首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regularities of the formation of bottom sediments down to a depth of 1.2 m, as well as factors governing the composition of sediments, waters, and soils in the catchment area of the lake, are discussed. It has been established that the chemical composition of lacustrine sediments is closely associated with the composition of soils in the ambient watersheds, and the soils, in turn, are associated with the composition of the soil-forming rocks. The available data suggest an extremely irregular contamination of the lake system by technogenic radionuclides within the water area. Maximum radiocesium contamination of lacustrine bottom sediments is 350 mCi/km2 (recalculated to year 2000). Concentrations of elements (Cu, Zn, Cr, Ni, Co, Mg, Be, Sb, Mn, and others) in bottom sediments, water, and soils in catchment areas of Lake Kolyvan do not exceed the background values (except for the Hg content in bottom sediments), suggesting that the area under consideration is not contaminated by inorganic technogenic components.  相似文献   

2.
Soils of loamy sand on weathered, sandy dolomite were cored from six holes up to 70 ft beneath a municipal waste landfill in central Pennsylvania. Mn, Fe, Ni, Co, Cu, Zn, Cd, Pb, and Ag were determined in exchangeable and non-exchangeable forms in total and < 15 μm soil samples. Most of these metals were bound in Mn oxides, non-exchangeable with 0.5 M CaCl2. The Mn oxides (often X-ray amorphous) identified when crystalline as todorokite occurred chiefly as coatings on quartz grains.Somewhat higher amounts of acid leachable trace metals were found in the < 15 μm size fraction than in the total soil samples; however, trace metal/Mn ratios were similar in both. In general, the initial mild soil leaching, which dissolved chiefly Mn oxides, gave MnFeX>Co>Ni>Pb>Zn> Cu>Cd>Ag. The final leaching, which dissolved chiefly ferric oxides, gave Fe>Mn>Ni>Zn>Co> Cu>Pb>Cd>Ag. Samples taken from an unpolluted site and from the same soils affected for seven years by leachate from the refuse had similar metal contents.Soil extractable Co, Ni, Cu, and Zn could be predicted from the Mn extracted. Based in part on factor analysis of the data, Mn-rich oxides had at least tenfold higher heavy metal percentages than Fe-rich oxides (crystalline component goethite), reflecting their greater coprecipitation potential. Because of this potential and because of the generally higher solubility of Mn than Fe oxides, more heavy metals may be released from Mn-rich than from Fe-rich soils by disposal of organic-bearing wastes. However, leaching of the moisture-unsaturated soils in situ is rarely severe enough to completely dissolve both Mn and Fe oxides. Based on the Mn content, Cd, Cu, and Pb were depleted in soil moisture beneath the landfill relative to their amounts in the soil. This depletion may reflect factors including heterogeneity in metal content of the soil oxides; preferential resorption of these metals; and removal of the Cd, Cu, and Pb as organic precipitates or as inorganic precipitates such as carbonates.  相似文献   

3.
Two types of Shrimp Chitin derivatives and two types of Iranian natural Zeolite derivatives (Firuzkooh Clinoptiliolite) were studied for adsorption and treatment of low-level radioactive liquid waste (LLW). Chitin with lowers than 10% and Chtiosan with higher than 90% deacetylation factor were selected as natural organic adsorbents. Natural Cliniptilolite of Firuzkooh area and Na form derivatives of it were selected as natural inorganic adsorbents. The static and dynamic ion exchange experimental results show that the adadsorption efficiency depend on particle size, PH, adsorbent type, deacetylation factor (in Chitin adsorbents) and cation type. The best Cs adsorption occurred in Na form Clinoptilolite. Nevertheless Chitin derivatives, particularly Chitosan, are more efficient than Zeolite adsorbents for removing of radionuclides such as 137Cs, 54Mn, 90Sr and 60Co. Adsorption performance was discussed and compared with each other.  相似文献   

4.
Transport and sediment–water partitioning of trace metals (Cr, Co, Fe, Pb, Cu, Ni, Zn, Cd) in acid mine drainage were studied in two creeks in the Kwangyang Au–Ag mine area, southern part of Korea. Chemical analysis of stream waters and the weak acid (0.1 N HCl) extraction, strong acid (HF–HNO3–HClO4) extraction, and sequential extraction of stream sediments were performed. Heavy metal pollution of sediments was higher in Chonam-ri creek than in Sagok-ri creek, because there is a larger source of base metal sulfides in the ores and waste dump upstream of Chonam-ri creek. The sediment–water distribution coefficients (K d) for metals in both creeks were dependent on the water pH and decreased in the order Pb ≈ Al > Cu > Mn > Zn > Co > Ni ≈ Cd. K d values for Al, Cu and Zn were very sensitive to changes in pH. The results of sequential extraction indicated that among non-residual fractions, Fe–Mn oxides are most important for retaining trace metals in the sediments. Therefore, the precipitation of Fe(–Mn) oxides due to pH increase in downstream sites plays an important role in regulating the concentrations of dissolved trace metals in both creeks. For Al, Co, Cu, Mn, Pb and Zn, the metal concentrations determined by 0.1 N HCl extraction (Korean Standard Method for Soil Pollution) were almost identical to the cumulative concentrations determined for the first three weakly-bound fractions (exchangeable + bound to carbonates + bound to Fe–Mn oxides) in the sequential extraction procedure. This suggests that 0.1 N HCl extraction can be effectively used to assess the environmentally available and/or bioavailable forms of trace metals in natural stream sediments.  相似文献   

5.
Formation and dissolution of authigenic Fe and Mn (oxyhydr)oxides influence cycling of trace metals in oxic/suboxic surface sediments. We used the diffusive gradients in thin films technique (DGT) to estimate the association of cobalt with iron and manganese oxides. We compared Co, Fe and Mn maxima measured by DGT in the pore waters of fresh and aged marine sediment cores and estimated the Co/Fe and Co/Mn ratios in the metal oxides. A Mn maximum was not visible in DGT concentration profiles of freshly collected sediment cores, but after ageing the sediment, we observed a distinct Mn peak, presumably due to broadening of the depth range over which the various electron acceptors occur. Estimated Co/Mn ratios from both experiments are within the range of literature values for marine sediments, but the value from the aged experiment is at the lower end of the range. This is attributed to stimulation of sulphate reduction and precipitation of cobalt sulphides. The good correlation between Co and Fe maxima in the fresh sediments is attributed to the similarity of their reactions with sulphide rather than Co being released during authigenic Fe oxide reduction.  相似文献   

6.
7.
Consideration of the impact of substantial changes in soil temperature or moisture regime on the geochemical forms of radionuclides is important for more accurate assessment of the environmental risk posed by radionuclide migration and potential biological availability, especially in the first months after their release into the environment. This paper presents the results from a study of the influence of cooling, freezing and soil drought on the migration and potential bioavailability of 60Co and 137Cs in two soils (a fluvisol and a cambisol, according to the World Reference Base for Soil Resources/FAO) from Bulgaria. The changes in the geochemical fractionation of 60Co, the exchangeable 137Cs and water-soluble forms of both radionuclides were examined under different storage conditions up to 5 months after their introduction into the soils in solution form. Freezing or soil drought resulted in a significant increase of the water-soluble forms of 60Co in the fluvisol soil, defining higher mobility and potential bioavailability. No influence of the storing conditions on the water-solubility of 60Co in the cambisol soil was established. The cooling, freezing and soil drought caused an increase of the exchangeable 137Cs in both soils.  相似文献   

8.
Sequential digestions of Fe-Mn oxide coated boulders collected upstream and downstream from the Magruder mine, Lincoln Co., Georgia, indicate probable partitioning relationships for Zn, Cu, Pb, Co, and Ni with respect to Mn and Fe. Initial digestion with 0.1M hydroxylamine hydrochloride (Hxl) in 0.01M HNO3 selectively dissolyes Mn oxides, whereas subsequent digestion with 1:4 HCl dissolves remaining Fe oxides.The results indicate that partitioning is not constant, but varies systematically with respect to the location of metal-rich waters derived from sulfide mineralization. Upstream from the mineralized zone Zn and Ni are distinctly partitioned to the Fe oxide component and Co and Cu are partitioned to the Mn oxide component. Immediately downstream from the mineralized zone, Mn oxides become relatively more enriched in Zn, whereas Fe oxides are relatively more enriched in Cu, Co, and Ni. Analytical precision for Pb is poor, but available data suggests it is more closely associated with Fe oxides.For routine geochemical surveys utilizing coated surfaces, a one-step digestion method is probably adequate. Parameters useful for detecting sulfide mineralization are metal concentrations normalized to surface area or various ratios (e.g. Zn/(Mn + Fe), Cu/Mn, Pb/Fe). Ratios can be obtained much faster, and at lower analytical costs than conventional analysis of stream sediment.  相似文献   

9.
To test the hypothesis that manganese- and iron-reducing bacteria in marine sediments respond rapidly to seasonal pulses of fresh organic carbon settling to the sea floor, we amended wet metal oxide?Crich and metal oxide?Cpoor sediments from the Beaufort Sea, Canadian Arctic, with organic carbon in the form of shrimp powder and incubated them at room temperature. Neither Mn nor Fe was released to the aqueous phase from unamended metal oxide?Crich sediment during a 41-day incubation, but both elements were released from sediment aliquots amended with organic carbon. Dissolved Mn appeared in the aqueous phase after a lag period of 2 days or less and reached levels as high as 600 ??mol l?1 before levelling out. The release of dissolved Mn was accompanied by a decrease in the concentration of solid-phase reducible Mn. Dissolved Fe did not appear until 2 weeks into the incubation and only after the concentration of dissolved Mn had levelled out. For low concentrations of amended organic carbon (0.3%), the kinetics of Mn reduction fit a second-order rate law with a rate constant k = 2 × 10?3 g ??mol?1 day?1, but at intermediate and high organic carbon concentrations (0.7 and 1.3%), the reduction kinetics was better described by a pseudo-first-order rate law with a rate constant k?? = 1.6 × 10?1 day?1. A pulse of organic carbon settling to the sea floor can trigger reduction of Mn and Fe oxides within a few days in strongly seasonal sedimentary environments, such as in the Arctic.  相似文献   

10.
Normalized concentrations of Fe, Zn, Ba and Co bound to the Mn phase were determined using a ratio of metal concentration to Mn concentration. Metal concentrations were taken from a previous study which found elevated concentrations of heavy metals in the stream sediments in the vicinity of 2 landfills using a HN03 extraction of the whole sediment sample and geochemical phases. Results from the normalized metal concentrations for Zn, Fe and Ba showed a clearer distinction between background and emission plume regions along the stream compared to the same for the HN03 and Mn phase extractions. Lack of elevated concentrations and normalized concentrations for Co indicated the concentrations represented the background. The small distance used in the study could explain the lack of a decreasing trend of metal concentrations and normalized metal concentrations downstream in the emission plume of the sediments. Although Mn+2 2concentrations are known to be incorporated into the natural state of the Mn phase, these concentrations were thought to be small enough not to influence the results from the normalized concentrations. Non-selectivity of extractants and metal redistribution among chemical phases during extraction procedures are thought to be small and did not invalidate the results.  相似文献   

11.
The knowledge of the long-term behavior of nuclear waste in anticipation of ultimate disposal in a deep geological formation is of prime importance in a waste management strategy. If phenomenological models have been developed to predict the long-term behavior of these materials, validating these models remains a challenge, when considering the time scale of radioactive decay of radionuclides of environmental concern, typically 104–105 yrs. Here we show how natural or archaeological analogues provide critical constraints not only on the phenomenology of glass alteration and the mechanisms involved, but also on the ability of experimental short-term data to predict long-term alteration in complex environments.  相似文献   

12.
Anthropogenic radionuclides (137Cs,134Cs,60Co) have been introduced to the James River estuary as a result of low-level releases from the Surry Reactor site since 1973 and worldwide atmospheric fallout from nuclear weapons tests since the early 1950s The total radionuclide burden in the estuary sediments has been estimated by integrating radionuclide activities in 29 box cores and extrapolating these integrated values over surface areas subdivided on the basis of sediment type, rates of accumulation, and proximity to the reactor release site. Our results indicate that 30% of the60Co, but only 15% of the134Cs released from the reactor site, has been retained in the estuary sediments, and about 40% of the134Cs and60Co sediment inventory is in areas that represent less than 5% of the total estuarine surface area. Depletion of the134Cs in downstream sediments forms a noticeable trend in the James River estuary, and we postulate that seawater cation competition and exchange is primarily responsible.  相似文献   

13.
The role of both natural weathering and anthropogenic pollution in controlling the distribution of major oxides and several trace elements in soils, stream sediments, and rocks of the Fiume Grande catchment was evaluated. The contents of major oxides and trace elements in soils appear to be governed by weathering and pedogenetic processes, although the use of fertilizers in agriculture could also partly affect K2O and P2O5 contents. Stream sediments have concentrations of major oxides (except CaO) very similar to soils, as relevant amounts of soil materials are supplied to the stream channels by erosive phenomena. In contrast, stream sediments have concentrations of Cr, Co, Ni, Zn, As, and Pb significantly higher than those of soils, probably due to different conditions and rates of mobility of these elements within the three considered matrices and/or disposal of wastes in the drainage network. Comparison of the concentrations of PHEs in soils with the maximum admissible contents established by the Italian law shows that these limits are too restrictive in some cases and too permissive in other ones. The approach of setting these limits with no consideration for the local geological–geochemical framework may lead to improper management of the territory and its resources. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

14.
]The activities of 18 radionuclides in 4 samples from the Saint-Séverin meteorite have been measured after chemical separation. The results show that the DI sample from the D piece has been less irradiated than the samples B2, B3 and B4 from the B piece. This is based on activities of isotopes produced both by spallation as 26Al, 53Mn, 54Mn, 55Fe, 57Co and by thermal neutron capture as 59Ni and 60Co.Comparison of experimental values to calculated production rates suggests that the D piece was connected to the main body of the meteorite by a small surface, and that the DI sample in this piece was opposite to the main body of the meteorite.  相似文献   

15.
In the Federal Republic of Germany disposal of low-level radioactive waste is practiced in rock salt of the salt dome Asse since years. Projects also exist for the disposal of high-level waste from nuclear reactors in salt domes. The feasibility of the “evaporite concept? has to be founded on some basic principles of the origin and metamorphism of marine salt deposits. The German Zechstein salt deposits (Permian) were formed about 230 million years ago. Since that time the salt formations have had a chequered history: 1. Solution metamorphism and thermal metamorphism have altered the primary chemical and mineralogical composition of salt rocks in the presence of unsaturated solutions and/or temperatures up to 100? C and more. 2. Mechanical deformation and dynamic metamorphism processes have preserved the chemical and mineralogical composition of the evaporites. Solution metamorphism: The minerals halite, sylvite, and carnallite are very sensitive to subsequent penetrating unsaturated solutions. Very important in this context is the origin of specific equilibrium solutions and mineral associations. Primary salt rocks (e. g. carnallite rock) have been altered to secondary mineral associations (e. g. Hartsalze and sylvite rocks of the potash seams Thüringen, Hessen, Stassfurt). Most of the solutions which infiltrated the salt deposits from outside are later squeezed out into the adjacent rocks. Geochemical and physicochemical processes of the solution metamorphism are not limited to the geologic past. They are also efficient at the present time as a result of deformation processes in partially extracted salt deposits, for example. Solution metamorphism processes are also possible in the future during the period of about one million years which is necessary for the disposal of high-level radioactive waste in salt domes. A concept which is based upon observed properties of salt formations and with secure scientific foundation must guarantee no radioactive contamination of salt solutions in the case of long time contacts between radionuclides and brines. An excellent method for the immobilisation of radioactive waste seems to be production of a synthetic igneous rock system SYNROC (Ringwood, 1978). In such a rock the radionuclides are fixed in the lattices of minerals. Additional safety barriers which prevent the entry of radionuclides from the geologic barrier into the biosphere are the metallic alloy Ni3Fe, for waste containers and layers of basalt and corundum. Borosilicate glasses are not suitable for the safe immobilisation of radionuclides because the glasses readly devitrify in contact with solutions and steam at elevated pressures and temperatures. Thermal metamorphism: The heat-generation of high-level waste produces zones of different temperatures in the evaporites of the salt domes. The salt hydrates kainite and carnallite react at relative low temperatures (> 072? C and > 80? C) and form solid phases with less hydrated compounds and equilibrium solutions. For example, effects of thermal metamorphism are to be expected in the case of influencing higher temperatures upon carnallite rocks which were squeezed into parts of rock salt during the geologic past. Increasing temperatures generated by radionuclides must be limited in carnallite rocks to 30 %–50 % of the recent rock temperatures in salt domes. A difference of 10? C should be guaranteed between the temperature zones around the high-level waste and the beginning of carnallite dehydratation at 80? C–85? C under normal pressure. Dynamic metamorphism: Dynamic metamorphism is concerned mainly with isochemical and isophase recrystallizations. The original thickness and composition of evaporites can be altered by the property of plasticity and by creep deformations of salt minerals and rocks. Solutions (e. g. pore solution) and increasing temperatures lead to the effects of dynamic metamorphism. A concept which is based upon observed properties of salt formations and with secure scientific foundation must guarantee temperatures ≦ 100? C in the vicinity around the high-level waste containers. Only for temperatures up to 100? C are relevant geologic data about the plastic deformation of rock salt available in the German salt deposits. The effects of salt rock deformation with increasing temperatures > 100? C could be examined only by laboratory experiments. It seems to be a considerable uncertainty and a risk to develop experimental deformation models for salt rocks valid for a time of 102–103 years. The present program in the Federal Republic of Germany for a geologic disposal of radionuclides in evaporites is sometimes characterized as the best concept of the world (e. g. v.Weizsäcker, 1978). For such a general statement no geoscientific foundation is available today. Alternative geologic disposal programs seem to be more acceptable in view of their geoscientific and technical base (e. g.Ringwood, 1978).  相似文献   

16.
In White Oak Creek watershed in eastern Tennessee, the radionuclides60Co,90Sr, and137Cs were retained by streambed gravels on different sites:60Co was associated with manganese in the hydrous oxide coatings on rocks and minerals;90Sr occurred primarily as an exchangeable cation although small amounts were held in a nonexchangeable form; and137Cs was held very selectively, presumably by illite in shale fragments composing the sediment. The distribution of radionuclides on sediments was size dependent: the 0.85–3.35 mm fine-gravel fraction was higher in radionuclide concentration than the sand fraction. An areal survey of radionuclide concentrations on streambed gravels from throughout the watershed, located numerous contamination sources. These radionuclide concentrations, when combined with both distribution coefficients of radionuclides between gravel and water and drainage area, were used to rank subsections of the watershed by their relative contribution to the overall contamination of the watershed. For90Sr, this ranking procedure agreed with the measured discharges of subsections of the watershed which are routinely monitored. Research sponsored by the Oak Ridge National Laboratory (operated by U.S. Department of Energy under contract W-7405-eng-26 with Union Carbide Corporation. Publication No. 2017, Environmental Sciences Division, ORNL.  相似文献   

17.
《Applied Geochemistry》2004,19(6):973-979
The association of rare earth and other trace elements with Fe and Mn oxides was studied in Fe-Mn-nodules from a lateritic soil from Serra do Navio (Northern Brazil). Two improved methods of selective dissolution by hydroxylamine hydrochloride and acidified hydrogen peroxide along with a classical Na–citrate–bicarbonate–dithionite method were used. The two former reagents were used to dissolve Mn oxides without significant dissolution of Fe oxides, and the latter reagent was used to dissolve both Mn and Fe oxides. Soil nodules and matrix were separated by hand. Inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry after fusion with lithium metaborate, and X-ray diffraction were used to determine the elemental and mineralogical composition of the nodules and soil matrix. The latter was composed of kaolinite, gibbsite, goethite, hematite, and quartz. In the nodules, lithiophorite LiAl2(MnIV2MnIII)O6(OH)6 was detected in addition to the above-mentioned minerals. The presence of hollandite (BaMn8O16) and/or coronadite (PbMn8O16) in the nodules is also possible. In comparison to the matrix, the nodules were enriched in Mn, Fe, K, and P, and relatively poor in Si, Al, and Ti. The nodules were also enriched in all trace elements determined. Phosphorus, As and Cr were associated mainly with Fe oxides; Cu, Ni, and V were associated with both Fe and Mn oxides; and Ba, Co, and Pb were associated mainly with Mn oxides. Distribution of rare earth elements indicated a strong positive Ce-anomaly in the nodules, compared to the absence of any anomaly in the matrix. Some of Ce was associated with Mn oxides. The improved methods achieved almost complete release of Mn from the sample without decreasing the selectivity of dissolution, i.e., without dissolving significant amounts of Fe oxides and other minerals, and provided reliable information on associations of trace elements with Mn oxides. These methods are thus proposed to be included in sequential extraction schemes for fractionation of trace elements in soils and sediments.  相似文献   

18.
The objective of this study was chemical and radiological characterization of Kastela Bay sediments exposed to numerous anthropogenic sources like deposition of fly and bottom ash enriched in radionuclides and heavy metals, chemical plant, cement plant, iron plant, shipyard, electroplating facility, untreated industrial and domestic waste waters as well as heavy traffic. Totally, 33 samples of the mixture of fly and bottom ash, 12 sediment cores ranging from 0 to 40 cm and nine surface sediment samples were analyzed. Enrichment in heavy metals in the mixture of fly and bottom ash was ranging from 1.5 to 36 times compared to flysch soil while 226Ra and 238U were up to 50 times enriched compared to average activities characteristic for surrounding soils developed on the Middle and Upper Eocene flysch. Maximum 238U activity was approximately 32 times higher and 226Ra approximately 40 times higher in the Kastela Bay sediment compared to mean value determined for Adriatic sediments. The highest enrichment in sediment cores compared to background values were found for Zn (35.6 times), Pb (16 times), Cr (9.1 times) and Ni (4 times)  相似文献   

19.
Biofilm-embedded Mn oxides exert important controls on trace metal cycling in aquatic and soil environments. The speciation and mobility of Zn in particular has been linked to Mn oxides found in streams, wetlands, soils, and aquifers. We investigated the mechanisms of Zn sorption to a biogenic Mn oxide within a biofilm produced by model soil and freshwater MnII-oxidizing bacteria Pseudomonas putida. The biogenic Mn oxide is a c-disordered birnessite with hexagonal layer symmetry. Zinc adsorption isotherm and Zn and Mn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy experiments were conducted at pH 6.9 to characterize Zn sorption to this biogenic Mn oxide, and to determine whether the bioorganic components of the biofilm affect metal sorption properties. The EXAFS data were analyzed by spectral fitting, principal component analysis, and linear least-squares fitting with reference spectra. Zinc speciation was found to change as Zn loading to the biosorbent [bacterial cells, extracellular polymeric substances (EPS), and biogenic Mn oxide] increased. At low Zn loading (0.13 ± 0.04 mol Zn kg−1 biosorbent), Zn was sorbed to crystallographically well-defined sites on the biogenic oxide layers in tetrahedral coordination to structural O atoms. The fit to the EXAFS spectrum was consistent with Zn sorption above and below the MnIV vacancy sites of the oxide layers. As Zn loading increased to 0.72 ± 0.04 mol Zn kg−1 biosorbent, Zn was also detected in octahedral coordination to these sites. Overall, our results indicate that the biofilm did not intervene in Zn sorption by the Mn-oxide because sorption to the organic material was observed only after all Mn vacancy sites were capped by Zn. The organic functional groups present in the biofilm contributed significantly to Zn removal from solution when Zn concentrations exceeded the sorption capacity of the biooxide. At the highest Zn loading studied, 1.50 ± 0.36 mol Zn kg−1 biosorbent, the proportion of total Zn sorption attributed to bioorganic material was 38 mol%. The maximum Zn loading to the biogenic oxide that we observed was 4.1 mol Zn kg−1 biogenic Mn oxide, corresponding to 0.37 ± 0.02 mol Zn mol−1 Mn. This loading is in excellent agreement with previous estimates of the content of cation vacancies in the biogenic oxide. The results of this study improve our knowledge of Zn speciation in natural systems and are consistent with those of Zn speciation in mineral soil fractions and ferromanganese nodules where the Mn oxides present are possibly biogenic.  相似文献   

20.
We examined the relationship between soil oxidation capacity and extractable soil manganese, iron oxides, and other soil properties. The Korean soils examined in this study exhibited low to medium Cr oxidation capacities, oxidizing 0.00–0.47 mmol/kg, except for TG-4 soils, which had the highest capacity for oxidizing added Cr(III) [>1.01 mmol/kg of oxidized Cr(VI)]. TG and US soils, with high Mn contents, had relatively high oxidation capacities. The Mn amounts extracted by dithionite-citrate-bicarbonate (DCB) (Mnd), NH2OH·HCl (Mnh), and hydroquinone (Mnr) were generally very similar, except for the YS1 soils, and were well correlated. Only small proportions of either total Mn or DCB-extractable Mn were extracted by NH2OH·HCl and hydroquinone in the YS1 soils, suggesting inclusion of NH2OH·HCl and hydroquinone-resistant Mn oxides, because these extractants are weaker reductants than DCB. No Cr oxidation test results were closely related to total Mn concentrations, but Mnd, Mnh, and Mnr showed a relatively high correlation with the Cr tests (r = 0.655–0.851; P < 0.01). The concentrations of Mnd and Mnh were better correlated with the Cr oxidation tests than was the Mnr concentration, suggesting that the oxidation capacity of our soil samples can be better explained by Mnd and Mnh than by Mnr. The first component in principal components analysis indicated that extractable soil Mn was a main factor controlling net Cr oxidation in the soils. Total soil Mn, Fe oxides, and the clay fraction are crucial for predicting the mobility of pollutants and heavy metals in soils. The second principal component indicated that the presence of Fe oxides in soils had a significant relationship with the clay fraction and total Mn oxide, and was also related to heavy-metal concentrations (Zn, Cd, and Cu, but not Pb).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号