首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the last 150 years, land degradation across the semi‐arid grasslands of the south‐western United States has been associated with an increase in runoff and erosion. Concurrent with this increase in runoff and erosion is a loss of nitrogen (N) and phosphorus (P), which are plant‐essential nutrients. This study investigates the runoff‐driven redistribution and loss of dissolved and particulate‐bound N and P that occurs during natural runoff events over a trajectory of degradation, from grassland to degraded shrubland, in central New Mexico. Runoff‐driven nutrient dynamics were monitored at four stages over a transition from grassland to shrubland, for naturally occurring rainfall events over 10 × 30 m bounded runoff plots. Results show that particulate‐bound forms of N and P are responsible for most of N and P lost from the plots due to erosion occurring during runoff events. Results suggest that for high‐magnitude rainfall events, the output of N and P from the plots may greatly exceed the amount input into the plots, particularly over shrub‐dominated plots where erosion rates are higher. As these results only become apparent when monitoring these processes over larger hillslope plots, it is important to recognize that processes of nutrient cycling related to the islands of fertility hypothesis may have previously been overstated when observed only at smaller spatial scales. Thus, the progressive degradation of semi‐arid grassland ecosystems across the south‐western United States and other semi‐arid ecosystems worldwide has the potential to affect N and P cycling significantly through an increase in nutrient redistribution and loss in runoff. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
This paper investigates the controls of vegetation on runoff and erosion dynamics in the dryland environment of Jornada, New Mexico, USA. As the American southwest has seen significant shifts in the dominant vegetation species in the past 150 years, an understanding of the vegetation effects on hydrological and erosional processes is vital for understanding and managing environmental change. Small‐scale rainfall simulations were carried out to identify the hydrological and erosional processes resulting from the grassland and shrubland vegetation species. Results obtained using tree‐regression analysis suggested that the primary vegetation control on runoff and erosion is the shrub type and canopy density, which directly affects the local microtopographic gradient of mounds beneath the shrubs. Significant interactions and feedbacks were found to occur among the local mound gradient, crust cover, soil aggregate stability and antecedent soil moisture between the different vegetation species for both the runoff and erosion responses. Although some of the shrub species were found to produce higher sediment yields than the grass species, the distinguishing feature of the grassland was the significantly higher enrichment in the fine sediment fraction compared to all other surface cover types. This enrichment in fines has important implications for nutrient movement in such environments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
This study examines runoff generated under simulated rainfall on Summerford bajada in the Jornada Basin, New Mexico, USA. Forty‐five simulation experiments were conducted on 1 m2 and 2 m2 runoff plots on grassland, degraded grassland, shrub and intershrub environments located in grassland and shrubland communities. Average hydrographs generated for each environment show that runoff originates earlier on the vegetated plots than on the unvegetated plots. This early generation of runoff is attributed to soil infiltration rates being overwhelmed by the rapid concentration of water at the base of plants by stemflow. Hydrographs from the degraded grassland and intershrub plots rise continuously throughout the 30 min simulation events indicating that these plots do not achieve equilibrium runoff. This continuously rising form is attributed to the progressive development of raindrop‐induced surface seals. Most grassland and shrub plots level out after the initial early rise indicating equilibrium runoff is achieved. Some shrub plots, however, display a decline in discharge after the early rise. The delayed infiltration of water into macropores beneath shrubs with vegetation in their understories is proposed to explain this declining form. Water yields predicted at the community level indicate that the shrubland sheds 150 per cent more water for a given storm event than the grassland. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Surface runoff and soil erosion under eucalyptus and oak canopy   总被引:1,自引:0,他引:1       下载免费PDF全文
To assess potential differences in stormwater runoff and sediment yield between plots of blue gum eucalyptus (Eucalyptus globulus) and coast live oak (Quercus agrifolia), we measured runoff, sediment yield, water repellency and soil moisture at eight paired sites. Eucalyptus has been associated in many studies worldwide with elevated soil water repellency and increased runoff, a likely contributor to soil erosion. To better understand these connections and their relationship to land cover, there is a need for studies employing either rainfall simulators or natural rainfall. Our research employs the latter, and was subject to contrasting hydrologic conditions in the two years of the study. Fieldwork was conducted from October 2006 to February 2008 in the San Francisco Bay Area of central California. During the 2006–2007 winter wet season, runoff was significantly higher under eucalypts than at paired oak sites, and in the early phases of the season was connected with elevated water repellency. However, sediment yield at all sites during the 2006–2007 hydrologic year was below the detection limit of the Gerlach sediment collection traps, possibly due to a limited wet season, and only appeared as suspended sediment captured in overflow buckets. Intensive rainfall events in January 2008 however created substantial runoff of sediment and litter with significantly greater yield at oak sites compared to paired eucalyptus sites. Water repellency likely had little effect on runoff during these events, and the primary cause of greater erosion under oaks is the thinner cover of leaf litter in comparison to eucalyptus. Our study is limited to undisturbed sites with intact litter cover that have not experienced recent wildfires; if disturbed, we would expect a different picture given the propensity for crown fires of eucalypts, enhancement of rainsplash erosion, and the likely greater potential for stream‐connected sediment yield from post‐disturbance soil erosion events.  相似文献   

5.
Runoff and erosion processes can increase after wildfire and post-fire salvage logging, but little is known about the specific effects of soil compaction and surface cover after post-fire salvage logging activities on these processes. We carried out rainfall simulations after a high-severity wildfire and post-fire salvage logging to assess the effect of compaction (uncompacted or compacted by skid traffic during post-fire salvage logging) and surface cover (bare or covered with logging slash). Runoff after 71 mm of rainfall across two 30-min simulations was similar for the bare plots regardless of the compaction status (mean 33 mm). In comparison, runoff in the slash-covered plots averaged only 22 mm. Rainsplash in the downslope direction averaged 30 g for the bare plots across compaction levels and decreased significantly by 70% on the slash-covered plots. Sediment yield totalled 460 and 818 g m−2 for the uncompacted and compacted bare plots, respectively, and slash significantly reduced these amounts by an average rate of 71%. Our results showed that soil erosion was still high two years after the high severity burning and the effect of soil compaction nearly doubled soil erosion via nonsignificant increases in runoff and sediment concentration. Antecedent soil moisture (dry or wet) was the dominant factor controlling runoff, while surface cover was the dominant factor for rainsplash and sediment yield. Saturated hydraulic conductivity and interrill erodibility calculated from these rainfall simulations confirmed previous laboratory research and will support hydrologic and erosion modelling efforts related to wildfire and post-fire salvage logging. Covering the soil with slash mitigated runoff and significantly reduced soil erosion, demonstrating the potential of this practise to reduce sediment yield and soil degradation from burned and logged areas.  相似文献   

6.
The paper reports on experiments carried out to evaluate the effect of the initial soil moisture profile on temporal variations in runoff erosion rate. The moisture profile was varied by applying infrared heating to the soil sample surface over various time periods, while runoff erosivity was varied by varying the slope of the flume. The experiment confirms that dry loamy soils are very erodible: on a slope length of only 4.3 m long sediment concentrations are near transporting capacity in case of a dry soil sample. It appears that temporal variations in sediment concentrations can be well simulated using a simple relationship between runoff erosion resistance and initial soil moisture content, thereby implicitly assuming that the effect of initial moisture content is persistent over the whole duration of the experiment. The implications of these findings with respect to the modelling of sediment output from larger catchments and the design of experiments on rill erodibility are discussed. The experiments also show that, under the present circumstances, mean velocities in the rills appear to be independent of slope. This finding may be of importance with respect to overland flow routing and deterministic erosion modelling.  相似文献   

7.
Although the protective role of leaf litter cover against soil erosion is known for a long time, little research has been conducted on the processes involved. Moreover, the impact of soil meso‐ and macrofauna within the litter layer on erosion control is not clear. To investigate how leaf litter cover and diversity as well as meso‐ and macrofauna influence sediment discharge in subtropical forest ecosystems, a field experiment has been carried out in Southeast China. A full‐factorial random design with 96 micro‐scale runoff plots and 7 domestic leaf species was established and erosion was triggered by a rainfall simulator. Our results demonstrate that leaf litter cover protects soil from erosion (?82 % sediment discharge on leaf covered plots) by rainfall and this protection is removed as litter decomposes. The protective effect is influenced by the presence or absence of soil meso‐ and macrofauna. Fauna presence increases soil erosion rates significantly by 58 %, while leaf species diversity shows a non‐significant negative trend. We assume that the faunal effect arises from arthropods slackening and processing the soil surface as well as fragmenting and decomposing the protecting leaf litter covers. Even though the diversity level did not show a significant influence, single leaf species in monocultures show rather different impacts on sediment discharge and thus, erosion control. In our experiment, runoff plots with leaf litter from Machilus thunbergii showed the highest sediment discharge (68.0 g m?2) whereas plots with Cyclobalanopsis glauca showed the smallest rates (7.9 g m?2). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
1 INTRODUCTION Soil crusting, or soil sealing, is one of the common phenomena in agricultural lands or semi-arid and arid soils. Due to the breakdown of soil aggregates by raindrops, soil surface develops a very thin, often less than a few millimeters, dense layer. Many studies indicated that such a thin layer significantly reduces infiltration capacity and increases surface runoff (i.e. McIntyre, 1958; Edward and Larson, 1969; Agassi et al., 1985; Bradford et al., 1986; Romkens et al.,…  相似文献   

9.
The results of erosion studies carried out at three representative sites in the European Mediterranean basin are discussed. The objectives of the study are to clarify the underlying processes affecting soil erosion and to quantify erosion and runoff in the framework of mitigation of land degradation. The study was carried out at three instrumented field stations using similar layouts and experimental set-ups and harmonized field procedures. Runoff and sediment yield from bounded plots were measured for different types of land use for longer periods. The runoff and sediment values were found to be relatively low, and showed average annual values between 2·0 and 8·9 1 m−2 for runoff, and between 20·2 and 28·1 g m−2 for sediment yield. The results show that the individual plot response on an event basis shows no relationship between runoff and sediment yield for two of the three sites. On an annual average basis a significant relationship is found between the runoff and sediment yield. Significant differences were observed between different types of land use, especially between semi-natural vegetation, burned and abandoned field cover types on the one hand, and agricultural fields on the other hand. The runoff and erosion values were lowest for the semi-natural fields. It was found that in non-cultivated fields the bounded plots might suffer from depletion of available sediment. It can be concluded that erosion figures are very low for the sites studied, and that the maintenance of semi-natural vegetation may help in the prevention of runoff generation and erosion. It can be concluded that the use of bounded plots may not be as ideal as might be expected from its wide application. In some cases open plots, especially under semi-natural land use, may produce much better results, especially when measuring over longer periods. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
Despite the high risk of erosion in olive orchards located in mountainous areas in Spain, little research has been carried out to account for the complexity and interaction of the natural processes of runoff and soil erosion on the catchment scale or small catchment scale. In this study, a microcatchment of 6·7 ha in a mountainous area under no‐tillage farming with bare soil was set up to record runoff and sediment. Soil erosion and runoff patterns were monitored over a two‐year period. Totally, 22 events were observed. The data were analysed, and then used to calibrate the AnnAGNPS model, which allowed us to complete the data period and describe the hydrological and erosive behaviour on a monthly and annual basis. A high variability in catchment responses was observed, due to differences in the storms and to the effect of the surface soil moisture content. Maximum intensities of 10 and 30 min determined the final runoff values while the total sediment loads were dependent on the rainfall depth. The impact of management on the reduction of porosity can explain the relationship between runoff and intensity in the microcatchment. However, the impact of the spatial scale meant that the transport of sediment required substantial rainfall depths to ensure a continuous flow from the hillslopes. The results of the calibration (>0·60 and >0·75) on the event and monthly scale confirmed the applicability of AnnAGNPS to predict runoff and erosion in the microcatchment. The predicted average runoff coefficient was 3·3% for the study period and the total average sediment loads, 1·3 Mg/ha/yr. Despite these low values, the model simulation showed that much larger runoff coefficients and soil losses can be expected for periods with several consecutive years in which the annual rainfall depth was over 500 mm. The use of cover is recommended to prevent the high levels of erosion associated with these conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract

Runoff and soil erosion are known to cause a degradation in soil and water quality. Six natural runoff plots (three 10 m long and three 30 m long) were established on 6% uniform slope area for the study of P and N losses associated with runoff and soil erosion in northern Iraq. The soil at the site belongs to the Calciorthid suborder which dominates in the low rainfall zone of northern Iraq. Runoff, erosion, and associated P and N losses, were recorded from these plots for three rainfall seasons. Results illustrated that eroded sediment is always rich in available P and inorganic N compared to the original soil. Concentrations of soluble P and soluble N in runoff illustrated significant variability both between storms and between seasons. Both sediment-bound P and soluble P were significantly correlated with the ratio of runoff to rainfall.  相似文献   

12.
Wildfires raise concerns over the risk of accelerated erosion as a result of increased overland flow and decreased protection of the soil by litter and ground vegetation cover. We investigated these issues following the 1994 fires that burnt large areas of native Eucalyptus forest surrounding Sydney, Australia. A review of previous studies identifies the fire and rainfall conditions that are likely to lead to increased runoff and accelerated erosion. We then compare runoff and erosion between burnt and unburnt sites for 10 months after the 1994 fires. At the scale of hillslope plots, the 1994 fire increased runoff by enhancing soil hydrophobicity, and greatly increased sediment transport, mainly through the reduced ground cover, which lowered substantially the threshold for initial sediment movement. However, both runoff and sediment transport were very localized, resulting in little runoff or sediment yield after the fire at the hillslope catchment scale. We identify that after moderately intense fires, rainfall events of greater than one year recurrence interval are required to generate substantial runoff and sediment yield. Such events did not occur during the monitoring period. Past work shows that mild burns have little effect on erosion, and it is only after the most extreme fires that erosion is produced from small, frequent storms. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Water is a major limiting factor in arid and semi‐arid agriculture. In the Sahelian zone of Africa, it is not always the limited amount of annual rainfall that constrains crop production, but rather the proportion of rainfall that enters the root zone and becomes plant‐available soil moisture. Maximizing the rain‐use efficiency and therefore limiting overland flow is an important issue for farmers. The objectives of this research were to model the processes of infiltration, runoff and subsequent erosion in a Sahelian environment and to study the spatial distribution of overland flow and soil erosion. The wide variety of existing water erosion models are not developed for the Sahel and so do not include the unique Sahelian processes. The topography of the Sahelian agricultural lands in northern Burkina Faso is such that field slopes are generally low (0–5°) and overland flow mostly occurs in the form of sheet flow, which may transport large amounts of fine, nutrient‐rich particles despite its low sediment transport capacity. Furthermore, pool formation in a field limits overland flow and causes resettlement of sediment resulting in the development of a surface crust. The EUROSEM model was rewritten in the dynamic modelling code of PCRaster and extended to account for the pool formation and crust development. The modelling results were calibrated with field data from the 2001 rainy season in the Katacheri catchment in northern Burkina Faso. It is concluded that the modified version of EUROSEM for the Sahel is a fully dynamic erosion model, able to simulate infiltration, runoff routing, pool formation, sediment transport, and erosion and deposition by inter‐rill processes over the land surface in individual storms at the scale of both runoff plots and fields. A good agreement is obtained between simulated and measured amounts of runoff and sediment discharge. Incorporating crust development during the event may enhance model performance, since the process has a large influence on infiltration capacity and sediment detachment in the Sahel. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

Rainfall–runoff induced soil erosion causes important environmental degradation by reducing soil fertility and impacting on water availability as a consequence of sediment deposition in surface reservoirs used for water supply, particularly in semi-arid areas. However, erosion models developed on experimental plots cannot be directly applied to estimate sediment yield at the catchment scale, since sediment redistribution is also controlled by the transport conditions along the landscape. In particular, representation of landscape connectivity relating to sediment transfer from upslope areas to the river network is required. In this study, the WASA-SED model is used to assess the spatial and temporal patterns of water and sediment connectivity for a semi-arid meso-scale catchment (933 km2) in Brazil. It is shown how spatial and temporal patterns of sediment connectivity within the catchment change as a function of landscape and event characteristics. This explains the nonlinear catchment response in terms of sediment yield at the outlet.

Citation Medeiros, P. H. A., Güntner, A., Francke, T., Mamede, G. L. & de Araújo, J. C. (2010) Modelling spatio-temporal patterns of sediment yield and connectivity in a semi-arid catchment with the WASA-SED model. Hydrol. Sci. J. 55(4), 636–648.  相似文献   

15.
To understand the effect of woody plant encroachment on hydrological processes of mesic grasslands, we quantified infiltration capacity in situ, the temporal changes in soil water storage, and streamflow of a grassland catchment and a catchment heavily encroached by juniper (Juniperus virginiana, eastern redcedar) in previously cultivated, non‐karst substrate grasslands in north‐central Oklahoma for 3 years. The initial and steady‐state infiltration rates under the juniper canopy were nearly triple to that of the grassland catchment and were intermediate in the intercanopy spaces within the encroached catchment. Soil water content and soil water storage on the encroached catchment were generally lower than on the grassland catchment, especially when preceding the seasons of peak rainfall in spring and fall. Frequency and magnitude of streamflow events were reduced in the encroached catchment. Annual runoff coefficients for the encroached catchment averaged 2.1%, in contrast to 10.6% for the grassland catchment. Annual streamflow duration ranged from 80 to 250 h for the encroached catchment compared with 600 to 800 h for the grassland catchment. Our results showed that the encroachment of juniper into previously cultivated mesic grasslands fundamentally alters catchment hydrological function. Rapid transformation of mesic grassland to a woodland state with juniper encroachment, if not confined, has the potential to drastically reduce soil water, streamflow and flow duration of ephemeral streams in the Southern Great Plains. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Although the impact of sheet erosion on the evolution of soils, soil properties and associated ecosystem services across landscapes is undisputed, there are still large uncertainties in the estimation of sheet erosion, as the results obtained are highly scale dependent. Consequently, there is a need to develop a scale‐explicit understanding of sediment erosion yields, from microplot to hillslope through to plot, to surmount actual erosion modelling flaws and to improve guidance for erosion mitigation. The main objective of this study was to compare sediment yields from small and large plots installed under different environmental conditions and to interpret these results in terms of the main mechanisms and controlling factors of sheet erosion. Fifteen 1 × 1 m² and ten 2 × 5 m² plots were installed on a hillslope in the foothills of the Drakensberg, South Africa. Data of runoff, sediment concentration (SC), soil loss (SL) and rainfall characteristics obtained during the 2009–2010 rainy season at the two spatial scales and from different soils, vegetation cover, geology and topographic conditions were used to identify the main controlling factors of sheet erosion. Scale ratios for SC and SL were subsequently calculated to assess the level of contribution of rain‐impacted flow (RIF) to overall sheet erosion. The average runoff rate (n = 17 events) ranged between 4.9 ± 0.4 L m‐2 on 1 m2 and 5.4 ± 0.6 L m2 on 10 m2, which did not correspond to significant differences at P < 0.05 level. Sediment losses were significantly higher on the 10 m2 plots, compared with the 1 m2 plots (2.2 ± 0.4 vs 1.5 ± 0.2 g L‐1 for SC; 9.8 ± 1.8 vs 3.2 ± 0.3 g m‐2 for SL), which illustrated a greater efficiency of sheet erosion on longer slopes. Results from a principal component analysis, whose two first axes explained 60% of the data variance, suggested that sheet erosion is mainly controlled by rainfall characteristics (rainfall intensity and amount) and soil surface features (crusting and vegetation coverage). The contribution of RIF to sheet erosion was the lowest at high soil clay content (r = 0.26) and the highest at high crusting and bulk density (r = 0.22), cumulative rainfall amount in the season and associated rise in soil water table (r = 0.29). Such an explicit consideration of the role of scale on sediment yields and process domination by either in situ (soil and soil surface conditions) or ex situ (rainfall characteristics and antecedent rainfall) factors, is expected to contribute to process‐based modelling and erosion mitigation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Ten representative research sites were selected in eastern Spain to assess soil erosion rates and processes in new citrus orchards on sloping soils. The experimental plots were located at representatives sites on limestone, in areas with 498 to 715 mm year?1 mean annual rainfall, north‐facing slopes, herbicide treated, and new (less than 3 years old) plantations. Ten rainfall simulation experiments (1 h at 55 mm h?1 on 0·25 m2 plots) were carried out at each of the 10 selected study sites to determine the interill soil erosion and runoff rates. The 100 rainfall simulation tests (10 × 10 m) showed that ponding and runoff occurred in all the plots, and quickly: 121 and 195 s, respectively, following rainfall initiation. Runoff discharge was one third of the rainfall, and sediment concentration reached 10·4 g L?1. The soil erosion rates were 2·4 Mg ha?1 h?1 under 5‐year return period rainfall thunderstorms. These are among the highest soil erosion rates measured in the western Mediterranean basin, similar to badland, mine spoil and road embankment land surfaces. The positive relationship between runoff discharge and sediment concentration (r2 = 0·83) shows that the sediment availability is very high. Soil erosion rates on new citrus orchards growing on sloped soils are neither tolerable nor sustainable. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
This paper investigates the spatial and temporal variations of runoff, erosion and rate of sediment transport on an agricultural field submitted to natural rainfalls. The site, located in the Eastern Townships (Québec, Canada), is a corn field (10000 m2) where sheetwash erosion is active. Water (Q) and sediment (Qs) discharges were measured from June to October at eight locations on the field and for ten rainfall events. Analysis of the data was carried out on an aggregate data set and on the distributed measurements in time and space. The results showed that changes in vegetation, soil compaction and crusting are critical in determining temporal variations of runoff and erosion. Until August, the increase in soil compaction reduced infiltration capacity and depression storage and generated greater runoff for a given rainfall intensity (I). Sediment transport decreased as particle detachment is less likely to occur when vegetation breaks the drop impact and the soil surface is sealed. Later in the season, we observed an increase in sediment concentration associated with the presence of burrowing insects and harvest activity, providing loose sediments to the broken down surface. Intercepts and slopes of the relationship between Q and Qs also vary during the period of measurement. High sediment availability over the soil surface in June and October gives high intercept values. The slope of the relationship is more stable but difficult to estimate for extreme events (high values of I or low Q values) where the number of sampled points are small. During a rainfall, the response of the field is dominated by the topography and drainage area. The largest amount of runoff and erosion occurred on straight and steep slopes with small drainage areas, and on converging gentle slopes with large drainage areas. Although aggregate runoff and erosion values are decreasing with drainage area, parameters of the Qs-Q relationship for different locations on the field are not statistically different. These results bear important consequences for models of sheetwash erosion on agricultural fields.  相似文献   

19.
Wildfire is a natural component of sagebrush (Artemisia spp.) steppe rangelands that induces temporal shifts in plant community physiognomy, ground surface conditions, and erosion rates. Fire alteration of the vegetation structure and ground cover in these ecosystems commonly amplifies soil losses by wind- and water-driven erosion. Much of the fire-related erosion research for sagebrush steppe has focused on either erosion by wind over gentle terrain or water-driven erosion under high-intensity rainfall on complex topography. However, many sagebrush rangelands are geographically positioned in snow-dominated uplands with complex terrain in which runoff and sediment delivery occur primarily in winter months associated with cold-season hydrology. Current understanding is limited regarding fire effects on the interaction of wind- and cold-season hydrologic-driven erosion processes for these ecosystems. In this study, we evaluated fire impacts on vegetation, ground cover, soils, and erosion across spatial scales at a snow-dominated mountainous sagebrush site over a 2-year period post-fire. Vegetation, ground cover, and soil conditions were assessed at various plot scales (8 m2 to 3.42 ha) through standard field measures. Erosion was quantified through a network of silt fences (n = 24) spanning hillslope and side channel or swale areas, ranging from 0.003 to 3.42 ha in size. Sediment delivery at the watershed scale (129 ha) was assessed by suspended sediment samples of streamflow through a drop-box v-notch weir. Wildfire consumed nearly all above-ground live vegetation at the site and resulted in more than 60% bare ground (bare soil, ash, and rock) in the immediate post-fire period. Widespread wind-driven sediment loading of swales was observed over the first month post-fire and extensive snow drifts were formed in these swales each winter season during the study. In the first year, sediment yields from north- and south-facing aspects averaged 0.99–8.62 t ha−1 at the short-hillslope scale (~0.004 ha), 0.02–1.65 t ha−1 at the long-hillslope scale (0.02–0.46 ha), and 0.24–0.71 t ha−1 at the swale scale (0.65–3.42 ha), and watershed scale sediment yield was 2.47 t ha−1. By the second year post fire, foliar cover exceeded 120% across the site, but bare ground remained more than 60%. Sediment yield in the second year was greatly reduced across short- to long-hillslope scales (0.02–0.04 t ha−1), but was similar to first-year measures for swale plots (0.24–0.61 t ha−1) and at the watershed scale (3.05 t ha−1). Nearly all the sediment collected across all spatial scales was delivered during runoff events associated with cold-season hydrologic processes, including rain-on-snow, rain-on-frozen soils, and snowmelt runoff. Approximately 85–99% of annual sediment collected across all silt fence plots each year was from swales. The high levels of sediment delivered across hillslope to watershed scales in this study are attributed to observed preferential loading of fine sediments into swale channels by aeolian processes in the immediate post-fire period and subsequent flushing of these sediments by runoff from cold-season hydrologic processes. Our results suggest that the interaction of aeolian and cold-season hydrologic-driven erosion processes is an important component for consideration in post-fire erosion assessment and prediction and can have profound implications for soil loss from these ecosystems. © 2019 John Wiley & Sons, Ltd.  相似文献   

20.
There is a growing opinion that poorly managed plantation forests in Japan are contributing to increased storm runoff and erosion. Here we present evidence to the contrary from runoff plots at two scales (hillslope and 0·5 × 2 m plots) for several forest conditions in the Mie and Nariki catchments. Runoff coefficients from small plots in untended hinoki forests were variable but typically higher than from better managed or deciduous forests during small storms at Nariki; at Mie, runoff during small events was highly variable from all small plots but runoff coefficients were similar for hinoki plots with and without understory vegetation, while the deciduous plot had lower runoff coefficients. Storm runoff was less at the hillslope scale than the plot scale in Mie; these results were more evident at sites with better ground cover. During the largest storms at both sites, differences in runoff due to forest condition were not evident regardless of scale. Dynamic soil moisture tension measurements at Nariki indicated that during a large storm, flow in the upper organic‐rich and root‐permeated soil horizons was 3·2 times higher than measured overland runoff from a small hinoki plot with poor ground cover and 8·3 times higher than runoff from a deciduous forest plot. On the basis of field observations during storms, at least a portion of the monitored ‘Hortonian overland flow’ was actually occurring in this near‐surface ‘biomat’. Therefore our field measurements in both small and large plots potentially included biomat flow in addition to short‐lived Hortonian runoff. Because overland flow decreased with increasing scale, rill erosion did not occur on hillslopes. Additionally, runoff coefficients were not significantly different among cover conditions during large storms; thus, the ‘degraded’ forest conditions appear not to greatly enhance peak flows or erosion potential at larger scales, especially when biomat flow is significant. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号