study aims at providing at‐site and ungauged sites low‐flow frequency analysis using regionalization approach. A two‐stage delineating homogeneous region is proposed in this study. Clustering sites with similar low‐flow L‐moment ratios is initially conducted, and L‐moment‐based discordancy and heterogeneity measures are then used to detect unusual sites. Based on the goodness‐of‐fit test statistic, the best‐fit regional model is identified in each hydrologically homogeneous region. The relationship between mean annual 7‐day minimum flow and hydro‐geomorphic characteristics is also constructed in each homogeneous region associated with the derived regional model for estimating various low‐flow quantiles at ungauged sites. Uncertainty analysis of model parameters and low‐flow estimations is carried out using the Bayesian inference. Applied in Sefidroud basin located in northwestern Iran, two hydrologically homogeneous regions are identified, i.e. the east and west regions. The best‐fit regional model for the east and west regions are generalized logistic and Pearson type III distributions, respectively. The results show that the proposed approach provides reasonably good accuracy for at‐site as well as ungauged‐site frequency analysis. Besides, interval estimations for model parameters and low flows provide uncertainty information, and the results indicate that Bayesian confidence intervals are significantly reduced when comparing with the outcomes of conventional t‐distribution method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Hydrologic engineering designs and analyses often require the specification of design storm which involves rainfall amount, duration and hyetograph. In practice, the determination of design rainfall in hydrologic engineering applications involves the frequency analysis of extreme rainfalls of different durations and the establishment of rainfall hyetograph for the design event under consideration. Sampling errors exist in the estimation of rainfall depth (or intensity) quantiles from frequency analysis, which will be transmitted in the process of determining the design rainfall hyetograph. This paper presents a practical methodological framework based on the bootstrap resampling scheme to assess the uncertainty features associated with the magnitude of estimated rainfall depth/intensity quantiles and the corresponding design hyetographs. The procedure is implemented to quantify uncertainty of design rainfall hyetograph following the Stormwater Drainage Manual of Hong Kong involving the use of rainfall intensity–duration–frequency (IDF) model. Of particular interesting is that the bootstrap resampling scheme implemented herein is modified to handle unequal record period of annual maximum rainfall data series of different durations and to account for their intrinsic correlations. According to the adopted rainfall IDF model, the design rainfall hyetograph is a function of the IDF model coefficients. Due to the correlation among rainfall quantiles of different durations, the IDF coefficients are found to be strongly related in a nonlinear fashion which should not be ignored in the establishment of the design hyetographs.  相似文献   

6.
Stream flow predictions in ungauged basins are one of the most challenging tasks in surface water hydrology because of nonavailability of data and system heterogeneity. This study proposes a method to quantify stream flow predictive uncertainty of distributed hydrologic models for ungauged basins. The method is based on the concepts of deriving probability distribution of model's sensitive parameters by using measured data from a gauged basin and transferring the distribution to hydrologically similar ungauged basins for stream flow predictions. A Monte Carlo simulation of the hydrologic model using sampled parameter sets with assumed probability distribution is conducted. The posterior probability distributions of the sensitive parameters are then computed using a Bayesian approach. In addition, preselected threshold values of likelihood measure of simulations are employed for sizing the parameter range, which helps reduce the predictive uncertainty. The proposed method is illustrated through two case studies using two hydrologically independent sub‐basins in the Cedar Creek watershed located in Texas, USA, using the Soil and Water Assessment Tool (SWAT) model. The probability distribution of the SWAT parameters is derived from the data from one of the sub‐basins and is applied for simulation in the other sub‐basin considered as pseudo‐ungauged. In order to assess the robustness of the method, the numerical exercise is repeated by reversing the gauged and pseudo‐ungauged basins. The results are subsequently compared with the measured stream flow from the sub‐basins. It is observed that the measured stream flow in the pseudo‐ungauged basin lies well within the estimated confidence band of predicted stream flow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

The method of “historic event” is used to generate synthetic hyetographs based on statistical analysis of precipitation data. A synthetic triangular model was developed based on rainfall data of Zioud watershed (central Tunisia) with a standard time step of one hour. A database of 2799 observed rainfall events was used to provide statistical parameters for a simple triangular-shaped hyetograph model. The developed model provides a synthetic hyetograph in dimensionless form for different storm durations (2, 3 and 4 hours). For a given season and location, the variation of the first dimensionless moment with duration was relatively small, with an average range of 13% for all the stations. The resulting dimensionless hyetographs were found to be nearly identical when they were non-dimensionalized using the rainfall depth and duration, showing some seasonal effect and insignificant effects of the rainfall duration. A good agreement between simulated and observed hyetographs was achieved based on not only visual impressions, but also statistical numerical and graphical tests.  相似文献   

8.
A procedure combining the Soil Conservation Service‐Curve Number (SCS‐CN) method and the Green–Ampt (GA) infiltration equation was recently developed to overcome some of the drawbacks of the classic SCS‐CN approach when estimating the volume of surface runoff at a sub‐daily time resolution. The rationale of this mixed procedure, named Curve Number for Green–Ampt (CN4GA), is to use the GA infiltration model to distribute the total volume of the net hyetograph (rainfall excess) provided by the SCS‐CN method over time. The initial abstraction and the total volume of rainfall given by the SCS‐CN method are used to identify the ponding time and to quantify the hydraulic conductivity parameter of the GA equation. In this paper, a sensitivity analysis of the mixed CN4GA parameters is presented with the aim to identify conditions where the mixed procedure can be effectively used within the Prediction in Ungauged Basin perspective. The effects exerted by changes in selected input parameters on the outputs are evaluated using rectangular and triangular synthetic hyetographs as well as 100 maximum annual storms selected from synthetic rainfall time series. When applied to extreme precipitation events, which are characterized by predominant peaks of rainfall, the CN4GA appears to be rather insensitive to the input hydraulic parameters of the soil, which is an interesting feature of the CN4GA approach and makes it an ideal candidate for the rainfall excess estimation at sub‐daily temporal resolution at ungauged sites. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Rainfall intensity–duration–frequency (IDF) curves are used in the design of urban infrastructure. Their estimation is based on rainfall frequency analysis, usually performed on rainfall records from a single gauged station. However, available at‐site record length is often too short to provide accurate estimates for long return periods. In the present study, a general framework for pooled rainfall frequency analysis based on the index‐event model is proposed for IDF estimation at gauged stations. Pooling group formation is defined by the region of influence approach on the basis of the geographical distance similarity measure. Several pooled approaches are defined and evaluated by a procedure through which quantile estimation and uncertainty are assessed. Alternate approaches for the definition of a pooling group are based on different criteria regarding initial pooling group size (and the relationship between size and return period), approaches for assessing pooling group homogeneity, and the use of macroregions in pooling group formation. The proposed framework is applied to identify the preferred approach for pooled rainfall intensity frequency analysis in Canada. Pooled approaches are found to provide more precise estimates than the at‐site approach, especially for long return periods. Pooled parent distribution selection supported the use of the generalized extreme value distribution across the country. Recommendations for pooling group formation include increasing the pooling group size with increases in return period and identifying an appropriate trade‐off between pooling group homogeneity and size for long return periods.  相似文献   

10.
《水文科学杂志》2013,58(1):86-87
  相似文献   

11.
Regionalization of model parameters by developing appropriate functional relationship between the parameters and basin characteristics is one of the potential approaches to employ hydrological models in ungauged basins. While this is a widely accepted procedure, the uniqueness of the watersheds and the equifinality of parameters bring lot of uncertainty in the simulations in ungauged basins. This study proposes a method of regionalization based on the probability distribution function of model parameters, which accounts the variability in the catchment characteristics. It is envisaged that the probability distribution function represents the characteristics of the model parameter, and when regionalized the earlier concerns can be addressed appropriately. The method employs probability distribution of parameters, derived from gauged basins, to regionalize by regressing them against the catchment attributes. These regional functions are used to develop the parameter characteristics in ungauged basins based on the catchment attributes. The proposed method is illustrated using soil water assessment tool model for an ungauged basin prediction. For this numerical exercise, eight different watersheds spanning across different climatic settings in the USA are considered. While all the basins considered in this study were gauged, one of them was assumed to be ungauged (pseudo-ungauged) in order to evaluate the effectiveness of the proposed methodology in ungauged basin simulation. The process was repeated by considering representative basins from different climatic and landuse scenarios as pseudo-ungauged. The results of the study indicated that the ensemble simulations in the ungauged basins were closely matching with the observed streamflow. The simulation efficiency varied between 57 and 61 % in ungauged basins. The regional function was able to generate the parameter characteristics that were closely matching with the original probability distribution derived from observed streamflow data.  相似文献   

12.
This work develops a top‐down modelling approach for storm‐event rainfall–runoff model calibration at unmeasured sites in Taiwan. Twenty‐six storm events occurring in seven sub‐catchments in the Kao‐Ping River provided the analytical data set. Regional formulas for three important features of a streamflow hydrograph, i.e. time to peak, peak flow, and total runoff volume, were developed via the characteristics of storm event and catchment using multivariate regression analysis. Validation of the regional formulas demonstrates that they reasonably predict the three features of a streamflow hydrograph at ungauged sites. All of the sub‐catchments in the study area were then adopted as ungauged areas, and the three streamflow hydrograph features were calculated by the regional formulas and substituted into the fuzzy multi‐objective function for rainfall–runoff model calibration. Calibration results show that the proposed approach can effectively simulate the streamflow hydrographs at the ungauged sites. The simulated hydrographs more closely resemble observed hydrographs than hydrographs synthesized using the Soil Conservation Service (SCS) dimensionless unit hydrograph method, a conventional method for hydrograph estimation at ungauged sites in Taiwan. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Design flood estimates for a given return period are required in both gauged and ungauged catchments for hydraulic design and risk assessments. Contrary to classical design estimates, synthetic design hydrographs provide not only information on the peak magnitude of events but also on the corresponding hydrograph volumes together with the hydrograph shapes. In this study, we tested different regionalization approaches to transfer parameters of synthetic design hydrographs from gauged to ungauged catchments. These approaches include classical regionalization methods such as linear regression techniques, spatial methods, and methods based on the formation of homogeneous regions. In addition to these classical approaches, we tested nonlinear regression models not commonly used in hydrological regionalization studies, such as random forest, bagging, and boosting. We found that parameters related to the magnitude of the design event can be regionalized well using both linear and nonlinear regression techniques using catchment area, length of the main channel, maximum precipitation intensity, and relief energy as explanatory variables. The hydrograph shape, however, was found to be more difficult to regionalize due to its high variability within a catchment. Such variability might be better represented by looking at flood-type specific synthetic design hydrographs.  相似文献   

14.
To aid prediction of the flow hydrograph in a basin with limited data, a practical approach to determining a regionalized Clark instantaneous unit hydrograph (IUH) model is presented. The proposed model is described in terms of the synthetic time–area concentration curve, the concentration time, and a special regional similarity value that is valid in the whole basin. The latter was estimated from a Monte Carlo testing procedure based on the normal probability distribution of transformed regional similarity values composed of the time of concentration and the storage coefficient in gauged basins. The time–area concentration curve and the concentration time were calculated from a rational equation as in conventional methods. The method of transformation adopted was the Box–Cox power transformation, which is known to make non‐normal values resemble normal data. By introducing the regional similarity value into a Clark IUH, a statistically best estimate of IUH for given data conditions and its quantified degree of uncertainty were realized. The Wi River basin in Korea was used to test the applicability of the regionalized Clark IUH. The performance of the suggested methodology was evaluated by assuming an ungauged sub‐basin at the site. The results showed that the IUH model developed in this work was an effective tool, predicting a reliable hydrograph within the study area even though only limited data were available. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
水文资料匮乏流域的洪水预报(PUBs)是水文科学与工程中一个尚未解决的重大挑战.中国湿润山区中小流域大多是水文资料匮乏的流域,在此地区进行洪水预报的重要手段之一就是水文模型参数的估计.对基于参数物理意义的估算方法(以下简称物理估算法)及两种区域化方法进行了研究,将其用于新安江模型参数的估算及移植.皖南山区的29个中小流域被选作水文资料丰富的测量流域,鄂西山区的3个中小流域被视为水文资料匮乏的目标流域,目的是研究目标流域与测量流域空间位置较远但物理条件相似时,区域化等方法是否可以有效估计模型参数.结果表明,即使目标流域与测量流域空间距离较远,区域化及物理估算法也能一定程度上减少参数估计导致的模型效率损失,且在研究区的最优参数估计方案为单流域物理相似法结合回归法及物理估算法.为长江中下游资料匮乏的山区中小流域提出了可行的新安江模型参数估计方案,为该地区的洪水预报提供指导.  相似文献   

16.
In single‐event deterministic design flood estimation methods, estimates of the peak discharge are based on a single and representative catchment response time parameter. In small catchments, a simplified convolution process between a single‐observed hyetograph and hydrograph is generally used to estimate time parameters such as the time to peak (TP), time of concentration (TC), and lag time (TL) to reflect the “observed” catchment response time. However, such simplification is neither practical nor applicable in medium to large heterogeneous catchments, where antecedent moisture from previous rainfall events and spatially non‐uniform rainfall hyetographs can result in multi‐peaked hydrographs. In addition, the paucity of rainfall data at sub‐daily timescales further limits the reliable estimation of catchment responses using observed hyetographs and hydrographs at these catchment scales. This paper presents the development of a new and consistent approach to estimate catchment response times, expressed as the time to peak (TPx) obtained directly from observed streamflow data. The relationships between catchment response time parameters and conceptualised triangular‐shaped hydrograph approximations and linear catchment response functions are investigated in four climatologically regions of South Africa. Flood event characteristics using primary streamflow data from 74 flow‐gauging stations were extracted and analysed to derive unique relationships between peak discharge, baseflow, direct runoff, and catchment response time in terms of TPx. The TPx parameters are estimated from observed streamflow data using three different methods: (a) duration of total net rise of a multipeaked hydrograph, (b) triangular‐shaped direct runoff hydrograph approximations, and (c) linear catchment response functions. The results show that for design hydrology and for the derivation of empirical equations to estimate catchment response times in ungauged catchments, the catchment TPx should be estimated from both the use of an average catchment TPx value computed using either Methods (a) or (b) and a linear catchment response function as used in Method (c). The use of the different methods in combination is not only practical but is also objective and has consistent results.  相似文献   

17.
18.
The estimation of the monthly mean flow is a critical issue in many water resource development projects. However, in practice the mean flow is not easily determined in ungauged and poorly gauged basins. Therefore, in the literature, various flow estimation methods have been developed recently for mountainous regions which are generally ungauged or poorly gauged basins. In this study a fuzzy logic model based on the Mamdani approach was developed to estimate the flow for poorly gauged mountainous basins. This model was applied to the Solakli Basin which is located in the Eastern Black Sea Region of Turkey. Limited rainfall and flow data are available for this basin. In addition to these variables, the stream and time coefficients were introduced and used as variables for modeling. The data was divided into training and testing phases. The model results were compared with the measured data. The comparison depends on seven statistical characteristics, four different error modes and the contour map method. It was observed that the fuzzy model developed in this study yielded reliable results.  相似文献   

19.
In hydrosystem engineering design and analysis, temporal pattern for rainfall events of interest is often required. In this paper, statistical cluster analysis of dimensionless rainfall pattern is applied to identify representative temporal rainfall patterns typically occurred in Hong Kong Territory. For purpose of selecting an appropriate rainfall pattern in engineering applications, factors affecting the occurrence of different rainfall patterns are examined by statistical contingency tables analysis through which the inter-dependence of the occurrence frequency of rainfall patterns with respect to geographical location, rainfall duration and depth, and seasonality is investigated. Furthermore, due to inherent variability of rainfall mass curves or hyetographs within each classified rainfall pattern, a practical procedure to probabilistically generate plausible rainfall patterns is described. The procedure preserves the inherent stochastic features of random dimensionless rainfall hyetograph ordinates, which in general are correlated non-normal multivariate compositional variables.  相似文献   

20.
The adoption of hydrological neighborhoods is one of the common approaches employed for the delineation step in regional frequency analysis (RFA). Traditional methods proposed for building hydrological neighborhoods are mainly based on distance metrics. These methods have some limitations. They are not robust against outliers, they are not affine invariant and they require site characteristics to be normally distributed. To overcome these limitations, the present paper aims to propose a new robust method to identify the neighborhood of a target site. The proposed method is based on the statistical notion of depth function. More precisely, a similarity measure derived from depth functions is used to compute the similarities between the target sites and the gauged ones. A data set from the southern part of the province of Quebec (Canada) is used to compare the proposed method with traditional ones. The obtained results indicate that the depth-based method leads to neighborhoods that are more homogeneous and more efficient for quantile estimation, than those obtained by traditional methods. The triangular shape of neighborhoods obtained by the proposed approach makes it practical and flexible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号