首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 237 毫秒
1.
An inversion method is presented for the reconstruction of interface geometry between two or more crustal layers from teleseismic traveltime residuals. The method is applied to 2-D models consisting of continuous interfaces separating constant-velocity layers. The forward problem of determining ray paths and traveltimes between incident wave fronts below the structure and receivers located on the Earth's surface is solved by an efficient and robust shooting method. A conjugate gradient method is employed to solve the inverse problem of minimizing a least-squares type objective function based on the difference between observed and calculated traveltimes. Teleseismic data do not accurately constrain average vertical structure, so a priori information in the form of layer velocities and average layer thicknesses is required. Synthetic tests show that the method can be used to reconstruct interface geometry accurately, even in the presence of data noise. Tests also show that, if layer velocities and initial interface positions are poorly chosen, lateral structure is still recoverable. The inversion method was applied to previously published teleseismic data recorded by an in-line array of portable seismographs that traversed the northern margin of the Musgrave Block, central Australia. The solution based on interface parametrization is consistent with models given by other studies that used the same data but different methods, most notably the standard tomographic approach that inverts for velocity rather than interface structure.  相似文献   

2.
A self-adaptive automated parametrization approach is suggested for the sequential inversion of controlled-source seismic tomography and gravity data. The velocities and interfaces are parametrized by their Haar wavelet expansion coefficients. Only those coefficients that are well constrained by the data, as measured by the number of rays that cross the corresponding wavelet function support area and their angular coverage, are inverted for, others are set to zero. This approach results in a reasonable distribution of resolution throughout the model even in cases of irregular ray coverage and does overcome the trade-off between different types of model parameters. A modified sequential inversion approach is suggested to join the traveltimes and gravity anomalies inversion. An algorithm is developed that inverts for smooth velocity and density variations inside the seismic layer, the position of its bottom interface as well as for optimal values of the velocity-to-density regression coefficients. The algorithm makes use of direct (diving), reflected and head (critically refracted) wave traveltimes. The algorithm workflow is demonstrated on a synthetic data example.  相似文献   

3.
Seismic traveltimes and amplitudes in reflection-seismic data show different dependences on the geometry of reflection interfaces, and on the variation of interval velocities. These dependences are revealed by eigenanalysis of the Hessian matrix, defined in terms of the Fréchet matrix and its adjoint associated with different norms chosen in the model space. The eigenvectors and eigenvalues of the Hessian clearly show that for reflection tomographic inversion, traveltime and amplitude data contain complementary information. Both for reflector-geometry and for interval-velocity variations, the traveltimes are sensitive to the model components with small wavenumbers, whereas the amplitudes are more sensitive to the components with high wavenumbers. The model resolution matrices, after the rejection of eigenvectors corresponding to small eigenvalues, give us some insight into how the addition of amplitude information could potentially contribute to the recovery of physical parameters.
In order to cooperatively invert seismic traveltimes and amplitudes simultaneously, we propose an empirical definition of the data covariance matrix which balances the relative sensitivities of different types of data. We investigate the cooperative use of both data types for, separately, interface-geometry and 2-D interval-velocity variations. In both cases we find that cooperative inversions can provide better solutions than those using traveltimes alone. The potential benefit of including amplitude-data constraints in seismic-reflection traveltime tomography is therefore that it may be possible to resolve the known ambiguity between the reflector-depth uncertainty and the interval-velocity uncertainty better.  相似文献   

4.
A new algorithm is presented for the integrated 2-D inversion of seismic traveltime and gravity data. The algorithm adopts the 'maximum likelihood' regularization scheme. We construct a 'probability density function' which includes three kinds of information: information derived from gravity measurements; information derived from the seismic traveltime inversion procedure applied to the model; and information on the physical correlation among the density and the velocity parameters. We assume a linear relation between density and velocity, which can be node-dependent; that is, we can choose different relationships for different parts of the velocity–density grid. In addition, our procedure allows us to consider a covariance matrix related to the error propagation in linking density to velocity. We use seismic data to estimate starting velocity values and the position of boundary nodes. Subsequently, the sequential integrated inversion (SII) optimizes the layer velocities and densities for our models. The procedure is applicable, as an additional step, to any type of seismic tomographic inversion.
We illustrate the method by comparing the velocity models recovered from a standard seismic traveltime inversion with those retrieved using our algorithm. The inversion of synthetic data calculated for a 2-D isotropic, laterally inhomogeneous model shows the stability and accuracy of this procedure, demonstrates the improvements to the recovery of true velocity anomalies, and proves that this technique can efficiently overcome some of the limitations of both gravity and seismic traveltime inversions, when they are used independently.
An interpretation of field data from the 1994 Vesuvius test experiment is also presented. At depths down to 4.5 km, the model retrieved after a SII shows a more detailed structure than the model obtained from an interpretation of seismic traveltime only, and yields additional information for a further study of the area.  相似文献   

5.
We develop a systematic approach to the phase identification of late-arriving groups in 2-D seismic data. Waveforms in the same traveltime branch are grouped, and synthetic traveltimes for all phases are calculated using an initial approximation to the 2-D structure. For each group, we identify the two synthetic phases providing the smallest RMS residuals. If their ratio is less than some predetermined threshold, then the group's phase is ambiguous and both assignments must be tested by traveltime inversion. If there are n unidentified groups, we construct 2 n phase tables and perform a traveltime inversion on every plausible phase assignment. The phase table that provides the highest value of the posterior probability density is taken as correct, and a 2-D velocity model is constructed from the data. This approach is shown to be effective and efficient on both simulated and real data. In addition, the residuals associated with late-arriving groups provide a means of identifying deficiencies in the initial model.  相似文献   

6.
The frequency-domain version of waveform tomography enables the use of distinct frequency components to adequately reconstruct the subsurface velocity field, and thereby dramatically reduces the input data quantity required for the inversion process. It makes waveform tomography a computationally tractable problem for production uses, but its applicability to real seismic data particularly in the petroleum exploration and development scale needs to be examined. As real data are often band limited with missing low frequencies, a good starting model is necessary for waveform tomography, to fill in the gap of low frequencies before the inversion of available frequencies. In the inversion stage, a group of frequencies should be used simultaneously at each iteration, to suppress the effect of data noise in the frequency domain. Meanwhile, a smoothness constraint on the model must be used in the inversion, to cope the effect of data noise, the effect of non-linearity of the problem, and the effect of strong sensitivities of short wavelength model variations. In this paper we use frequency-domain waveform tomography to provide quantitative velocity images of a crosshole target between boreholes 300 m apart. Due to the complexity of the local geology the velocity variations were extreme (between 3000 and 5500 m s−1), making the inversion problem highly non-linear. Nevertheless, the waveform tomography results correlate well with borehole logs, and provide realistic geological information that can be tracked between the boreholes with confidence.  相似文献   

7.
Velocity estimation remains one of the main problems when imaging the subsurface with seismic reflection data. Traveltime inversion enables us to obtain large-scale structures of the velocity field and the position of seismic reflectors. However, as the media currently under study are becoming more and more complex, we need to know the finer-scale structures. The problem is that below a certain range of velocity heterogeneities, deterministic methods become difficult to use, so we turn to a probabilistic approach. With this in view, we characterize the velocity field as a random field defined by its first and second statistical moments. Usually, a seismic random medium is defined as a homogeneous velocity background perturbed by a small random field that is assumed to be stationary. Thus, we make a link between such a random velocity medium (together with a simple reflector) and seismic reflection traveltimes. Assuming that the traveltimes are ergodic, we use 2-D seismic reflection geometry to study the decrease in the statistical traveltime fluctuations as a function of the offset (the source–receiver distance). Our formulae are based on the Rytov approximation and the parabolic approximation for acoustic waves. The validity and the limits are established for both of these approximations in statistically anisotropic random media. Finally, theoretical inversion procedures are developed for the horizontal correlation structure of the velocity heterogeneities for the simplest case of a horizontal reflector. Synthetic seismograms are then computed (on particular realizations of random media) by simulating scalar wave propagation via finite difference algorithms. There is good agreement between the theoretical and experimental results.  相似文献   

8.
We report results from the Seismic Wide-Angle and Broadband Survey carried out over the Mid North Sea High. This paper focuses on integrating the information from a conventional deep multichannel reflection profile and a coincident wide-angle profile obtained by recording the same shots on a set of ocean bottom hydrophones (OBH). To achieve this integration, a new traveltime inversion scheme was developed (reported elsewhere) that was used to invert traveltime information from both the wide-angle OBH records and the reflection profile simultaneously. Results from the inversion were evaluated by producing synthetic seismograms from the final inversion model and comparing them with the observed wide-angle data, and an excellent match was obtained. It was possible to fine-tune velocities in less well-resolved parts of the model by considering the critical distance for the Moho reflection. The seismic velocity model was checked for compatibility with the gravity field, and used to migrate and depth-convert the reflection profile. The unreflective upper crust is characterized by a high velocity gradient, whilst the highly reflective lower crust is associated with a low velocity gradient. At the base of the crust there are several subhorizontal reflectors, a few kilometres apart in depth, and correlatable laterally for several tens of kilometres. These reflectors are interpreted as representing a strike section through northward-dipping reflectors at the base of the crust, identified on orthogonal profiles by Freeman et al. (1988) as being slivers of subducted and imbricated oceanic crust, relics of the mid-Palaeozoic Iapetus Ocean.  相似文献   

9.
On average, traveltimes of PKPDF for equatorial ray paths through the quasieastern hemisphere of the inner core are around 0.5 s faster than equivalent ray paths through its quasiwestern hemisphere. In these observations, the eastern hemisphere is sampled primarily by westward and the western hemisphere by eastwardpropagating waves. Noting that westward propagation is faster than eastward propagation inside a rotating earth, I estimate the expected traveltime difference from Coriolis splitting of the displacement eigenfunctions of the PKPDF equivalent modes. It turns out that Coriolis effects are too small to give rise to residuals of the required magnitude. Thus, the observations must be primarily due to velocity heterogeneities.  相似文献   

10.
Inversion of seismic attributes for velocity and attenuation structure   总被引:1,自引:0,他引:1  
We have developed an inversion formuialion for velocity and attenuation structure using seismic attributes, including envelope amplitude, instantaneous frequency and arrival times of selected seismic phases. We refer to this approach as AFT inversion for amplitude, (instantaneous) frequency and time. Complex trace analysis is used to extract the different seismic attributes. The instantaneous frequency data are converted to t * using a matching procedure that approximately removes the effects of the source spectra. To invert for structure, ray-perturbation methods are used to compute the sensitivity of the seismic attributes to variations in the model. An iterative inversion procedure is then performed from smooth to less smooth models that progressively incorporates the shorter-wavelength components of the model. To illustrate the method, seismic attributes are extracted from seismic-refraction data of the Ouachita PASSCAL experiment and used to invert for shallow crustal velocity and attenuation structure. Although amplitude data are sensitive to model roughness, the inverted velocity and attenuation models were required by the data to maintain a relatively smooth character. The amplitude and t * data were needed, along with the traveltimes, at each step of the inversion in order to fit all the seismic attributes at the final iteration.  相似文献   

11.
We test the feasibility of using Green's functions extracted from records of ambient seismic noise to monitor temporal changes in the Earth crust properties by repeated measurements at regional distances. We use about 11 yr of continuous recordings to extract surface waves between three pairs of stations in California. The correlations are computed in a moving 1-month window and we analyse the temporal evolution of measured interstation traveltimes. The comparison of the arrival times in the positive and negative correlation time of Rayleigh and Love waves allows us to separate time-shifts associated with any form of physical change in the medium, those resulting from clock drift or other instrumental errors, and those due to change in the localization of the noise sources. This separation is based on the principle of time symmetry. When possible, we perform our analysis in two different period bands: 5–10 and 10–20 s. The results indicate that significant instrumental time errors (0.5 s) are present in the data. These time-shifts can be measured and tested by closure relation and finally corrected independently of any velocity model. The traveltime series show a periodic oscillation that we interpret as the signature of the seasonal variation of the region of origin of the seismic noise. Between 1999 and 2005, the final arrival time fluctuations have a variance of the order of 0.01 s. This allows us to measure interstation traveltimes with errors smaller than 0.3 per cent of the interstation traveltime and smaller than 1 per cent of the used wave period. This level of accuracy was not sufficient to detect clear physical variation of crustal velocity during the considered 11 yr between the three stations in California. Such changes may be more easily detectable when considering pairs of stations more closely located to each other and in the vicinity of tectonically active faults or volcanoes.  相似文献   

12.
Wavepath traveltime tomography   总被引:1,自引:1,他引:1  
The elastic-wave equation is used to construct sensitivity kernels relating perturbations in elastic parameters to traveltime deviations. Computation of the functions requires a correlation of the forward-propagating seismic wavefield with a backward propagation of the residual wavefield. The computation of the wavefields is accomplished using a finite difference algorithm and is efficiently executed on a CM-2 parallel processor. The source and receiver locations have maximum sensitivity to velocity structure. The sensitivity kernels or wavepaths are well suited for transmission traveltime inversion such as cross-borehole tomography and vertical seismic profiling. Conventional ray tomography and wavepath tomography are applied to a set of P -wave arrival times, from a cross-borehole experiment at Kesterson, California. Because the wavepaths have increased sensitivity near the source and receiver there are differences in resolution of the velocity structure. Both techniques recover the same relative variations in velocity where the coverage is adequate. The wavepath solution is more laterally continuous and the dominant variation is vertical, as is expected for the layered sediments in this region.  相似文献   

13.
14.
About 50 000 P and S arrival times and 25 000 values of t * recorded at seismic arrays operated in the Central Andes between 20°S and 25°S in the time period from 1994 to 1997 have been used for locating more than 1500 deep and crustal earthquakes and creating 3-D P , S velocity and Qp models. The study volume in the reference model is subdivided into three domains: slab, continental crust and mantle wedge. A starting velocity distribution in each domain is set from a priori information: in the crust it is based on the controlled sources seismic studies; in slab and mantle wedge it is defined using relations between P and S velocities, temperature and composition given by mineral physics. Each iteration of tomographic inversion consists of the following steps: (1) absolute location of sources in 3-D velocity model using P and S arrival times; (2) double-difference relocation of the sources and (3) simultaneous determination of P and S velocity anomalies, P and S station corrections and source parameters by inverting one matrix. Velocity parameters are computed in a mesh with the density of nodes proportional to the ray density with double-sided nodes at the domain boundaries. The next iteration is repeated with the updated velocity model and source parameters obtained at the previous step. Different tests aimed at checking the reliability of the obtained velocity models are presented. In addition, we present the results of inversion for Vp and Vp/Vs parameters, which appear to be practically equivalent to Vp and Vs inversion. A separate inversion for Qp has been performed using the ray paths and source locations in the final velocity model. The resulting Vp , Vs and Qp distributions show complicated, essentially 3-D structure in the lithosphere and asthenosphere. P and S velocities appear to be well correlated, suggesting the important role of variations of composition, temperature, water content and degree of partial melting.  相似文献   

15.
This paper presents a geometrically based algorithm for computing synthetic seismograms for energy transmitted through a 3-D velocity distribution. 3-D ray tracing is performed to compute the traveltimes and geometrical spreading (amplitude). The formulations of both kinematic and dynamic ray-tracing systems are presented. The two-point ray-tracing problem is solved by systematically updating the initial conditions and adjusting the ray direction until the ray intersects the specified endpoint. The amount of adjustment required depends on the derivatives of the position with respect to the given starting angles between consecutive rays. The algorithm uses derivatives to define the steepest-descent direction and to update the initial directions. The convergence rate depends on the complexity of the model.
Test seismograms compare favourably with those from a 2-D asymptotic ray theory algorithm and a 3-D Gaussian-beam algorithm. The algorithm is flexible in modelling arbitrary source and recorder geometries for various smoothly varying 3-D velocity distributions. The algorithm is further tested by simulating surface-to-tunnel vibroseis field data. Shear waves as well as compressional waves may be approximately included. Application of the algorithm to a data set from the Rainier Mesa of the Nevada Test Site produced a good fit to the transmitted (first arrival) traveltimes and amplitudes, with approximately 15 per cent variation in the local 3-D velocity.  相似文献   

16.
Joint inversion of receiver function and surface wave dispersion observations   总被引:16,自引:0,他引:16  
We implement a method to invert jointly teleseismic P wave receiver functions and surface wave group and phase velocities for a mutually consistent estimate of earth structure. Receiver functions are primarily sensitive to shear wave velocity contrasts and vertical traveltimes, and surface wave dispersion measurements are sensitive to vertical shear wave velocity averages. Their combination may bridge resolution gaps associated with each individual data set. We formulate a linearized shear velocity inversion that is solved using a damped leastsquares scheme that incorporates a priori smoothness constraints for velocities in adjacent layers. The data sets are equalized for the number of data points and physical units in the inversion process. The combination of information produces a relatively simple model with a minimal number of sharp velocity contrasts. We illustrate the approach using noisefree and realistic noise simulations and conclude with an inversion of observations from the Saudi Arabian Shield. Inversion results for station SODA, located in the Arabian Shield, include a crust with a sharp gradient near the surface (shear velocity changing from 1.8 to 3.5 km s1 in 3 km) underlain by a 5kmthick layer with a shear velocity of 3.5 km s1 and a 27kmthick layer with a shear velocity of 3.8 km s1, and an upper mantle with an average shear velocity of 4.7 km s1. The crustmantle transition has a significant gradient, with velocity values varying from 3.8 to 4.7 km s1 between 35 and 40 km depth. Our results are compatible with independent inversions for crustal structure using refraction data.  相似文献   

17.
The presence of anisotropy requires that tomographic methods be generalized to account for anisotropy. This generalization allows geological structure to be correctly imaged and allows the anisotropic parameters to be estimated. Use of isotropic inversion for imaging anisotropic structures gives systematic trends in the traveltime and polarization residuals. However, due to the limited directional coverage, the traveltimes along may not be sufficient to study the anisotropic properties of the structure. Polarizations can provide independent information on the structure. Traveltime and polarization inversion are applied to synthetic examples simulating VSP experiments. Transverse isotropy and 1-D structure are assumed. Plots of traveltime and polarization residuals are an important tool to detect the anomalies due to the presence of anisotropy. For receivers located in anisotropic layers, polarization residuals display consistent anomalies of several degrees. The synthetic examples show that even the simple 1-D problem is difficult, when using direct arrivals only. Large a posteriori errors in anisotropic parameters are obtained by traveltime inversion in layers where available incidence angles are less than 45°. Resolution of the tomographic image of VSP data is greatly improved by a combination of traveltime and polarization information. In order to obtain accurate inversion results, the measurement error of polarization data should be kept to within a few degrees.  相似文献   

18.
The eikonal equation is the equation of the phase slowness surface for isotropic and anisotropic media. In general anisotropic media, there is no simple explicit expression for the phase slowness surface. An approximate expression of the eikonal equation may be obtained in weakly anisotropic media. In orthorhombic media, the approximate eikonal equation of the qP wave is the sum of an ellipsoidal form and a more complicated term. The ellipsoidal form corresponds to what we call ellipsoidal anisotropy. Ray equations written in the Hamiltonian formulation are characteristics of the eikonal equation. Ray perturbation theory may be used to compute changes in ray paths and physical attributes (traveltime, polarization, amplitude) due to changes in the medium with respect to a reference medium. Examples obtained in homogeneous orthorhombic media show that a reference medium with ellipsoidal anisotropy is a better choice to develop the perturbation approach than an isotropic reference medium. Models with strong anisotropy can be considered. The comparison with results obtained by an exact ray program shows a relative traveltime error of less than 0.5 per cent for a model with relatively strong anisotropy. We propose a finite element approach in which the medium is divided into a set of elements with polynomial elastic parameter distributions. Inside each element, using a perturbation approach, analytical expressions for rays and traveltimes are obtained Ray tracing reduces to connecting these analytical solutions at the vertices of the cells.  相似文献   

19.
In an accompanying paper, we used waveform tomography to obtain a velocity model between two boreholes from a real crosshole seismic experiment. As for all inversions of geophysical data, it is important to make an assessment of the final model, to determine which parts of the model are well-resolved and can confidently be used for geological interpretation. In this paper we use checkerboard tests to provide a quantitative estimate of the performance of the inversion and the reliability of the final velocity model. We use the output from the checkerboard tests to determine resolvability across the velocity model. Such tests can act as good guides for designing appropriate inversion strategies. Here we discovered that, by including both reference-model and smoothing constraints in initial inversions, and then relaxing the smoothing constraint for later inversions, an optimum velocity image was obtained. Additionally, we noticed that the performance of the inversion was dependent on a relationship between velocity perturbation and checkerboard grid-size: larger velocity perturbations were better-resolved when the grid-size was also increased. Our results suggest that model assessment is an essential step prior to interpreting features in waveform tomographic images.  相似文献   

20.
A multifold crustal-scale deep seismic near-vertical reflection profile generates a large number of single-ended shot gathers, which provide redundant data sets because of overlapping coverage of the shallow refractors. We present an approach for deriving the shallow velocity structure by modelling and inversion of single-ended seismic refraction first arrival traveltime data. We apply this method to a data set acquired with a 12-km long spread with 100 m spacing of shots and receivers, of the Neoproterozoic Marwar basin in the NW Indian shield. The approach is shown to be quite successful for delineating the shallow refractor depths, steep dips and velocities, even in the absence of regular reverse refraction profiles. The study reveals two-layered sedimentary formations, Malani volcanics and a complicated basement configuration of the Marwar basin, and provides a measure of resolution and uncertainty of the estimated model parameters. A seismic section of the near-trace gather is found to be qualitatively consistent with the derived structural features of the basin. The relative highs and lows, observed in the Bouguer gravity profile, further corroborate the derived velocity model. The present approach can be especially useful in offshore areas and elsewhere, where the single-ended multifold seismic profiles are the only available data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号